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Abstract 

We studied a two-dimensional flow of viscous incompressible fluid past a 
thin elliptic cylinder in a rectilinear channel. The major axis of the cylinder 
has the same length as the channel width, and the center of the cylinder is 
placed on the midplane of the channel. Reynolds number R and the angle of 
attack 0 of the cylinder range, respectively, between 50 and 1000 and between 
0 ° and 40°. 

The new upwind difference scheme by Kawamura Kuwahara (1984) is 
applied to the stream function-vorticity formalism of the Navier-Stokes equa­
tions. The boundary-fitted curvilinear coordinate systems by Thompson et al 
(1976) are used to transform the physical plane onto a simple calculation plane. 
The line-Jacobi method of iteration is applied to the solution of the Poisson 
type equation of the stream function. The Euler explicit method of solution is 
applied to the solution of the vorticity equation. 

Our main results are as follows : 

( 1) We clarify the boundary between the steady and unsteady flows in an 

R-0 plane. We also study processes by which vortices are born near the 
cylinder, brought away into the "main" Poiseuille flow, and then decay 

by the effect of viscosity. 
(2) We show, for cases of 0= 0°, that our results on the drag coefficient 

Co can be expressed well by Imai's (1958) drag formula : C0 =A +B • R-os 

within our range of R, where A and B are arbitrary coefficients to be 

determined by our results for the two values of R. 
(3) As a practical application, we compare our results with those of 

Kimura et al's (1980) experiments on a butterfly valve, and obtain 

qualitatively good agreement for the pressure drop due to the valve, and 

for the torque-coefficient. An interesting fact is that our results well 

reproduce a steep crest in the torque-coefficient diagram versus angle of 
attack, which is characteristic of experimental results. 

Department of Aeronautical Engineering, Faculty of Engineering, Kyoto University, 
Kyoto, Japan 



Numerical Solution of Two-dimensional Channel Flow of Viscous 
Incompressible Fluid past an Elliptic Cylinder. 

1 . Introduction 

33 

The study of a channel flow past an obstacle is interesting from a practical 

view point, because we can see such flows often in daily life related with a 

butterfly valve, a pier of a bridge etc.. It is also interesting from a purely 

hydrodynamical view point because the flow, for example, can be taken as a 

process in which finite amplitude perturbations generated by the obstacle inter­

act with the Poiseuille flow. As we will show in Section 5, a two-dimensional 

channel flow past an elliptic cylinder becomes unsteady even for a sub-critical 

Reynolds number of the Poiseuille flow with respect to small perturbations. It is 

also interesting to study processes by which vortices are born near the cylinder, 

brought away into the "main" Poiseuille flow, and then decay by the effect of 

viscosity. 

Although many studies are already published on the evolution of vortices in 

a flow past an obstacle (See, for example, Ta Phuoc Loe 1980, Badr Dennis 1985 
and references therein.), we find the study of Kawamura & Kuwahara (1984) to 

be the most interesting from the view point of numerical hydrodynamics: 

(1) They proposed a new upwind difference scheme which can be applied with 

sufficient accuracy and stability to flows of R= 105• 

(2) Using their new scheme, they clarify that a turbulent flow can be taken as 

a laminar unsteady flow which can be studied by a numerical solution of the 

Navier-Stokes equations without any special assumption. The agreement 

between their results and experiments is good for flows past a circular 

cylinder with a surface roughness for R = 103 ~ 105• 

(3) They show a typical example of the use of Thompson et al's (1976) 
boundary-fitted curvilinear coordinate systems. 

Based on the above prominent results, we expect that we can clarify aspects 

of channel flows past an obstacle if we proceed along the line of their method of 

solution. 

In this paper, we study two-dimensional flows of viscous incompressible 

fluid past an elliptic cylinder in a rectilinear channel. Because we take this 

configuration as a cross section of a butterfly valve by a plane perpendicular to 

the rotation axis of the valve, the major axis of the cylinder that is selected has 

the same length as the channel width, and the center of the cylinder is placed on 

the midplane of the channel. Reynolds number R of the flow (with respect to 

half-width of the channel and mean velocity at the infinity upstream) and the 

angle of attack 0 of the cylinder ranges, respectively, between 50 and 1000 and 

between 0 O and 40°. The thickness ratio of the cylinder is kept equal to 0.2. 
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As we stated above, we apply the new upwind difference scheme by 

Kawamura & Kuwahara (1984) to the stream function-vorticity formalism of the 

Navier-Stokes equations. We apply Thompson et al's (1976) boundary-fitted 

curvilinear coordinate system to transform a physical plane onto a simple calcu­

lation plane. The Poisson type equation of the stream function is solved by the 

line-Jacobi method. We use the idea by Shida et al 0983) to estimate the stream 

function on the cylinder. We apply the Euler explicit method to solve the 

vorticity equations. 

