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Abstract 

Numerical calculation techniques of turbulent shear flows are classified into 
two categories: one is the k-t: turbulence model, and the other is the large eddy 
simulation (LES). The standard k-t: model has been established at present to 
predict a turbulent structure in jets, boundary layers and closed channel flows, 
while LES is being developed to predict a coherent eddy structure in simpler 
channel flows. The standard k-t: model cannot be, however, easily applied to 
open channel surface flows, because the turbulence near the free surface is more 
depressed than the closed channel flows. 

In the present study, a new modified k-t: model is proposed to predict 
reasonably a turbulent structure in open channel flows with both the low and 
high Reynolds numbers. The numerical calculations indicate a good agreement 
with the experimental data which were obtained by making use of hot-film and 
Laser Doppler anemometers. 

1 . Introduction 
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Numerical calculation techniques of turbulent shear flows are classified into 

two categories: one is the multi-equation model of turbulence, and the other is 

the large-eddy simulation. The large-eddy simulation (LES) stems from an idea 

in which the larger scale turbulence rather than the calculating grid (resolvable 

scale) is calculated in time-dependent Navier-Stokes equations that incorporate 

the local-isotropic turbulence model for a small-scale turbulence (subgrid scale). 

The first application of LES was made by Deardorff (1970), who simulated a 

closed channel flow at a large Reynolds number. Using this LES technique, 

Moin & Kim (1982) could successfully simulate the bursting phenomena near the 

wall which were intensively investigated experimentally in the 1970's by many 
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researchers. (See reviews written by Hinze 0975), Laufer 0975), WilJmarth 

(1975), Nakagawa & Nezu 0981) and Cantwell (1981)). The LES is an epoch­

making computer simul~tion of wall turbulence which can predict the coherent 

structure of turbulent shear flows. However, it takes a very large computational 

time, that is, even the computation of simple flows such as uniform closed 

channel flows needs several hours of the CPU-time in the newest super-comput­

er (e.g. Kobayashi et al. 1985, 86). Hence, LES does not yet, at present, attain an 

engineering prediction technique for fluid flow and heat-mass transfer. 

On the other hand, the multi-equation model of turbulence was developed 

and tested intensiv~ly by the Imperial College group in the 1970's. This multi­

equation model solves the Reynolds equations on the basis of the turbulent eddy 

-viscosity model. In a previous simpler model, such as the mixing-length model, 

the eddy viscosity had to be given as a known variable. However, in the multi 

-equation model the eddy viscosity is an unknown variable, and it is solved by 

using the transport equation of turbulence. The k---t: model is the most represent­

ative one of the multi-equation models. The k---t: model can predict fairly 

reasonably and cost-performably a turbulent structure and heat-mass transfer in 

jets, boundary layers, closed channel flows and, furthermore, complex turbulent 

flows. (See a review written by Rodi (1980)). Consequently, the model constants 

in the k---t: model have been, at present, established as standard values, i.e. the 

standard k---t: model (Rodi, 1980). 

In the early 1980's, the Rodi group in the University of Karlsruhe began to 

apply the k---t: model to the hydraulic problems (Rodi 1980). In the application to 

open-channel flows, the effects of free surface on turbulence must be considered 

reasonably. Naot & Rodi 0982) proposed an algebraic-stress version of the k---t: 

model by taking into account the damping effect of the turbulence near the free 

surface which was pointed out by Nakagawa, Nezu & Ueda (1975) and they 

predicted the secondary currents in open-channel flows. The validity of this 

prediction was then verified experimentally by Nezu & Rodi 0985), who carried 

out highly accurate measurements by making use of Laser Doppler anemometers 

(See Rodi (1986) ). Recently, Celik & Rodi (1984) refined the algebraic-stress 

version of the k---t: model, and made a calculation of two-dimensional open­

channel flows. However, 5 new constants were further necessary in their model, 

in addition to the standard constants of the k-e model. The coefficient c. of the 

eddy viscosity indicated also a very large variation in comparison with the 

closed channel flows, as wilJ be shown later. Therefore, it is necessary to 

develop a more reasonable numerical calculation model of turbulent open-chan­

nel flows. 
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The present study proposes a new modified k-e model in which the damping 

effect of the turbulence near the free surface is considered by introducing the 

damping factor. The present model can predict reasonably a turbulent structure 

of open-channel flows at large Reynolds numbers. Furthermore, when the 

Reynolds number is low, the present model can be extended easily by introduc­

ing the extra terms of Jones & Launder (1973). The present calculation results 

indicate a good agreement with the experimental ones at both low and high 

Reynolds numbers. 

2. Basic Equations 

2.1 Reynolds Equations 
The Reynolds equations and continuity equation in two-dimensional ( 2 -D) 

open-channel flows are given as follows: 

u au + v au = g sin 0 - __§_ ( E. ) + __§_ C -i?) ax ay axp ax 
a -+ - (-uv) + II \J2U ay 

u av+ v av= -gcos0- __§_ ( P )+ __§_ (-uv) ax ay ay p ax 

+ __§_ C-ir) +11\l2v 
i)y 

au+ av= 0 ax ay 

( 2) 

( 3) 

The x co-ordinate is aligned with the streamwise direction. The co-ordinate y is 

perpendicular to the channel wall, and z is in the spanwise direction. The mean 

velocities in the x, y and z directions are U, V and W ( = O ) , and their turbulent 

fluctuations are u, v and w, respectively. P is the mean pressure, p is the water 

density, g is the gravity acceleration, 11 is the kinematic viscosity and 0 is the 

channel slope. The first terms on the right-hand side of ( 1) and ( 2) describe 

the gravity force acting on the water flow. 

Denoting the pressure deviation p' from the hydrostatic pressure, i. e. 

