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Abstract 

Details of the second order Osher scheme for the multi-dimensional Euler 
equation are presented. The adopted method to attain the second order of accu­
racy differs from the existing second order formulation by Osher. The present 
method is easy to be implemented and can be applied to other first order upwind 
schemes. 

Two types of numerical integration forms are coded. One is written in the 
integral form (cell method), and the other is the usual finite-difference form. 
Both forms work well and can capture strong shocks without any auxiliary artificial 
damping. The integration form strictly satisfies the flux conservation even on 
geometrical singular coordinate lines, which inevitably appear in three dimensional 
calculations with bodies embedded. 

Hydrodynamic calculations of the interaction between a stellar wind and an 
accretion flow are performed to demonstrate the ability of the present method. 

I. Introduction 

Conventional central difference schemes, such as the Beam and Warming im­

plicit scheme (Beam and Warming, 1976), lack "robustness" in capturing very strong 

shock waves embedded in the flow field. If one tries to calculate such strong dis­

continuities by these conventional schemes, excessive artificial damping is required 

to keep the solution stable, and this damping degrades the resolution of the flow 

field considerably. 

A practical remedy for this situation is to adopt upwind difference schemes. 

Upwind schemes such as the Godunov scheme (Godunov, 1959), the Osher scheme 

(Osher and Chakravarthy, 1983) and the Roe scheme (Roe, 1981) have been applied 

to the Euler equation and show an excellent ability to capture strong shocks. They 

exploit the characteristic features of the hyperbolic systems of equations. 
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However, the spatially first order versions of these upwind schemes are generally 

highly dissipative. Spurious entropy production may occur even in the smooth 

regions of the flow field. Such effects can be alleviated by attaining a higher order 

of spatial accuracy. 

Usually, this higher order of accuracy is achieved by estimating the spatial 

derivatives by the Taylor series expansion up to the desired order. In the smooth 

region, this procedure works well. In the regions having a large gradient, however, 

a mechanism to limit the flux must be incorporated. Otherwise some "wiggles" may 

arise near the discontinuities. 

van Leer, in his series of papers (see for example, van Leer, 1979), introduced 

his flux limiting procedure and developed the second order accurate Godunov scheme. 

Chakravarthy and Osher (1983) adopted this flux limiting procedure and constructed 

the second order version of the Osher scheme. 

The idea of this flux limiting procedure is simple, but requires a lot of arith­

metic operations, and increases the programing complexity. van Albada, van Leer 

and Roberts (1982) introduced a neat form of the averaging function to obtain 

practical effects of flux limiting. We adopt this approach of averaging function and 

construct an alternative form of the second order accurate Osher scheme. 

The Osher scheme defines the flux values at the cell interface. This implies 

that it can be converted easily to the finite volume form (or the integral form) of 

the numerical scheme, usually called the "cell method". In the cell method, the flux 

conservation is automatically satisfied even on the geometrically singular coordinate 

lines and points. This is not the case of the original finite difference form. We 

develop the cell method version of the second order accurate Osher scheme and 

apply it to an axisymmetric flow problem occurring in an astrophysical situation. 

2. Upwind scheme for linear equations 

First, we consider a linear advective equation in a one space dimension 

q,+aq,,=0 (2.1) 

where the suffixes t and x denote the time derivative and the space derivative, 

respectively. 

Assuming the constant a to be positive, we have a conventional upwind scheme 

with the first order of accuracy as 

n+l_ n L1x ( n n ) qi -qi -aLlt qi-qj-1 

qj=q(jL1x, nL1t) (2.2) 

This upwind scheme is stable for L1t satisfying the well known C. F. L. condition. 

The upwind scheme can be extended to the system of linear hyperbolic equa-



242 Keisuke SAWADA, Eiji SHIMA, Takuya MATUDA and Takashi lNAGUCHI 

tions: 

where 

Q= (qi, Q2, ···, q4)'1! 

and E is a flux vector. 

This equation can be written in a similar form as (2.1): 

Q,+AQx=O 

(2.3) 

(2. 4) 

where A=aE/aQ is a constant Jacobian matrix. Note that Q is not a vector in 

physical space, but a vector in d-dimensional state space. We assume that the 

matrix A has only real eigen-values such that 

A1~A2<··•<J4 

The corresponding right eigen-vectors are denoted as 

Ri, R2, ···, Rd 
where 

R; = (r;i, r;2, ···, rid)-r 

They are assumed to be linearly independent. 