We locate the boundary between the steady and unsteady flows in the R-8 

plane. We clarify processes by which vortices are born near the cylinder, 

brought away into the "main" Poiseuille flow, and then decay by the effect of 

viscosity. We show the validity of lmai's (1958) drag formula in our problem. 

As a practical application, we compare our results with Kimura et al's (1980) 
experiments with respect to the pressure drop due to the valve, and to the 

torque-coefficient. 

Sections 2, 3, 4 and 5 give, respectively, the formulations of the problem, 

numerical procedures, calculation procedures of flow parameters and results and 

discussion. Finally, Section 6 gives a summary of the results. 

2. Formulation of the problem 

2. I Boundary fitted curvilinear coordinate system 
Let us suppose an elliptic cylinder placed in a rectilinear channel. The major 

axis of the cylinder has the same length as the channel width, and the center of 

the cylinder is placed on the midplane of the channel. The thickness ratio of the 

cylinder is kept equal to 0.2, and 0 ranges between 0 O and 40°. The up- and 

the down-stream boundaries of the channel are located, respectively, at x= -xo 
and x0, where we use the Cartesian coordinate system, as is shown in Figure 1. 

The coordinates are non-dimensionalised with respect to the half-width Lo of the 

channel. The value of Xo is kept equal to 20 in our computations. 

Following the idea of the boundary-fitted curvilinear coordinate system 

proposed by Thompson et al (1976), we transform the physical plane onto a 

rectangular calculation plane. We use an '0-type' transformation, as is shown 

in Figure 2 . The mapping functions ; 

x=x(l;, TJ), C 2 - 1) 

y=y(f, TJ), ( 2 - 2) 



Numerical Solution of Two-dimensional Channel Flow of Viscous 
Incompressible Fluid past an Elliptic Cylinder. 

y 

Figure 1 . Geometrical configuration of our flow. Because we take 
this configuration as a cross section of a butterfly valve 
by a plane perpendicular to its rotation axis, the major 
axis of the elliptic cylinder has the same length as the 
channel width, and the center of the cylinder is placed on 
the midplane of the channel. 

e 
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Figure 2. Correspondence between physical and calculation planes. 
The corresponding lines are referred to by the same nota­
tions. 

35 



36 Mitsuro ANTOKU, Takeo SAKURAI and Hidenori TAKEDA 

satisfy the Poisson type equations on the calculation plane: 

C 2 - 3) 

( 2 - 4) 

where (x, y) and (!;, TJ) are, respectively, the Cartesian and curvilinear coordinate 

systems, P and Q are the sums of the exponential functions which include 

arbitrary parameters by which we can concentrate coordinate lines towards any 

point or curve in the physical plane, and 

a=x.2+y.2, ( 2 - 5) 

{3=xEx.+Y,EY., ( 2 - 6) 

r=x/+y/, ( 2 - 7) 

J=xEy.-x.yE, C 2 - 8) 

These are the quasi-linear elliptic systems of equations for x(l;, TJ) and y(l;, TJ) 

in the calculation plane. The boundary conditions are specified, based on the 

correspondence between the boundary points on the physical plane and those on 

the calculation plane. The solutions of ( 2 - 3) and ( 2 - 4 ), subject to these 

boundary conditions for an appropriate selection of P and Q, are obtained by the 

use of the TOMCAT code. (Thompson et al, 1977) 

Figure 3 shows an example of the 81 X 65 coordinate lines generated for a 

case with 0= 17.5 °. 

2. 2 Basic equation 

A non-dimensional form of the stream function-vorticity formulation of the 

Navier-Stokes equations for a two-dimensional flow of viscous incompressible 

fluid is given as follows: 

w,+W,w,-W,w,= (w,,+w,,,) /R, ( 2 - 9) 

W,,+W,,,= -w, (2-10) 

where W is the stream function, w the vorticity and R the Reynolds number with 
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Figure 3. An example of the boundary fitted curvilinear coordinate 
system for the case with 0= 17.5.

0 
The coordinate lines are 

concentrated toward the cylinder and toward the channel 
walls. This concentration is introduced to cope with rapid 
variations in flow properties near these boundaries. 
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respect to the mean velocity Uo on the upstream boundary and the half-width L 0 

of the channel. 