P = pg(h - y) cos 0 + p' ( 4 ), 

the gravity term is dropped out of ( 2 ), where h is the water depth of open­

channel flow. To close Equations ( 1 ) and ( 2 ), the Reynolds stresses i?, i? and 
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-uv must be correlated with the mean velocities U and V. This closure problem 

is the most essential but difficult one in turbulence research. The representative 

examples of the closure problem are the eddy-viscosity model (Boussinesq 1877) 
and the mixing-length model (Prandtl 1925). 

2.2 Turbulent Eddy-Viscosity Model 
The turbulent eddy-viscosity model of Boussinesq 0877) has been re-ex­

amined and refined on the basis of the modern turbulence similarity law (e. g. 

Rotta 0972) and Townsend 0976) ). As a result, the following relations are 

satisfied: 

- _ ( au, au; ) 2 
U;U; - -v, ax; + ax, + 3 k O;; ( 5) 

( 6) 

k _ l-_ l (::"2 ::-2 :::-2) 
=zU;U;- 2 U +v +w (7) 

where, v, is the eddy viscosity and o,; is the Kronecker delta. k is the kinetic 

turbulent energy, while c: is its turbulent dissipation. In the previous eddy­

viscosity model, v, had to be given beforehand as a known variable, which was 

very difficult except for only simple flows such as the uniform pipe flow. 

On the other hand, the turbulence similarity law verifies the relation of ( 6 ). 
Although c. is the empirical coefficient, both k and c: are the most important 

quantities in turbulent structures. The closure problem in which k and E are 

chosen as unknown variables in the equations is the so-called k-t: turbulence 

model. 

2.3 k--equation and c:-equation 
( 1) k-equation 

The turbulent energy equation is exactly reduced to 

_ -au, 
G = -u,u;-­ax; 

( 8) 

( 9) 

where, p is the pressure fluctuation, and G is the generation or production of the 
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turbulent energy. The third and fourth terms of ( 8 ) are the turbulent diffusion 

which describes the third-order correlations. In order to close Equation ( 8 ), the 

diffusion terms must be approximated by the second-order correlations. In the 

same conception as ( 5 ), the following gradient-type relation is valid: 

(10) 

where, a. is the model constant. 

The diffusions of kinetic energy k and pressure energy p / p are identified 

overall in the model of (10). However, because both of them are quite different 

from each other very near the wall (e. g. Laufer (1954) and Nezu (1977)), (10) 
cannot be applied to the viscous sublayer. Paying attention to k c,:, y 2 very near 

the wall, Jones & Launder (1973) proposed an extra term D to (10) : 

(11) 

where, C3 is the model constant of about 2. 

( 2) e-equation 

The energy dissipation e is defined as 

_ ( au; )( au; ) E =II - -
ax; ax; (12) 

The e-equation can be induced from the Navier-Stokes equation, but it is much 

more complicated than ( 8 ). (See Hanjalic & Launder (1976).) Hence, the same 

-type relation as ( 8 ) is assumed in the following: 

Uk + V k = ~ (C G - C e) + __§__ ( J!.!... k) + __§__ ( J!.!... k) (13) 
ax ay k 1 2 ax a,ax ay a,ay 

where, C1, C2 and a, are the model constants. 

Although (13) may be an empirical equation, it can predict turbulence more 

reasonably than the previous simple model (e. g. Rodi (1980)). For the same 

reason as the k-equation, an extra term E is necessary very near the wall. In 

the Jones & Launder model (1973), E is given by 

( a
2 u )2 

E = c411 11, ayz (14) 
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where, C4 is the model constant of about 2. 

2.4 General Description of Basic Equations 
5 partial differential equations of ( 1 ), ( 2 ). ( 3 ). ( 8) and (13) are reduced 

to the same-type transport equation : 

¢ is the transported variable and s. is its source term. r is the effective 

viscosity. (15) reads as follows: 

Continuity equation: ¢ = 1. S, = 0 (16) 

U-equation: ¢ = u. r = II, + II 

( . dh ) 8(P) S. = g sm0 - - cos0 - - -
dx 8x p 

+ ~ (r 8U )+ ~ (r 8V) 
8x 8x {}y 8x 

V-equation: ¢ = v. r =II,+ II 

k-equation: ¢ = k, r = 11,/ a. 
s. = G - (e + D) 

e-equation: ¢ = e, r = 11,/ a, 

The turbulent generation G is obtained from ( 5) and ( 9 ), as follows: 

(17) 

(18) 

(19) 

(20) 

(21) 

When the extra terms D and E are introduced to (19) and (20). the boundary 

condition can be determined so that k =e = 0 at y= 0. 
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3 . Standard k----e Model and Its Limitation of Application 

3.1 Model Constant 
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The Imperial College group found, through intensive investigation and com­

putational optimization, that the standard k-e model of (15) could be applied to 

jets, boundary layers and closed channel flows. Consequently, they proposed the 

following standard model constants (See Rodi (1980).) : 

a.= 1.0, a,= 1.3. C1 = 1.44 and C2 = 1.92 (22) 

In the k-e model, the coefficient of c. of ( 6) is the most important parameter. 

When the Reynolds number becomes sufficiently large, c. can be regarded as a 

universal constant (Townsend 0976)). Its standard value is given as follows 

(Rodi (1980)) .: 

c. = 0.09 (23) 

3.2 Boundary Conditions 
( 1) Wall condition (wall function) 

As mentioned previously, the gradient-type description of diffusion such as 

(10) cannot be applicable up to the wall, i.e. y= 0. In order to circumvent this 

difficulty, the standard k-e model assumes that, when y + = yU. / v (where, u. = 
friction velocity) becomes larger than 50, the turbulent structure attains an 

energy equilibrium, i.e. G ~ e, and also the log law distribution is satisfied there. 