(2.5) 

(2. 6) 

The matrix A can be diagonalized using the orthogonal matrices P and P-1 as 

where P is composed by the right eigen-vectors as 

(

ru r12 
P= T21 T22 

r41 r42 

Multiplication of p-t from the left of Eq. (2. 4) yields 

Q',+DQ'.=0 
where 

Q'=P-lQ=(q'i, q\, ···, q'4)T 

From this equation we have d uncoupled equations of the form 

(aq//at) +J;(aq//ax) =O 

The upwind difference approximation for these equations can be written as 

for A;~O 

where 

(q';)j=q';(jLlx, nLlt) 

Dividing the matrix D in Eq. (2. 7) into two matrices such that 

D=D++D-

(2. 7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where D+ is a diagonal matrix which has only positive elements, and D- has only 
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negative elements. We have the vector forms of Eq. (2. 11) as 

Q''!+1 =Q''!-~D+(Q''!-Q''! )-~D-(Q''! -Q''!) , , L1x , ,-1 L1x ,+1 , 

Multiplication of P to the above equation from the left yields 

Q'!+l=Q'!-~A+(Q'!-Q'! )-~A-(Q'! -Q'!) , , L1x , ,-1 L1x ,+1 , 

where 

(2. 13) 

(2.14) 

(2.15) 

This scheme is known as the Courant-Issacson-Rees upwind scheme (1952). All 

the schemes for hyperbolic equations which are called "upwind• are the extension 

of this scheme. 

In order to extend this scheme to nonlinear equations, some modifications are 

added to the scheme. Let us consider a d-dimensional state space (say Q-space). 

Performing the line integration in the Q-space, the forward spatial difference term 

of (2. 14) reduces to 

A-(Qj+l -Q;) = fQJ+•A-dQ= f A-dQ 
JQ;L h 

where L is an integration path in the Q-space. 

subpaths in the Q-space as follows: 

(2.16) 

The path L can be divided into 

L=Ll+L2+· .. +Ld (2.17) 

Each subpath is taken to be parallel to the corresponding eigen-vector. According 

to Eq. (2. 15), the value of the integral along each subpath can be written as 

f A-dQ=!LfdQ 
JLt Q 

since dQ//R; and 

A-R;=A;R;=AR; 

and 

A-R;=O 

for J;>O 

for A;~O 

If we define the numerical flux function E as 

E;+112 =A+Q1+A-Q;+1 

=AQ1+:Ef AdQ=AQ;+f AdQ 
l=dLt J,1<0 

,1<0 

=AQ;+1-L.!OAdQ= t (AQ;+AQ;+1)- t 11AldQ 

where IAJ=A+-A-, then Eq. (2.14) reduces to 

Qj+1 =Qj- i! (E;+112-E;-112) 

(2.18) 

(2.19) 

(2. 20) 

(2. 21) 

(2. 22) 
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3. The first order accurate Osher scheme in one space dimension 

Consider a one dimensional Euler equation of the form 

Q,+Ex=O (3.1) 

where 

Q=(p, pu, e)'l' E=(pu, pu2 +p, (e+p)u))'l' (3.2) 

In the above equation, p represents the density, u the velocity, p the pressure and 

e the specific total energy. The equation of state is 

P= (y-1) (e-pu 2/2) (3. 3) 

in which y is the ratio of specific heats. The adiabatic sound velocity, c, is defined, 

for later use, as 

c=(yp/p)l/2 

The equation (3.1) can be written in the quasi-linear form 

Q,+AQx=O 

where A is a Jacobian matrix defined by 

A=aE/aQ=( (y-3~u2/2 
(y-l)u8 -yeu/ p 

1 0 

(3-y)u y-1) 

ye/p+3(1-y)u 2/2 yu 

The eigen-values of the Jacobian matrix A or 'characteristic velocities' are 

(3.4) 

(3.5) 

(3.6) 

A1 =u-c, A2 =u, A8 =u+c (3. 7) 