By the use of f and TJ, ( 2 - 9 ) and ( 2 - 10) are transformed as follows: 

(2-11) 

Sl¥=-w, ( 2 12) 

where 

M ( 2 - 13) 

2. 3 Boundary conditions 
At the upstream boundary, the stream function and the vorticity are pre­

scribed corresponding to a Poiseuille flow; 

W= 1.5 · (y-y 3
/ 3 ), ( 2 - 14) 

w= 3y, ( 2 - 15) 

at x= -xo. At the downstream boundary, the boundary conditions are as 

follows; 

W.,= 0, ( 2 16) 
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w,= 0, ( 2 - 17) 

at x= +x0 in accordance with Roache's (1972) recommendation based on empirical 

evidences. 

Standard no-slip conditions are imposed on rigid boundaries: 

W=± l, C 2 - 18) 

W.= 0, ( 2 - 19) 

at y=±l and 

W=W., C 2 - 20) 

W.= 0, C 2 - 21) 

on the cylinder where plus and minus signs correspond respectively to the upper 

and lower walls, and the subscript n denotes the normal derivative on the rigid 

boundaries. 

The value of W, is determined by the fact that the pressure is single-valued 

in the flow field. For a steady symmetric flow corresponding to the case of 

0= 0 °, W, can be set equal to O in advance, because the flow is symmetric with 

respect to the midplane of the channel. As will be shown, however, the flow 

becomes unsteady and asymmetrical for a large Reynolds number, even in the 

case of 0= 0 °, As a matter of course, we can not expect any kind of flow 

symmetry for a case with the angle of attack. In such cases, specification of W, 

in advance is impossible, and W, is to be determined in the course of the 

calculation. We use Shida et al's idea (1983) to determine W,. Because ( 2 - 12) 
is linear with respect to W, we can decompose it into two parts : 

C 2 - 22) 

The first part W1 is a solution of ( 2 - 12) subject to the boundary conditions 

( 2 - 14 ), ( 2 - 16 ), ( 2 - 18) and ( 2 - 20) in which W, is an arbitrarily 

selected constant W,0• The second part W0 is a solution of the Laplace equation 

subject to the boundary conditions: 

Wo= 1 on the cylinder surf ace, C 2 - 23) 
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C 2 - 24) 

Parameter ). is determined by the requirement that W gives a single-valued 

pressure in the flow field. This condition is expressed by 

fcdp= 0, (2 - 25) 

where c is an arbitrarily closed path around the cylinder. Once ). is thus 

determined, the value of W, can be given as W,=W.o+A. 

3. Numerical procedures 

In order to solve numerically ( 2 - 11) and ( 2 - 12) subject to ( 2 - 14) 
( 2 - 21 ), we use the finite difference approximations of the above equations. 

The values of W(E, TJ, t) and w (E, T/, t) at (f;, T/1, t) = (itlE, jilTJ, kilt) are referred 

to as W\; and w\.;, respectively. Here, LlE. LlTJ and flt are mesh spacings in the 
calculation plane and time step in our computations. The integers (i, j) and k 

refer to a mesh point and a certain instant of time. The superscript k is omitted 

hereafter for the sake of simplicity. 

The time integration of ( 2 - 11 ) is carried out by the Euler explicit method. 

Second order central difference schemes are used for spacial derivatives in 

duffusion terms. The third order upwind difference scheme proposed by 

Kawamura & Kuwahara (1984) is used for the convection terms. These selec­

tions of schemes enable us to integrate ( 2 - 11 ) robustly with sufficient 

accuracy for high Reynolds number flows. The size of the time step is equal to 

the viscous diffusion time multiplied by a factor of the order of 10-1
• The 

criterion by which our solution is taken to have converged to a steady limit is 

that a steadiness parameter r becomes less than a certain tolerance. The 

parameter r is a ratio of the absolute value of the time derivative to the absolute 

sum of the space derivatives; 

+ ( I awEE I + I 2/3wr,, I + I rwEE I )/(]2R) 

+ ( I PwE I + I Qw. I ) /R}. C 3 - 1) 

The above criterion is given as follows; 
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r<e', ( 3 - 2) 

where e' is a small parameter ( ~ 10-2). To avoid an unnecessarily strict 

application of the criterion, this criterion is applied to the flow region for which 

the following inequality is satisfied; 

I w I >o' I w 1 ..... C 3 - 3) 

where I w I .... is the maximum absolute value of w, and o' is a small number 
(~10-4). 

Equation ( 2 - 12) is solved by the line-Jacobi method of iteration. Second 

order central difference schemes are used for space derivatives, unless otherwise 

noted. The criterion of the convergence of the iteration is that a summation of 

the absolute relative increments of the stream function with respect to iteration 

over whole grid points is less than the product of a certain tolerance e and the 

number of grid points N; 

_L_ I wz:1 -w;:; I/ C I wn 1 I +o) < eN, C 3 - 4) ., 

where n refers to the iteration step, and o is a small positive number added to 

the denomitator in order to avoid zero dividing difficulties. In our computations, 

e and o are set equal to 10-4 and 10-3, respectively. 