Denoting the first grid point nearest the wall as y, (the value corresponding 

to y, is denoted by the suffix p.), the following boundary condition, i.e. wall 

function, is obtained from the above-mentioned assumption. 

1 ( i) Mean velocity: U,/ u. = - In y; + A 
. IC 

(24) 

where, the empirical values of IC and A are given as 1C= 0.41 and A = 5.3 in open 
-channel flow (Nezu & Rodi (1986)). 

(ii) Because G = e for y; ~ 50 (25), 

the following relation can be obtained : 
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kp/ U~ = 1/ K. = 3.33 (26) 

vi 
E =--

P K,yp 
(27) 

( 2 ) Symmetrical condition 

Since the flow should be symmetric on the central axis, i.e. y=h, in the case 

of closed channel flows, the following symmetrical condition is satisfied : 

(28) 

3.3 Limitation of Application of Standard k---e Model 
The closed channel flow can be numerically calculated by solving the equa­

tions of (15) on the boundary conditions of (24), (26), (27) and (28). However, 

the standard k---e model has the following inevitable limitations of application : 

( i ) The Reynolds number Re should be set sufficiently large, and thus y; > 50 
must be satisfied. Then, the turbulent energy kp keeps constant as kp/ U~ = 3.33, 
irrespective of flow conditions. 

(ii) The symmetrical condition of (28) is not applicable to open-channel flows, 

because the effect of free surface appears. 

(iii) Because ( 5) is premised on an isotropic flow, the standard k--e model 

cannot be applicable to phenomena which are driven by anisotropy of turbu­

lence. For example, the secondary currents in duct flows cannot be calculated 

by using the standard k--e model. 

The limitation of ( i ) is a fatal shortcoming as the Reynolds number 

becomes lower. In this case, the extra terms of D and E may be useful to predict 

a turbulence near the wall. The present study proposes a new wall function 

whereby the first grid point YP can be extended up to y; = 20. Furthermore, 

when the Reynolds number is comparatively small, the validity of D and E is 

examined in open-channel flows. 

The limitation of (ii) is the most inevitable defect for the numerical calcu­

lation of open-channel flows. That is to say, the modelling of the effect of the 

free surface is the most important topic in the application of the k--e model to 

hydraulics. Assuming the equilibrium condition of G = e in the transport equa­

tion of U; U;, Celik & Rodi 0984) proposed an algebraic-stress version of the k­

e model, as follows : 

i? _ 2 R1 -l+(G/e)(R2 - 2R2Rd) 
k - 3 R1 + (G/e) - 1 + 2Rd 

(29) 
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c. = 0.09 
2R2RJ (Cle) 

l R 1 -l+R2 (G/e) 
1 + 2Raf 

R1 - 1 + G/e 
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(30) 

where, R 1, R 2, Ra and R 4 are model constants. Celik & Rodi used R 1 = 1.8. R 2 

= 0.6. Ra= 0.5, R 4 = 0.3 which were given by Gibson & Launder (1978). Also, f 

is a wall function. They determined f so that the vertical turbulence intensity i? 
of (29) might coincide with the experimental values obtained by Nakagawa, Nezu 

& Ueda (1975). In the Celik & Rodi model, 5 new model constants of R 1 - R 4 

and f have to be given, in addition to the standard constants of (22). Fur­

thermore, Celik & Rodi used a free-surface condition which was proposed by 

Hossain (1980), that is, 

where, suffix s denotes the value at the free-surface. However, (31) overesti­

mates the dissipation much more than the experimental values. According to 

Nezu (1977), k./ U~ is nearly equal to 0.85. Then, (31) estimates e.h/ U~ = 4.4. 
which is much larger than the experimental values, as will be shown later. 

Consequently, the algebraic-stress model of Celik & Rodi should be refined 

further. 

Lastly, the limitation of (iii) is important to predict three-dimensional turbu­

lent flows such as secondary currents. Although the anisotropic k-e model has 

been recently proposed by some researchers (e.g. Nakayama, Chow & Sharma 

(1983)), sufficient models may be not available yet. Such a development of the 

3 -D computation technique will be further necessary. 

4. A New Modified k-e Model 

4.1 Scope of the Present Modified k-e Model 
As mentioned in Chapter 3, the standard k-e model has some substantial 

shortcomings in application to open-channel flows. The present study proposes 

a new modified k-e model to circumvent these difficulties. However, considering 

that the standard k-e model is recognized to be a very powerful computation 

technique in fluid engineering (e.g. Gosman, Launder & Reece (1985)), its model 

should be extended straightforward so as to be valid even in open-channel flows. 

The present extensions of the standard k-e model are as follows: 
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( i ) The coefficient c. which is the most essential parameter in the k-E model 

should be influenced by the viscous effect, so as to extend the first grid pointy; 

up to 20. 
(ii) The damping effect of turbulence should be considered in modelling the 

free surface condition. 

(iii) The new model can also predict a turbulent structure at a low Reynolds 

number and, furthermore, in viscous sublayer even at a high Reynolds number. 

These extensions are formulated in order in the following sections. 

4.2 Coefficient c. of Eddy-Viscosity Model 
In the same way that van Driest (1956) formulated the damping function 

near the wall in the mixing-length model, a damping function should be intro­

duced into the coefficient c. to extend the eddy-viscosity model up to the 

viscous sublayer. The van Driest-type damping function is given by 

C. = 0.09 ( 1 - D1 • exp(-R,/ D2)) (32) 

On the other hand, Jones & Launder (1973) proposed an empirical relation, as 

follows: 

( -Da ) c. = 0.09 exp R, + D
4 

(33) 

where, D 1 ~ D 4 are the model constants which should be determined by compar­

ison with the experimental results. Jones & Launder chose D 3 = 125 and D4 = 50. 
R, =k 2/ (ve) is the turbulence Reynolds number. In the same manner as van 

Driest's original idea, it may be possible to use y + instead of R, in (32) and (33), 
but this case is not so relevant because c. depends directly on the grid point y +. 