As a direct extension of Eq. (2. 21), we now define the numerical flux function 

E for Eq. (3. 1) as 

E;+112 =E(Q;) + f AdQ (3. 8) 
Ji1<0 

The integral in Eq. (3. 8) can be estimated as follows. Corresponding to each 

eigen-value h we can form three linearly independent right eigen-states: Ri, R2 

and R3 • The integration path in the three dimensional state space (again, we call 

it Q-space) can be divided into three subpaths which are parallel to the correspon· 

ding right eigen-vectors. An eigen-vector represents a simple wave, which separates 

two constant states. Across the simple wave, there are two generalized Riemann 

invariants connecting these two states. Such Riemann invariants are 

p/pr, u+2c/(y-1), for A1 =u-c, 

p, u, for A2 =u, (3.9) 

p/p', u-2c/(y-1), for A8 =u+c 

We now define two intermediate states, Q;+ua and Q;+213 , which are the two 

connections of the three integration subpaths, to satisfy 

(3.10) 

(3.11) 
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and 

(3.12) 

where Q;, QJ+t• are variables at the grid points, and Li is an integration path 

parallel to the eigen-vector R;. 

The actual values of these two intermediate points can be computed by using 

Eqs. (3.7), (3.8) and (3.9) as 

u;+2c;/(y-1) =u;+vs+2c;+118/(y-1) 

P1! pj =P;+l/81 P;+11s 

P;+11a=P1+21a, u;+11s=U;+'J1s 
UJ+218 -2c;+'Jis/(y-1) =u;.1-2c1+1/(y-1), 

(3.13) 

(3.14) 

P1+21sl P;+2r&=P;+1/ P1+1 (3. 15) 

Note that our integration path from Q1 to QJ+t is Ll, L2 and L3. On the other 

hand, Osher and Chakravarthy (1983) took the path L3, L2 and LL The relation 

between these two paths are discussed by Pandolfi (1984). We believe that our 

path is physically more reasonable. 

Using the above relations, the physical quantities at the intermediate states are 

determined as 

CJ+l/8= ~ { (y-1) (u;-UJ+i) +2(c;+c;+i)} / {l + (s,.i/s;) 112T} 

Pi+l/8= (c}+11afrs,) 11<r-1> 

UJ+113 =u;+2(c;-c;+113)/ (y-1) 

1 
Cj+21S=C;+11s-2Cr-l) (u;+1-U;+21s) 

P;+2/S= (c}+21a/rs1+1) 11 <r-1> 

where s=P/pr is the entropy function. 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

Once the intermediate states are known, each eigen-value at the grid or inter­

mediate state can be computed. Then, the integral reduces to the sum of Eqs. 

(3. 10), (3.11) and (3.12), following the signs of the eigen-values. 

f AdQ= (E(Q;+118)-E(Q;)) if A1 =u-c<O 
J.t1<0 

+ (E(Q1+21a)-E(QJ+113)) 

+ (E(Q1+1)-E(Q1+21a)) 

if A2 =u<O 

if A8 =u+c<O (3.22) 

Because of the non-linearity of the equations, the eigen-values may not be con­

stant along the subpath. The eigen-values .<1 and 18 can change their signs along 

the subpaths, while the eigen-value .<2 does not. When .<1 and/or .<3 change their 

signs, the sonic point, where the relevant eigen-value vanishes, arises on the corre­

sponding subpath. Denoting the sonic points on the subpath Ll to be Q1+116 and 
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on the subpath L3 to be Qj+ 516 , they can be calculated by using the Riemann inva­

riants and the sonic relation as 

r-1( 2 ) 
Cj+1/6=Uj+1/6=r+l \ui+ r-1 Cj 

{Jj+l/6 = (cj+l/6/ys j)ll<T-1) 

r-1( 2 ) -cj+5/6=uj+5/6= r+l Uj+1- r-1 Cj+1 

(3. 23) 

(3. 24) 

(3. 25) 

(3.26) ()j +5/6 = (cj+5/6/ysj+l)ll<T-ll 

Thus, the total fluxes are written in the following form 

Ej+112=E(Qj) + f AdQ J,,<O 
=E(Qj) 

+ (E(Qj+11s)-E(Qj)) 

+ (E(Qj+l/6)-E(Qj)) 

+ (E(Qj+113)-E(Qj+1/6)) 

+ (E(Qj+21s) -E(Qj+11s)) 

+ (E(Q;+1)-E(Qj+21s)) 

+ (E(Qj+1)-E(Qj+516)) 