The condition ( 2 - 16) on the downstream boundary reduces ( 2 - 10) to 

an ordinary differential equation for W with respect to y. This equation is 

solved by the use of the central difference sheme and the Thomas implicit 

algorithm. By the use of this W, the outflow boundary condition for W becomes 

a Dirichlet type. The arbitrary constant W,o mentioned in the last section is set 

equal to the value of W, at the final stage of a computation which is finished just 

previous to the computation at hand. We take the cylinder surface as the path 

of integration in ( 2 - 25); 

fma:c fma:c 
j dp= J PE df = J {(/3wE-rw.) /]} df= 0, 

c fmin fmin 

C 3 - 5) 

where the line integration is performed by the trapezoidal rule, and wE and w. are 

evaluated from W=W1+.l.W0• Because (3- 5) depends linearly on A, this is 

readily solved with respect to .l.. 

The vorticity on rigid boundaries is determined by the no-slip conditions 

( 2 - 19) and ( 2 - 21 ). Taking into account that W is constant along a rigid 
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boundary, we can reduce ( 2 - 10) and ( 2 - 19) or ( 2 - 21 ), respectively, as 

follows; 

w=-rW.,./]2, C 3 - 6) 

C 3 - 7) 

The second order difference formula for ( 3 - 6 ), which implicitly satisfies 

( 3 - 7 ), is used to evaluate w on the rigid boundary. A special formula for w. 
is required at a point adjacent to the rigid boundary so as to avoid any 

inconsistency of accuracy of the difference schemes relevant to ( 3 - 6 ) and 

( 3 - 7) (Briley 1971). The formulae on the cylinder surface, for example, are; 

where i refers to a point on the cylinder along which j= 1. 

4 . Flow parameters 

C 3 - 8) 

C 3 - 9) 

Once the velocity distribution is determined, the pressure is obtained by line 

integrations based on the primitive form of the Navier-Stokes equations. We 

start the integration from the upstream boundary and set the starting value of 

the pressure equal to zero. In practice, we perform the integration either along 

an upper channel wall, or along an approximate stagnation stream line which 

consists of lines of the constant E and a line of the constant T/. 

The integrals along a line of rJ=constant and and E=constant are, respective­

ly, as follows: 

C 4 - 1) 

+ J"0 [-RwW.+ {a(RWE,+wE) -.S(RW.,,+w.)} /J]dE. 
• 

C 4 - 2) 

Forces on the cylinder surface are given as 
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C 4 - 3) 

C 4 - 4) 

where X and Y are the x - and y -components of the force, respectively, and use 

is made of the fact that TJ is constant on the surface. 

Combining the continuity equation and no-slip conditions on the cylinder, 

we obtain; 

( 4 - 5) 

C 4 - 6) 

Using the above, we can modify X and Y as follows: 

C 4 - 7) 

C 4 - 8) 

The drag-coefficient CD and the lift-coefficient CL are obtained by the respec­

tive integrations of X and Y along the cylinder surface; 

C 4 - 9) 

C 4 - 10) 

where f,.;. and f..,,. refer, respectively, to the minimum and the maximum values 

of f, and the factor ( 1 /R) is multiplied because of our non-dimensionalization. 

Moment coefficient is obtained by the following : 

(4-11) 

For the sake of comparison with experiments, we define the pressure drop 

due to the cylinder and the torque coefficient of the cylinder. The pressure drop 

due to the cylinder 6.p.,., .. is the difference between our pressure drop 6.p and the 

pressure drop 6.p,.,_m, of a simple Poiseuille flow. Here, the pressure drop is 

defined as the pressure difference between the up- and downstream boundaries ; 
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t:.p.,,, .. =t:.p-t:.pf'ois,uil/4, (4-12) 

The torque coefficient is a ratio of the moment coefficient to the pressure drop 

due to the valve; 

( 4 - 14) 

where the factor (RI 8 ) is multiplied, for the same reasoning as above. 

5 . Results and discussion 

The computations were performed on Fujitsu VP- 200, M- 382 at the Data 

Processing Center of Kyoto University. For cases of steady limiting flow, 

computations are continued for several tens of thousand time steps until the 

steadiness criterion ( 3 - 2) is fulfilled. For cases of unsteady limiting flow, 

periodicity of the limiting flow is examined based on the time variations of the 

lift-, drag- and moment-coefficient as are shown in Figures 8 and 12. The 

computations are continued for several tens through hundred thousand time 

steps until we have confidence on the periodicity of the limiting flows. 