Of course, as the Reynolds number R, becomes larger, (32) or (33) approaches c. 
= 0.09, i. e. the standard model. The Celik & Rodi model of (30) may be also 

regarded as a kind of damping function. 

Figure 1 shows the coefficient c. against the turbulence Reynolds number 

R,, by choosing the model constants reasonably. Run 1 is the standard model 

(C. = 0.09). Run 2 is the Jones & Launder type (D 3 = 120, D4 = 60). Both Run 

3 CD1 = 0.95, D2 = 250) and Run 4 CD1 = 0.90, D2 = 200) are the van Driest type. 

Although the van Driest type of (32) becomes nearly equal to the Jones & 

Launder type of (33) in the region of R, s 200, the former approaches the 

standard model faster than the latter. 
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Standard k-E Model (RUN-1) 

van Driest type 

J£_ 
0.09 

0.5 van Driest type (RUN-3) 

500 

'Jones•Launder type (RUN-2) 

1000 

Figure 1. Coefficient c. of eddy viscosity against turbulence Reyonolds number, 
R,. 
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Figures 2 , 3 and 4 are some examples of the calculation results to examine 

the effect of C,,. A detailed computation technique will be mentioned later. 

Firstly, Figure 2 shows the mean velocity distribution of U + = U I U. vs. y + 

= yU. I 11. This figure also shows the van Driest curve, the log law distribution 

of (24) and the log-wake law distribution which is described as 

U + = _Jj_ = _l In y + + A + 1!!_ sin2( !!._ .J.... ) 
U. ,r, ,r, 2 h 

(34) 

where, IT is the Coles' parameter. Nezu & Rodi (1986) recently found that IT 

should be equal to 0.2 in open-channel flows with a large Reynolds number. 

The curve of (34) with IT= 0.2 is shown in Figure 2 . The standard model (Run 

1) obeys, of course, the log law at y;. This recognizes that the damping 

function should be used in the buffer layer. Among these runs, Run 3 indicates 

the best agreement with the log-wake law of (34). 
Figure 3 shows the distribution of turbulent energy k / U~. The calculated 

values include the damping effect of turbulence near the free surface, which will 

be discussed later. The solid line in Figure 3 is the semi-theoretical curve 

which was proposed by Nezu 0977), and it is given by 

k u~ = 4.78 exp (-2-~) (35) 

Cl AUN RE Rsrn 
LI) + C) 1 1 . Ox I Oq 5. 3 Sx I 02 

I!::,. 2 1 . Ox I Oq 5. 2 9• I 02 

C) + 3 1 . Ox I Oq 5.34xl02 

=:I' X 4 1 . Ox 1 Oq 5.351 102 

Cl 
C) 

('\J 0 

;( ('() 
\ Cl 

:::::) 
Cl 

' Cl Standard Semi-Theoretical Curve 
~ . 

k-£ Model C\J 

Cl 

Cl 

0
0. o 0. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

1/H 
Figure 3 . Effect of C, on turbulent energy, k/l.P-•. 



3 1,1 

Numerical Calculation of Turbulent Open-Channel Flows 
in Consideration of Free-Surface Effect 

('f) 

X 
::i 

... 
C) 

O> 
CD 
r--
10 
1/) 

=--

(\I 

r-­
(0 

1/) 

::r 

Ir) 

C\I 

~b 
w CJ) 

CD 
r--
10 
II) 

::r 

Ir) 

r-­
(0 

1/) 

::r 

Ir) 

RUN RE 
(!) 1 1 . Ox 1 011 

A 2 1 . Ox 1 011 

+ 3 1 . Ox 1 011 

X 4 1 • Ox 1 011 

Ill 

(!) 

Semi-Theoretical 
Curve 

2 

RsTA 
5. 3 Sx 1 02 

5. 2 9x 1 02 

5. 3 Yx 1 02 

5. 3 Sx 1 02 

Figure 4. Effect of C, on energy dissipation, eh/Ut 

123 



124 Iehisa NEzu and Hiroji NAKAGAWA 

(35) is valid in the outer region of y / h > 0.15 for open-channel flows. Figure 3 

indicates clearly that the standard model (Run 1) deviates fairly largely from 

(35). Run 3 indicates the best agreement with (35). 

Figure 4 shows the distribution of turbulent dissipation eh/ U~ vs. y I h. 

The solid line is the semi-theoretical curve which was evaluated from (35) and 

the mean-eddy scale by Nezu (1977), and it is given by 

.E!._=
976 

exp(-3•y/h) 
U~ · /y/ h 

(36) 

(36) is also valid in the outer region of y / h > 0.15. The best agreement between 

the calculated values and (36) is recognized again in the case of Run 3 . 

Especially, it should be noted that the calculated values coincide well with (36) 

even near the free surface. This fact indicates that the Hossain free-surface 

condition of (31) is inadequate. 

To sum up, the coefficient c. should be described by a van Driest-type 

damping function. By comparison with semi-theoretical curves, the model con­

stants were reasonably evaluated as D 1 = 0.95 and D 2 = 250. These values are 

used in the following discussions. 