+ (E(Qj+516)-E(Qj+2rn)) 

if Uj+113 -Cj+i13<0 and Uj-cj<O 

if Uj+ 113 -Cj+113'c.0 and Uj-cj<O 

if Uj+118-Cj+iia<O and Uj-cj>O 

if Uj+113=Uj+21s<O 

if Uj+ 213 +cj+2is<O and Uj+i+Cj+i<O 

if Uj+2 13 +Cj+213>0 and Uj+1 +ci+i<O 

if Uj+213 +cj+21s<O and Uj+i +cj+1>0 
(3. 27) 

The Osher scheme gives a numerical flux between two constant states Qi and 

Qj+i which is an approximation of the Riemann flux. Consider a Riemann problem 

in which the initial value of the dependent variables at the each side of the boun­

dary are constant. The variables at the left are denoted by the subscript j, while 

those at the right by j + 1. Instead of using the exact solution for this Riemann 

problem, an approximate solution using the simple wave is applicable. In the exact 

solution, a rarefaction-wave, contact-surface and shock-wave can appear generally. 

In our approximation, the shock-wave is approximated by a compression wave. 

Using the Riemann invariants, the relationships between the states are given 

by Eq. 3. (13-15), and the value of the variables at the boundary are determined by 

following the signs of eigen-values. If the variables at the boundary are denoted 

by subscript 'b', 

Qb=Qj 

Qb=Ql/3 

Qb=Q2,i 

Qb=Qj+l 

if u-c>O 

if u-c<O and u~O 

if u<O and u +c"c.O 

if u+c<O 

The fluxes at the boundary are 

Eb=E(Qj) 

+ (E(Q113) -E(Qj) if u-c<O and u'c.0 

(3.28) 
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+ (E(Q,,a)-E(Ql/a) 

+ (E(Q;+1)-E(Q2,s) 

if u<O and u+czO 

if u+c<O 

If a rarefaction wave is on the boundary, the values at the sonic point, where u-c 

or u+c vanishes, should be adopted. After all, these fluxes are equivalent to the 

numerical fluxes used in the Osher scheme. Thus, the Osher scheme is regarded 

as the approximate Riemann problem solver using simple waves. 

4. The Osher scheme for generalized curvilinear coordinate 

Next, we consider a two dimensional case; an extension to three dimension is 

straightforward. The two-dimensional form of the unsteady Euler equations in the 

Cartesian coordinate system is written as 

where 

Q,+E,.+F,=0 

Q= ((J, (JU, (JV, e)'l' 

E=(pu, pu2+P, puv, (e+p)u)'l' 

F= (pv, puv, pv2+p, (e+p)v)'l' 

The equation (4. 1) can be written in a quasi-linear form as 

Q,+AQ,.+BQ,=0 
where 

A=aE/oQ, B=8F/aQ 
are Jacobians. 

Let us introduce a generalized transformation of coordinate: 

s=s(x, y) 

71=71(x, y) 

We have a transformation Jacobian, J, defined as 

J =s,.71,-71,.s,= 1/ (XtY,-XvYt) 

The metrics are numerically computed using the following relation: 

s,.=Jy,, s,= -Jx,, 
71,.= -Jyt, 71,=lXt 

For later use, we define the contravariant velocities, U and V, defined as 

U=us,.+vs, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4. 5) 

(4.6) 

(4. 7) 

(4.8) 

(4.9) 

(4.10) 

The governing Euler equation (4.1) may then be transformed by the chain-rule 

differentiation into 

4.11) 

Since this equation is not in a strong conservation form, it is not suitable for captu­

ring a shock. The strong conservation form can be obtained by using Eqs. ( 4. 8) 

and (4. 9) as 
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(4. 12) 
where 

A 1 1 
Q=-yQ=J((), (JU, (JV, e)'I' (4.13) 

A 1 
E=-y(~,.E+(,F) 

1 =-y(pU, puU+~,.p, pvV+~yp, (e+p)U)T (4.14) 

A 1 
F= J (r;,.E+r;yF) 

1 =-y(pV, puV+r;,.p, pvV+r;yp, (e+p)V)T (4. 15) 

Similar to Eq. (3. 8), we define the numerical flux functions in each coordinate 

direction as 

E;+112,;=E;,;+ f .AdQ 
J1k<O 

F;,;+112=F;,;+ f BdQ (4.16) 
L,<O 

in which A and B are the Jacobian matrices of the flux functions E and F defined 

as 

(4. 17) 

Here, let us consider the ~ derivatives. The r; derivatives can be treated in a 

similar manner. The Jacobian matrix A has four eigen-values such as 

). 1 =U-ckn, A2=Aa= U, A4 = U+ckn -

where kn represents the geometrical scaling factor defined as 

kn= (~,.2+~,2)112 

(4. 19) 

(4.20) 
Corresponding to these four eigen-values, we have four linearly independent right 

eigen-vectors. 