Before the discussion of our results, we examine first the accuracy of our 

numerical results: 

(1) To examine errors caused by the finite location of the up- and downstream 

boundaries, we compare two cases of xo= 20 and 30 for the flow with R = 500 
and 0= 0 °. Both flow patterns show good agreement with each other. The 

relative differences in the drag coefficient and the pressure drop due to the 

cylinder are, respectively, 0.8% and 3.4%. 
(2) To examine errors caused by the mesh spacing, we recalculate a flow with 

R= 1000 and 0= 0 ° by the use of twice as many grid points with respect to 

TJ, The recalculated flow pattern is in good agreement with that of the 

original mesh spacing. The relative difference in the drag coefficient is 4.7%. 
A similar recalculation is made for a flow with R= 300 and 0= 25° by the use 

of twice as many grid points with respect to f. Again, the recalculated flow 

pattern is in good agreement with that of the original mesh spacing. The 

relative differences in the drag coefficient and the pressure drop due to the 

cylinder are, respectively, 1.8% and 4.2%. 
(3) To examine the effect of the initial conditions for the final periodic states of 

the flows which tend to an unsteady solution, we compare two flows with 
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R = 200 and 0= 15°. The initial conditions are equal to the final states of 

flows with the same 0 and R = 300 and 100, respectively. The agreement of 

the results for these two cases is excellent. It assures us that the final periodic 

state of the unsteady flow is not affected by our selection of the initial 

conditions. 

Pairs of Reynolds number and angle of attack for which we have performed 

numerical calculations are given in Figure 4. We also include information as to 

whether the flow corresponding to a pair is steady or unsteady. The threshold 

Reynolds number at which the flow becomes unsteady is estimated as 400 ~ 500 
for 0= 0 O • This is rather large in comparison with an approximate value of 50 
for a flow past a circular cylinder. (See, for example, Batchelor 1967.) The length 

scale of wavy motion of wake for a fully unsteady case of R= 1000 (Figure 7) 

is nearly equal to the chord length of the cylinder, and the motion damps out 

within about two wave lengths towards downstream. These aspects are in good 

contrast to those of a flow of R= 55 past a circular cylinder in which the wave 

R 1000 

80 0 

60 

11 

40 0 --
) 0 0 ee I • 

20 0 -- - -
,) 0 1) 00 1) • I I 41 
I) 0 1) 00 1) 0 ,) 

0 
0 20 30 40 o 

Figure 4. Pairs of Reynolds number and the angle of attack for 
which computations are performed. The open and filled 
circles indicate that the corresponding flows tend to 
steady and unsteady limiting states, respectively. This 
figure is to be taken as defining a boundary between the 
steady and unsteady flows in the R-0 plane. 
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length is several times as long as the diameter, and the wavy motion lasts for 

several wave lengths (Batchelor 1967). The stabilizing effect of the Poiseuille 

flow may be the most important cause of the above differences. The decrease of 

this threshold Reynolds number with the increase of the angle of attack seems to 

make a "phase transition" at 0= 25°. Up to this angle of attack, we can clearly 

define the inclination of the decrease with respect to 0. For larger angles of 

attack, on the contrary, the threshold value seems to be levelled out to stay 

between 50 and 100. For the former angles of attack, we can understand the 

flow as a unified entirety of the Poiseuille flow past a cylinder. For the latter 

angles of attack, however, the flow is better understood as being interaction 

processes of two jets which emerge, respectively, from the upper and the lower 

sub-channels between the cylinder and channel walls. We can recognize this 

fact in flow configurations in Figure 9 (b) and (d). 

The change of the flow configuration with the Reynolds number for the case 

of 0= 0 ° is given in Figures 5 and 6. We can see the change in which a 

counter current region near the trailing edge is elongated towards the down­

stream direction to show a wavy appearance at R = 500. An example of the 

time development of unsteady flows is given in Figure 7, in which flow 

configurations near the stagnation stream line are given for a time span corre­

sponding to one cycle of the periodic changes of the flow parameters in Figure 

8. We can see how a vortex is born either on the upper or the lower side near 

the trailing edge, grows up and is brought into the region of the "running 

current" to be damped out finally by the effect of viscosity. 

The changes of the flow configurations with an angle of attack for the case 

of R= 100 are given in Figures 9 and 10. We can recognize clearly the above 

mentioned "phase transition" in which the Poiseuille flow past a cylinder effec­

tively changes to two interacting jets. These jets emerge respectively from the 

upper and the lower sub-channels between the cylinder and original channel. 

Also interesting is the appearance of fairly large regions of counter currents both 

on tne upper and the lower channel walls downstream of the cylinder for the 

case of 0= 40°. Figure 11 gives the time development of the flow pattern for the 

case with R= 300 and 0= 25°. We can clearly see periodic time evolutions of 

vortices which are strongly asymmetric with respect to the midplane of the 

channel. The asymmetry manifests itself also in the time changes of the flow 

parameters in Figure 12. 
Figure 13 gives the drag coefficient Cn versus R for cases with 0= 0 °. The 

filled circles give our results, and the solid line corresponds to Imai's formula 

0958) of a drag coefficient : 
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(a) R=50. 