4.3 Modelling of Damping Effect of Turbulence due to Free Surface 

( 1 ) Formulation of Modelling 

Although the symmetrical condition of (28) is surely relevant to closed 

channel flows, its condition cannot be applicable to open-channel flows because 

the damping effect of turbulence appears near the free surface, as has been 

pointed out by Nakagawa, Nezu & Ueda (1975). This fact motivated Celik & 

Rodi (1984) to formulate an algebraic-stress version of the k-e model. However, 

this model is very complicated to interpret (29) and (30) physically. Especially, 

the value of c. by using (30) indicated a drastic decrease as the free surface was 

approached, in spite of the large turbulence-Reynolds-number. 

The present modelling is made more straightforward and phenomenologica­

lly in the following aspects. The turbulent energy at the symmetrical axis of 

closed channel flows is defined as k., while the turbulent energy at the free 

surface of open-channel flows is defined as kw (The axis of the closed channel 

denotes the suffix a, while its corresponding water surface of the open-channel 

denotes the suffix w.). The damping effect of turbulence due to the free surface 

can be described as 

(37) 
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where, Dw is the damping factor. Although it may be difficult to determine the 

value of D., theoretically, the following relation is satisfied: 

D =k /k =(~)2 l+(v' /u')~+(w' /u')~ 
w "' • u: 1 + (v' / u' ); + (w' I u' ); (38) 

The isotropy of turbulence intensities is nearly satisfied, i. e. u; = v; = w; at the 

symmetrical axis of closed channel flows (Laufer (1954)). Assuming that u~ = u~ 

= w~ and v~ -- 0 due to the damping effect of turbulence (Nakagawa et al. 

(1975) and Ueda et al. (1977)), (38) can be reduced to 

(39) 

Next, the damping effect of turbulence influences the boundary condition of 

the mean velocity U.,. On the other hand, the Reynolds stress -(uv)w should not 

be influenced by the damping effect because it must obey the Equation ( 1 ), i. 

e. the linear distribution. 

Consequently, since - (uti)., = - (uti)., 

dU 1 -- I =- (-uv) dy w 11, • 
(40). 

In actual computation, (37) and (40) may be satisfied at the nearest grid pointy., 

to the free surface. It is quite unknown at present how the damping effect of 

turbulence appears in the turbulent dissipation. Hence, the present study adopts 

tentatively the symmetrical condition, i. e. de/ dy I ,;;= 0. 

( 2 ) Experimental Verification 

Figure 5 shows the eddy-viscosity distribution of 11,/ (hU.) vs. y / h to 

examine the damping effect of turbulence, by varying the damping factor Dw 

from 0.4 to 1.0. The experimental values of the open-channel flows in Figure 5 
(a) were obtained by Jobson & Sayre (1970), Ueda et al. (1977) and Nezu & Rodi 

(1986). Nezu & Rodi have recently carried out open-channel experiments by 

making use of a high power Laser Doppler anemometer. The eddy-viscosity of 

a closed channel flow becomes nearly constant as the symmetrical axis, i. e. y I 
h= 1. is approached, as has been pointed out by Quarmby & Quirk (1972). The 

calculated values with no damping effect of turbulence, i.e. Dw = 1.0, coincide 

well with the experimental ones of pipe flows. 
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On the other hand, the most noticeable feature is that the eddy-viscosity of 
open-channel flows decreases as the free surface is approached. This feature can 
be explained well by introducing the damping factor Dw, as seen in Figure 5 
(b). Although the experimental values of 11, near the free surface are not so 
accurate because of the numerical difference of the measured mean velocity 
(Nezu & Rodi (1986) ), they may be scattered within the calculated curves of Dw 

= 0.4 ~0.8. 
Figure 6 shows the mean velocity distributions. The effect of Dw on the 

mean velocity u+ is in general small, although a little larger deviation from the 
log law is recognized near the free surface as the damping factor Dw becomes 
smaller. The calculated values with Dw = 0.8 may coincide well with the log­
wake law of (34). 

Figure 7 shows the turbulent energy distribution, in which the damping 
effect of turbulence can be seen clearly near the free surface. The solid line 
indicates the semi-theoretical curve of (35). In the case of Dw = 0.8, the calculat­
ed values coincide best with the curve of (35). 

· Figure 8 shows the turbulent dissipation eh/ Ul vs. y I h, together with the 
semi-theoretical curve of (36). It is recognized again that the calculated values 
with Dw = 0.8 indicate the best agreement with the curve of (36). 

From the above-mentioned results it is concluded that the damping factor 
can be reasonably determined as Dw = 0.8. This value may be plausible in 
hydraulics, because it is larger than the critical value of Dw = 0.67 which is given 
by a perfect damping, i. e. v~---+ O. 

4.4 Extension of k-£ Model to the Viscous Sublayer 
( 1) Jones & Launder's extra terms 

It is particularly interesting in basic hydraulics to predict the wall region 
including the viscous sublayer. The reason is that the bursting phenomena 
occur violently in the region of y + ::;; 50, and thus the turbulent structure does 
not have equilibrium any longer. Consequently, the turbulent quantities vary 
rapidly there (e.g. Nakagawa & Nezu 0977, 81)). In this case, Jones & Launder's 
extra terms D and E should be introduced into the k-e model, as mentioned in 
Chapter 2. Although the calculation results by using these extra terms will be 
shown in Chapter 6, it was found that the coefficient Cµ was the much more 
essential parameter than the model constants C3 and C4 of (11) and (14). Cµ was 
given by the van Driest-type damping function of (32), i.e. D 1 = 0.95 and D2 = 
250. From intensive computational optimization in comparison with the experi­
mental results, it was judged that C3 = 1.8 and C 4 = 2.0. On the other hand, 
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Jones & Launder's original data were C3 = 2.0 and C 4 = 2.0. 