Associated with these four eigen-vectors, we can form the integral path made up 

by three subpaths in the Q space which is now four dimensional. Two intermediate 

points Q;+113,; and Q;+213,; can be determined by using the Riemann invariants sum­

marized below: 

for A1 =U-ckn, p/p', U+2ckn/(y-l), v 

for A2 =A3 = U, p, U 

for A4 =U+ckn, p/p', U-2ckn/(y-1), v 

where v is a contravariant velocity component on the ~=constant line: 

v=u~y-v~,. 

(4.21) 

(4.22) 
These Riemann invariants give eight relations for eight unknowns of two interme­

diate states, and can be solved analytically. If any sonic points occur, the correspon­

ding subpaths must be divided into two parts to account for the upwind feature 
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properly. 

5. Cell Method 

In this section we will consider the Euler equation including a source term in 

three space dimension: 

Q,+Ez+F,+Gz+S=O 

This equation can be written in the integral form as 

f Q,dv+ f (n1E+n2F+n8G)ds+ f Sdv=O la l~ la 

(5.1) 

(5.2) 

for a fixed region !J (a cell) with the boundary a!J (a cell surface). The vector (ni, 

n2, n8) is a unit outward vector normal to the boundary. If we assume that variables 

are constant in each cell, Eq. (5. 2) can be approximated as 

(A;,1 ,kaQ;,;,k/at) + h;,1 +112,kE;,1 +112,k + h;,1-112,kE;,1-1,2,k 

+ h; +112,J,1,E; +112,J,k + h;-112,J,kE; -112,J,k 

+h;,J,k+112Ei,J,k+112 + h;,J,k-112E;,J,k-112 

+A;,1,1,S;,;,k=O (5. 3) 

where A is the volume of the cell, h is the area of the side of the cell and E is 

the flux normal to the boundary defined as 

(5. 4) 

If we compute the flux E by using the Osher scheme, we obtain a finite-volume 

(or integral) version of the Osher scheme. Though the finite-volume version may 

look different from finite-difference version, the procedures are almost equivalent. 

The major differences between the two versions are in the calculation of the metrics 

and the Jacobian of the transformation. 

In the finite-difference version, the variables and a grid point are defined at 

the same point, and the metrics and the Jacobian are calculated by using central 

difference formulas. However, in the finite-volume version, the variables and a 

grid point are defined at a staggered point. Then, we calculate the area and the 

normal unit vector of the cell-interface and the volume of the cell (or length and 

area in two-dimension), rather than the metrics and the Jacobian. The normal unit 

vectors multiplied by the area of a cell interface and the volume of a cell are equi­

valent to the metrics and the Jacobian. 

Another difference is the treatment of the boundary condition. In the finite-

difference version, the dependent variables are defined on the boundaries such as a 

rigid body or an outer boundary. On the other hand, in the finite-volume version 

we define the fluxes on the boundary, and the variables nearest to the boundary are 
departed for a half mesh size. 

For the explanation of the cell method, it is convenient to introduce the local 

Cartesian coordinate system in which one coordinate line is normal to the cell inter-
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face. Consider a Riemann problem which has a 3-dimensional velocity field. The 

intermediate states denoted by the subscript, 1/3 or 2/3, are introduced. Let u be 

the velocity component normal to the cell interface, and v, w tangential the cell 

interface. For this case, the characteristic velocities are u-c, u, and u+c. Using the 

Riemann invariants for the 3-dimensional Euler equation, the relations between each 

state are given by 

u;,j + 2c;,j/ (y -1) =u113 + 2c113/ (y-1) 

hi/ 11;,i = P11al P~,a 

V;,j=V113 

W;,j=W113 

P11a=P21a, U113=U21s 

U213-2C2,a/ (y-1) =U;,j+1-2C;,j+1I (y-1) 

h,s/11;,s =hi+i!v;,j+l 

(5.5) 

(5. 6) 

(5. 7) 

In this framework a contravariant velocity is regarded as the velocity component 

normal to the cell interface. 