(b) R = lO0. 

(c) R= 300. 

(d) R = 500. 

Figure 5 . Stream lines at the final stages of computations for cases 
with 0= O O • The small unnatural behaviors of stagnation 
stream lines for R = 300 and 500 are caused by our graph­
ics subroutine, and are not to be taken seriously. We can 
see how a counter current region near the rear stagnation 
point is elongated toward the downstream direction with 
the increase of R. We can see also that the flow_ for 
R = 500 is unsteady, based on the wavy configuration of 
stream lines. 
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(a) R= 50. 

(b) R= 100. 

(c) R= 300. 

(d) R=500. 

Figure 6. Equi-vorticity lines at the final stages of computations for 
cases of 0= 0 °. We can see a correspondence between the 
vorticity configurations in this figure and those of the 
stream lines in Figure 5 . 

47 
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C: 5GP 

(a) t = 45.784 

c:: 
(b) t=46.953 

(c) t =46.123 

(d) t = 46.292 

Figure 7. Time development of stream line configuration for a case 
with R = 1000 and 0= O O • The time durations from (a) to 
(h) correspond to one cycle of periodic time changes of 



Numerical Solution of Two-dimensional Channel Flow of Viscous 
Incompressible Fluid past an Elliptic Cylinder. 

c )3%,1 

(e) t =46.462 

(f) t = 46.631 

c :,u;, 

(g) t = 46.801 

(h) t = 46.971 

flow parameters in Figure 8. We can see how vortices 
are born near the cylinder, brought away into "main" 
Poiseuille flow, and then decay by the effect of viscosity. 

49 
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Figure 8. Periodic time changes of flow parameters for a case with 
R= 1000 and 0= 0 °. 
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where the first term and the factor of the second term on the right hand side are 

estimated by our results for R= 100 and 400. The dashed line corresponds to 

Stokes law of drag: 

Cv= 71.5/R, C 5 - 2) 

where the factor on the right hand side is estimated by our result for R= 50. 
The agreement of our results with Imai's formula is surprisingly good, if we take 

into account that the formula is derived for the case of an unbounded flow 

around an obstacle. We suppose that the formula has an unexpectedly wide 

applicability. 

Figure 14 gives the polar diagram of a drag coefficient versus a lift coeffi­

cient. The filled rhombuses, circles, triangles and rectangles give our results for 

R = 50, 100, 200 and 300, respectively. The dash-dotted, solid, dashed and dotted 

lines are produced based on the simple formula: 

C 5 - 3) 

where the factors k are estimated to be 0.081. 0.116, 0.162 and 0.179, respectively, 

for R = 50, 100, 200 and 300. It is an interesting coincidence that our results can 

be summarized by the same type of formula as that of lifting aerofoil, despite the 

fact that almost all of our flow configurations belong to those of stalled aerofoils. 

As a practical application, we compare our results with the experiments by 

Kimura et al (1980) of a flow past a butterfly valve in a rectilinear circular pipe. 

Although the above two flows seem to be completely different at first glance, we 

believe that the above comparison does make sense. The reasons for our belief 

are as follows : 

(I) The geometrical configuration of a cross section of the valve by an arbitrary 

plane perpendicular to the valve axis is the same as that of our problem. 

(2) Because of the above situation, we can roughly estimate a flow parameter 

slicing the flow field by planes perpendicular to the valve axis. We estimate 

the parameter for the sliced flow based on the two-dimensional flow with 

same geometrical configuration, and finally integrate the estimates over the 

whole valve. 

Because flow parameters like drag-, lift- and moment-coefficient of unsteady 

flows oscillate periodically with respect to time, we use these time averages for 
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(a) () = 5.0 

(b) O = 15.0 

(c) () =25.0 

(d) O = 40.0 

Figure 9. Stream lines at the final stages of computations for cases 
with R= 100 and various angles of attack. The wavy 
configurations for 0= 25° and 40° come from the fact that 
the corresponding flows are unsteady. The flow for 
0= 40° can be taken as interaction processes of two jets 
which emanate, respectively, from the upper and lower 
sub-channels between the cylinder and original channel 
walls. It is also interesting that there appear considerably 
large stagnant regions near the channel walls downstrean 
of the cylinder. 
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(a) 8 = 5.0 

(b) 8 = 15.0 

-:::=::~ ~=========---­
(c) 8=25.0 

(d) 8 = 40.0 

Figure 10. Equi-vorticity lines at the final stages of computations for 

cases with R= 100 and various angles of attack. We can 
see a correspondence between the vorticity configurations 

in this figure and those of the stream lines in Figure 9 . 
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( a) t = 31.160 

(b) t = 31.585 

(c) t = 32.010 

(d) t = 32.435 

(e) t = 32 .860 



Numerical Solution of Two-dimensional Channel Flow of Viscous 
Incompressible Fluid past an Elliptic Cylinder. 