( 2 ) Extension of Wall Function 

It is necessary to make a very small finite-difference for the numerical 

calculation of the wall region of o + = oU. / v s 100, because the turbulent quan­

tities vary rapidly there. For example, the turbulent energy k and its dissipation 

e have maximum values in the buffer layer of y + s 30. However, as the 

Reynolds number R. =hU. / J.J increases, the wall region of o / h s 100/ R. bec­

omes thinner. Consequently, the number of computational grid points must be 

increased enormously, which may not be advisable for hydraulic engineering. In 

order to overcome this difficulty, the minimum position under which the turbu­

lence decreases rapidly, may be chosen as a first grid point, i.e. y; = 20. In the 

present study, the wall function of the standard model is extended up toy; = 20, 
as follows: 

( i) The mean velocity u; should be given by the van Driest curve which was 

obtained from the mixing-length with the viscous damping function. 

(ii) Because the turbulent structure becomes non-equilibrium in the region of 

y + s 50, the equilibrium condition of (25) cannot be used here. However, the 

following relation may be satisfied. 

Ep =a• GP (41) 

where, a is the empirical constant and it can be evaluated from Laufer's (1954) 
experimental data (See figure 21.) at the initial condition. 

From (41) and the van Driest function, the following wall functions can be 

obtained: 

(42) 

~ = c.k 2 
( du+ ) ( 1 _ du+ ) 

"'P v dy + I dy + I y; (43) 

Setting dU+ /dy+ « 1 and a= 1, and applying the log law instead of the van 

Driest curve, (42) and (43) are reduced to the standard wall functions of (26) and 

(27), respectively. 
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5. Calculation Results of Open-Channel Flows at High Reynolds Number 

5.1 Computational Technique 
The turbulent structure of open-channel flows can be calculated by using 

the present modified k-e model. The hydraulic conditions for high Reynolds 
numbers are indicated in Table 1. This series is called HR. The Reynolds 
number Re= U,.h/11 (where, U,. is the bulk mean velocity) was varied from 2000 
up to 106• Since the effect of the Froude number Fr= U,./ /gh on turbulence 
could not be detected, the Froude number was kept constant as Fr = 0.43. The 
first grid point was chosen as y; ~ 20. The staggered grid was adopted here, in 
which the streamwise grid points were 52 with the grid spacing L1x = h, and the 
vertical grid points were 22. The equations of (15) were solved by making use 
of the modified TEACH code (e. g. Gosman, Launder & Reece (1985)) in which 
the SIMPLE method of Patankar (1980) was incorporated. The convergence 
criterion was that the maximum residual of Equation (15) became within 

Table 1 . Hydraulic conditions for numerical calculation. 

(a) High Reynolds-number Series 

RUN 

HR-1 
HR-2 
HR-3 
HR-4 
HR-5 
HR-6 

h 
(cm) 

1.29 
2.38 
3.78 

11.06 
17.56 
81.52 

u,. 
(cm/s) 

15.5 
21.0 
26.4 
45.2 
57.0 

122.7 

Re 
X 103 

2 
5 

10 
50 

100 
1,000 

(b) Low Reynolds-number Series 

LR-1 
LR-2 
LR-3 
LR-4 
LR-5 
LR-6 
LR-7 

0.51 
0.82 
1.29 
2.38 
3.78 

11.06 
17.56 

9.7 
12.3 
15.5 
21.0 
26.4 
45.2 
57.0 

U. = present k--£ model, 

0.5 
1 
2 
5 

10 
50 

100 

u."" = from log law, i.e. Eq. (24), 

Fr R. 

0.43 134 
0.43 292 
0.43 534 
0.43 2.249 
0.43 4.218 
0.43 34.545 

0.43 
0.43 
0.43 
0.43 
0.43 
0.43 
0.43 

38 
66 

122 
274 
512 

2.221 
4.169 

U • ..,,,,, = from log-wake law, i.e. Eq. (34). 

u. 
(cm/s) 

1.036 
1.223 
1.412 
2.033 
2.402 
4.238 

0.744 
0.812 
0.943 
1.149 
1.353 
2.008 
2.374 

u. -u.1cw: u. -u ...... 
u.,,,,, u.-

-0.9% 
-2.6% 
-2.9% 
-2.6% 
-2.3% 
-2.3% 

-8.8% 
-11.7% 
-9.9% 
-8.5% 
-6.9% 
-3.8% 

0.4% 

1.8% 
0.08% 

-0.14% 
-0.29% 
-0.08% 
-0.35% 

-12.1% 
-8.8% 
-7.3% 
-6.0% 
-4.3% 
-1.5% 
-1.2% 
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relatively 0.1%. The CPU-time of the numerical calculation for each run was 

within about one minute by using a large digital computer, F ACOM M- 382, Data 

Processing Center, Kyoto University. 

Every turbulent quantity approached a definite distribution downstream of x 

I h ~ 20. Hence, the test section was chosen here at x / h = 42. In the present 

calculation, the vertical mean velocity VI U,. was in the same order of magni­

tude as 10-5, and the mean pressure P' / (p U~) was in the order of 10-4
• This 

fact indicates that fully-developed and uniform open-channel flows were ob­

tained at the test section. 

5.2 Mean Velocity Distribution 

Figure 9 shows the calculation results of mean velocity u+. For compari­

son, Figure 10 shows the recent experimental data which were accurately ob­

tained by using Laser Doppler anemometers (Steffler et al. (1985) and Nezu & 

Rodi 0986)). The calculated values coincide well with the experimental ones in 

the wall region, including the buffer layer of y + ~ 20. Nezu & Rodi (1986) have 

recently emphasized that the mean velocity in the outer region of y I h ~ 0.15 
deviates, with exact meaning, from the log law in open channel flows as well as 

boundary layers and closed channel flows. The present calculated values explain 
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Figure 9. Numerical results of mean velocity distributions for high Reynolds­
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Figure 10. Experimental data of mean velocity distributions by making use of high 
accurate Laser Doppler anemometers. 

well this deviation, which can be described by the log-wake law of (34). 