(f) t = 33.285 

(g) t = 33.710 

(h) t=34.135 

Figure 11. Time development of stream lines for a case with R= 300 
and 0= 25°. The time durations from (a) to (h) corre­
spond to one cycle of periodic time changes of the flow 
parameters in Figure 12. We can see asymmetric vorticity 
motions with respect to the midplane of the channel in 
this case. The asymmetry manifests itself also in the time 
changes of the flow parameters in Figure 12. 
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Figure 12. Periodic time changes of flow parameters for a case with 
R= 300 and 0= 25°. This figure covers the whole time 
span, from the initial to the final stage of computation. 
The periodicity of the time changes is clear except for a 
transient phase of variation from the initial state, which is 
assumed to be equal to the final state for a case with 
R= 200. 

the above comparison. As a matter of fact, Kimura et al (1980) gave timely 

stationary results for the pressure drop due to the valve, and for the torque­

coefficient. On the contrary, we can not use the time average of the pressure 

drop due to the cylinder, because the time consuming calculation of the pressure 

drop is performed only for the final stage of each computation. This causes a 

clumsy situation from the view point of the above comparison. A remedy for 

this situation will be given in the following. 

Figure 15 gives the pressure drop due to the elliptic cylinder. This quantity 

gives us an estimate of the loss of the pressure head caused by the cylinder. 
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1
~-------------------------, 

' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' 

;-------
Co=71.5tR ', 

' ' ' ' ' ' ' ' ' ' 10-1.__ __ __..___..___..__.__ ......... _.__ ......... ___ _.__ _ _..__ ............. _._'_,__...__...., 

101 102 103 

REYNOLDS NUMBER 

Figure 13. Drag coefficient diagram versus Reynolds number for cases 
with 0= 0 °. The filled circles give our results, and the 
solid line is given based on Imai's drag formula: 
CvVl=A+B·R- 112, the coefficients A and B of which are 
determined by our results for R= 100 and 400. The dotted 
line shows Stokes' law of drag: Co=A/R, the coefficient A 
of which is determined by our result for R = 50. The 
agreement between our results and Imai's drag formula is 
surprisingly good, if we take into account that the formula 
is derived for an unbounded flow past an obstacle. 
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Because of our reasoning (2) above, we compare our results directly with Kimura 

et al's (1980) formula: 

M .. , .. =M .. ,.._ 1+M..i ... 2, C 5 - 4) 

C 5 - 5) 

C 5 - 6) 
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R =200. 

Present results R = 50 ♦ 

R= 100 e 
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R=3oo ■ 

2~ 3~ 4~ 5.0 

DRAG-COEFFICIENT 

6.0 

Figure 14. Polar diagram of drag-coefficient versus lift-coefficient. 
The dash-dotted, solid, dashed and dotted lines correspond, 
respectively, to cases with R = 50, 100, 200 and 300. These 
are given based on the formula : Co= A + B · Ci', the 
coefficients A and B of which are determined by the least 
square fit to our results. It is an interesting coincidence 
that our results are summarised by the same type of 
relation between the drag- and lift-coefficient as that for 
the lifting aerofoil, despite the fact that our flow 
configuration belongs to that of the stalled aerofoil. 

where (Mva1.,.,)o is the pressure drop due to the valve for the case of 0= 0 ° and 

s and m are the free parameters. The formula is to be taken as a rule of thumb 

based on Kimura et al's (1980) experiments. For the sake of comparison, we 

estimate parameters s and m based on our results for 0= 10° and 25° for each 

group of cases with R= 50, 100, 200 and 300. We give the respective resulting 

curves in Figure 15, in which notations are the same as those in Figure 14. The 

agreement between our results and the above formula is good, except that our 

result for 0= 40° and R = 100 obviously deviate from the formula. As is given in 
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Figure 15. Pressure drop due to the cylinder versus angle of attack. 
The lines are given based on the empirical relations 
( 5 - 4) - ( 5 - 6 ), the coefficients s and m of which are 
determined by our results for 0= 10° and 25°. Our results 
for cases with R= 50 and 100 and 0= 40° deviate consider­
ably from the corresponding lines. The main cause of this 
deviation is ascribed to the situation in which our pressure 
drop is calculated only at the final stage, and is not its 
time average. We estimate the pressure drop, therefore, by 
these curves rather than by our results hereafter. 
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( 4 - 1) and ( 4 - 2) , the calculation of the pressure drop needs derivatives of 

vorticity. Thus, it is to be expected to include rather large errors in comparison 

with other quantities. Figure 16 gives the pressure distributions along the upper 

channel wall and along the approximate stagnation stream line for the above 

case. The inclination of the dashed straight line is the same as the pressure 

gradient of the "main" Poiseuille flow. The relative difference between the 

pressure drops along the above two lines is estimated to be 10%. This estimate 

gives us an idea about errors in a calculation based on ( 4 - 1) and ( 4 - 2 ). 
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Figure 16. Pressure distributions along the upper channel wall and 
along the approximate stagnation stream line for a case 
with R= 100 and 0= 40°. The pressure is estimated at the 
final stage of computation, and does not necessarily coin· 
cide with its time average. The dashed straight line has 
the same inclination as the pressure gradient of the 
"main" Poiseuille flow. The segments AB and AC on the 
right side of the figure give us the pressure drop due to 
the cylinder estimated, respectively, along the upper chan­
nel wall and along the approximate stagnation stream line. 
A relative difference of 10% between these estimates gives 
us a rough estimate of the accuracy of our pressure calcu· 
lation based on ( 4 - 1) and ( 4 - 2 ). 
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Figure 17. Torque-coefficient versus angle of attack. The open circles 
give Kimura et al's (1980) experiments, and the dashed 
line gives their theoretical estimates based on the dead 
water theory of a two-dimensional unbounded flow past a 
flat plate. In contrast to the results by the dead water 
theory, our results well reproduce a steep crest in the 
experiments. The best quantitative agreement between 
our results and experiments is obtained for cases with R = 
50 ~ 100. This coincides with the empirical fact that flow 
parameters of turbulent flows can be reprocuced by lam• 
inar flow models with the effective Reynolds number 50. 
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This estimate is much smaller than the above deviation of more than 50%. As is 

noted above, another error is caused by the fact that the pressure is calculated 

only at the final time step. Hence, the calculated pressure drop does not 

necessarily coincide with its time average. Because of this situation, we do not 

use our results for the pressure drop, but estimates based on the curves in 

Figure 15 in the calculation of the torque-coefficient. 

Figure 17 gives the touque-coefficient estimate, based on the above estimate 

of the pressure drop due to the cylinder and time average of the moment­

coefficient. Our results can again be compared directly with Kimura et al's 

(1980) experiments which are given in the figure. Their theoretical results, 

based on the dead water theory of a two-dimensional unbounded flow past a flat 

plate, are also given. The curves in the figure are drawn to clarify the general 

trends of the results. In good contrast to the dead water theory, the steep crest 

which is characteristic of experiments is qualitatively well reproduced by our 

results. It is also interesting that our results with R= 50 ~ 100 give the best 

agreement with experiments from a quantitative view point. This fact coincides 

with the empirical evidence that flow parameters of turbulent flows can be 

simulated by laminar flow models with the effective Reynolds number 40 ~ 50. 
(Imai 1958) 

6. Summary of results 

Our results on the two-dimensional flow of viscous incompressible fluid past 

a thin elliptic cylinder in a rectilinear channel are summarized as follows: 

1) We clarify the boundary between the steady and unsteady flows in an 

R-0 plane. (See Figure 4 .) The inclination of the boundary with respect to 

the angle of attack of the cylinder seems to make a "phase transition" corre­

sponding to the change in flow configuations. We study also processes 

by which vortices are born near the cylinder, brought away into the "main" 

Poiseuille flow, and then decay by the effect of viscosity. (See Figures 7 and 

11.) 

2 ) We show, for cases of 0= 0 °, that our results on the drag coefficient can 

be well reproduced by Imai's (1958) formula: CD=A+B·R-0·5 within our range 

of Reynolds number. (See Figure 13.) We suppose that the formula has an 

unexpectedly wide validity. 

3) As a practical application, we compare our results with those of Kimura et 

al's (1980) experiments on a butterfly valve. We give reasonings by which our 

comparison does make sense, and note that we use time averages of the flow 

parameters in the above comparison. Agreement between our results and 
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experiments is qualitatively good for the pressure drop due to the valve, and 

for the torque-coefficient. The most interesting fact is that our results well 

reproduce a steep crest in the torque-coefficient diagram, which is characteris­

tic of the experiments. Also interesting is the fact that the best quantitative 

agreement for the torque-coefficient is obtained for Reynolds number 50 ~ 
100. 

The above results 3 ), especially, assure us that our results on two­

dimensional flows can be used as effective working models of three-dimensional 

channel flows. 
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