133 

For the purpose of estimating the friction law, the log-wake law of (34) can 

be applied sufficiently, namely 

(44). 

Of course, when IT= O, (44) is reduced to the conventional log law friction. 
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Figure 12. Experimental data of turbulence intensities in open-channel flows by making 
use of hot-film anemometers (Nakagawa et al. (1975) and Nezu (1977) ). 
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Denoting the friction velocity evaluated from (44) as U.,,., (log law, i. e. IT= 0) 
and U.wa1u (log-wake law, i.e. IT= 0.2), a comparison of the calculated values U. 

from the present k-c model is indicated in Table 1 . For every run of the HR­

series, U. coincides with U.,,., within an error of 3 %, which may be satisfactory 

to the prediction in hydraulic engineering. In particular, it should be noted that 

U. coincides very well with U. wa1u within an error of only 0.4%, except for HR-

1 which is comparatively low Reynolds number. 

5.3 Turbulent Energy and Reynolds Stress 
Figure 11 shows the turbulent energy distribution k / U2,, vs. y / h. The solid 

line is the semi-theoretical curve of (35). Figure 12 shows the experimental 

values of turbulence intensities u ', v' and w' which were obtained by using 

hot-film anemometers (Nakagawa et al. (1975) and Nezu (1977) ), and the 

hydrogen-bubble tracer (Grass (1971)). The turbulent energy k can be easily 

evaluated as k = (u' 2 +v' 2 +w'2
) / 2, and be compared with the calculated values 

in Figure 11. The calculated values at a low Reynolds number, i. e. Re= 2000, 
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deviate fairly largely from the semi-theoretical curve of (35) and the experimen­

tal values. However, both of them coincide well with each other at high 

Reynolds numbers of Re :2'. 5000. Considering the experimental scatter in Figure 

12. the present modified k-e model can reasonably predict the turbulent energy 

in open-channel flows. 

Figure 13 shows the Reynolds stress distribution. At a Reynolds number 

higher than Re = 5000, the calculated values of -uv I U~ obey the linear distri­

bution, which verifies the validity of the present k-e model. In the case of Re 

= 2000. it is, however, impossible to evaluate accurately the velocity gradient 

near the wall because y; = 20. i.e. yp/ h = 0.15 is the first grid point. 

5.4 Turbulent Dissipation and Generation 
Figure 14 shows the turbulent dissipation eh I Ui vs. y I h. Nezu (1977) 

evaluated the experimental values of e from the spectral distribution of the u­
fluctuations by applying Kolmogoroff's - 5 / 3 power law. Although the calcu­

lated values at Re = 2000 deviate from the semi-theoretical curve of (36), the 

other runs at higher Reynolds numbers indicate a very good agreement between 

the observed and calculated values. 
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Figure 14. Comparison of calculated values of energy dissipation with experimen­

tal ones by Nezu (1977). 
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Figure 15. Comparison of calculated values of turbulent generation-dissipation 
relations with experimental ones by Nezu (1977). 

Next, the turbulent generation G can be calculated from (21), and it is 

plotted as (G-e) I e in Figure 15. The experimental values of G were evaluated 

from the numerical difference of the observed mean velocity by Nezu (1977). 
Except for Re = 2000, the calculated values indicate that the equilibrium state of 

turbulence balance, i. e. G';;;; e, is satisfactory in the region of 0.1 s y / h s 0.6. 
This fact supports numerically the validity of the subdivision of an open­

channel flow field by Nakagawa, Nezu & Ueda (1975). 

6. Calculation Results of Open-Channel Flows at Low Reynolds Nember 

6.1 Computational Technique 
The computational technique is basically the same as in Chapter 5 . Howev­

er, in order to divide the grids of the wall region densely, the vertical grid 

spacing LJy was increased in a geometric ratio, and thus the total number of 52 
X 42 staggered grid points were set in computation. The Reynolds number Re 

was varied from 500 up to 105
, as shown in Table 1 . The CPU-time was longer 

than the cases of high Reynolds numbers (HR-series), and it took about 4 
minutes for each run. 
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6.2 Mean Velocity Distribution 

Figure 16 shows the mean velocity distribution at a low Reynolds number. 

It should be noted that the calculated values coincide quite well with the van 

Driest curve and u+ = y + in the viscous sublayer of y + ::;; 10. Accurate experi­

mental data of open channel flows at low Reynolds numbers are not yet availa­

ble at present, because the experiment control and measurements are quite 

difficult. Eckelmann (197 4) successfully carried out the oil experiments by 

making use of hot-film anemometers at the low Reynolds numbers of Re= 2800 
and 4100. He proposed the log law (24) of K,= 0.377 and A= 5.9 in the region of 

y + ~ 30, which is replotted in Figure 16. These experimental data coincide well 

with the calculated ones at Re < 104
• However, one question may occur that the 

calculated values from the wall-function method for high Reynolds numbers 

(Figure 9) do not perfectly coincide with the values calculated from the Jones 

& Launder extra term method for low Reynolds numbers (Figure 16), at the 

identical Reynolds number. This may not be caused by the shortcomings of the 

present model itself, but by the difference of the grid spacing between the two 

methods. The present computational model of open-channel flows for low 

Reynolds numbers may be satisfactory for Re ::;; 5000, although a detailed com­

parison with experimental data will be further necessary. 
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Figure 16. Numerical results of mean velocity distributions for low Reynolds­

number series (LR). 
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6.3 Turbulent Energy and Reynolds Stress in the Wall Region 
Figure 17 is the inner-variable description of turbulent energy, i. e. k I U~ vs. 

y +. The most noticeable feature is that k / U~ attains the maximum at about y + 

= 20. and it becomes flatter as the Reynolds number becomes larger. This 

maximum value is nearly equal to k/ U~ = 4, which is in the same order as the 

experimental values in pipe flows by Laufer (1954). However, after accurate 

experimental data are available in the wall region, a more detailed examination 

will be further needed. 

A second noticeable feature is that the turbulent energy k decreases more 

rapidly in comparison with the friction velocity u •. as the Reynolds number 

becomes smaller. At Re= 500, the maximum value of k becomes only k = 0.1 

U~. At this Reynolds number, the mean velocity also deviates from the van 

Driest curve and approaches the laminar distribution, i. e. U + = y +, as shown in 

Figure 16. Also, the friction velocity U. indicates a larger deviation from U.,.., 

and U • ....., as the Reynolds number becomes smaller, as shown in Table 1 . This 

fact suggests strongly that the open-channel flow may become laminar at a 

Reynolds number lower than Re= 500. which is known empirically in hydraulics. 

Figure 18 shows the Reynolds stress distribution in the wall region. As Re 

becomes larger, the constant-shear-stress layer is surely formed. At Re = 500. 
the maximum value of -uv / U~ becomes only 0.083. which indicates again the 

laminar behaviour. 
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Figure 17. Calculated distribution of turbulent energy in the wall region. 
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Figure 18. Calculated distribution of Reynolds shear stress in the wall region. 

6.4 Turbulent Dissipation and its Generation 
Figure 19 shows the outer-variable description of turbulent dissipation, i. e. 

eh/ U1 vs. y / h. The solid line is the semi-theoretical curve of (36). In the same 

manner as in Figure 14, a good agreement between the calculated values and 

(36) is recognized when the Reynolds number becomes larger. The maximum of 

Eh/ U1 becomes larger, and its position also appears closer to the wall as the 

Reynolds number increases. 

On the other hand, Figure 20 is the inner-variable description, i. e. e + = ell/ 

U~ vs. y +. E + attains the maximum at y + = 10 ~ 20, and it indicates universal 

characteristics as Re becomes larger. These calculated values seem to coincide 

well with the experimental data of Laufer (1954). 
Lastly, Figure 21 shows the ratio a = G / E of turbulent generation G to its 

dissipation e very near the wall. The calculated values coincide well with the 

experimental values of Laufer (1954). From this figure, it is understood that the 

viscous sublayer of y + :-::;; 6 is the dissipation region of the turbulence, i. e. e > G, 

while the buffer layer of y + ::::: 6 is the production region of the turbulence, i. e. 

G >E. Then, the turbulence attains equilibrium, i. e. G ~ E when y + is greater 

than 50. This supports the validity of the standard k--E model of (25). Another 

interesting feature is that the calculated values may be described by a universal 
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Low Reynolds-number Series (LR) 
AUN A[ As1A 

(!) 1 5. 0• 1 0' 3. 82•1 0' 
A 2 I. 0•10' 6. 62'1 0' 

:0: :0: + 3 2. 0•I 0' I. 22•1 0' :0: X 4 5. 0•I 0' 2. 74•1 o' 
:0: ¢ 5 1. 0• 1 o• 5.12'10' .,. • :0: + 6 5. oxi o• 2. 22,i o• .,. ~ 7 1. 0•105 

4. 111 101 
:0: .,. 

:0: .,. 
:0: 

Semi-Theoretical 
X 

• 

+ Cl 

.. Cl 

Cl 

Cl 

(!) 

(!) .. 
Cl 

Cl .. 
(!) 

(!) 

Cl 

o• 

Figure 19. Calculated distribution of energy dissipation ( Outer-variable descrip­
tion). 
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'b Low Reynolds-number Series (LR) 
0, 

AUN ., A, ASTA .. (!) I 5.0•10' 3. 82•1 0' co .a 2 I. 0•10' 6. 62•10' 
"' + 3 2. 0•10' I. 22•10' 

X ij 5. 0•10' 2. 7ij'10' 
., ~ 5 1.0•10' 5. 12•10' 

'I' 6 5.0•10' 2. 2 2,i o' 
~ 7 1.0•10' ij. 11,1 o' 

N 

3 " s s 1 es o' 

Figure 20. Calculated distribution of energy dissipation ( Inner-variable description). 

curve even at Re = 500. This suggests that, even if the flow is relaminarized, its 

turbulent structure may be reduced similarly. 

7. Conclusions 
Numerical calculation techniques of turbulent shear flows are mainly classi­

fied as the k-e turbulence model and the large-eddy simulatiom (LES). The 

standard k-e model has been established to predict turbulent structures of jets, 

boundary layers and closed channel flows in fluid engineering. This is a much 

more cost-performing computational technique than LES. However, its applica­

tion to hydraulics, in which the damping effect of turbulence appears near the 

free surface, is not so available except for Rodi's group. The present study 
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Figure 21. Relation between turbulent generation and dissipation in the wall 
region. 

proposed a new modified k-E model to predict reasonably the turbulent structure 

of open-channel flows at both low and high Reynolds numbers. 

The main modification and extension of the present model are as follows: 

( 1 ) The damping effect of turbulence was considered in modelling the free 
surface condition. 

( 2 ) The wall function was extended up to y + = 20 in order to predict turbul­

ence characteristics near the wall at a high Reynolds number. 

( 3 ) The new model was proposed to predict a turbulent structure at a low 

Reynolds number and, furthermore, in viscous sublayer even at a high Reynolds 

number. 

The present calculation results coincided well with the experimental values 

of open-channel flows which have been intensively obtained since 1975 by the 

authors by making use of hot-film and Laser Doppler anemometers. 
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