In an axisymmetric case special attention should be paid. Consider that i, j 

and k represent the axial, the radial and the azimuthal direction, respectively. Let 

us assume that the azimuthal velocity is absent. In this case, the mass flux and the 

energy flux through the interfaces at (i, j, k + 1/2) and (i, j, k- l/2) vanish, and 

only the momentum flux by the pressure remains. 

where 

(A;,j ,kaQ;,j,k! at) + h;,j +112,kE;,j +112,k + h;,j-112,kE;,j-112,k 

+ h; + 1/2,j ,kE; + 112,j ,k + h; -1/2,j ,kE i-112,j ,k 

+ h;,j,k+112E';,j,k+112 + h;,j,k-112E' ;,j ,k-1/2 

+ A;,j,ksi,j,k = o 

E' =n1 (0, p, 0, 0, 0)7' +n2(0, 0, p, 0, 0)7' +n3(0, 0, 0, p, 0)7' 

(5.8) 

For a 2-dimensional axisymmetric calculation, a 3-dimensional treatment is need-

less of course. If we consider a small computational cell in an axisymmetric coor-

dinate system, we can take one velocity component in the azimuthal direction and 

neglect it. Finally, we take the azimuthal angle of the computational cell to be 

infinitely small, and we obtain the following form 

(r;,j,kA;,j,kaQ;,j,k!at) 

+ r;,i +112,kh;,j +112,kE;,j +112,k + r;,j-112,kh;,j-112,kE;,j-112,k 

+ r; +112,j,kh;+112,i,kE;+112,i,k + r;-112,j,kh;-112,i,kE;_1,2,j,k 

+A;,j,k(r;,i,kS;,i,k+P;,j,k) =0 (5. 9) 

where A and h are the area of the cell and the length of the cell interface for a 2-
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dimensional calculation, and r is the distance from the axis. 

A special treatment for the axial singularity is needless, since the area of the 

boundary interface at _the axis merely vanishes and the flux is taken to be zero 

there. 

6. Second order accurate scheme 

In the first order Osher scheme, the numerical flux between j-th cell and the 

j + 1-th cell is calculated by using the dependent variable at the cell center itself. 

From the meaning of the Riemann problem, that corresponds to the assumption that 

the dependent variables in a cell are constant. Even in a smooth region, such an 

assumption makes O(L1x) jumps of variables at the boundary, and it produces a 

spurious entropy increase. To construct a higher order scheme, we must introduce 

some structures inside the cell. van Leer (1979) and van Albada et al. (1982) intro· 

duced a piece-wise linear distribution in each cell, and we follow their line. Deno· 

ting the first and the second derivatives to be dQ/dx and d2Q/dx2 respectively, the 

gradient of each variable in the cell can be computed by the averaging function as 

where 

Q';= ((b2 +c)a+ (a2 +c)b)/(a2 +b2 +2c) 

= (dQ/dx);+O(L1x2) (6.1) 

a= (Q;+1-Q;)/L1x 

= (dQ/dx);+112 +0(L1x2
) 

=(dQ/dx);+(d2Q/dx2); ~ +O(L1x2
) 

b= (Q;-Q;-1)/L1x 

= (dQ/dx);-u2 +0(L1x2) 

=(dQ/dx);-(d2Q/dx2); ~ +O(L1x2
) 

(6. 2) 

(6.3) 

Here, c is a small positive number introduced to avoid division by zero. Using the 

numerical flux function calculated by the first order Osher scheme and the gradient 

in (6.1), the flux for the second order scheme at the boundary j+l/2 can be 

defined as 

(6.4) 

where 

QL=Q;+Q'J ~ 

QR=Qj+l -Q'j+l ~X (6. 5) 

The piece-wise linear distribution reduces the jumps at the cell boundary to O(L1x8). 

In order to apply this procedure to the multidimensional general coordinate 
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system, the Cartesian coordinate x should be replaced by general coordinates, and 

the gradients should be defined for each direction in the general coordinate. 

The second order of accuracy in time can be achieved by adopting the multi 

step procedure. Let us consider the following equation with the source term: 

Q,+Ex+H=O (6. 6) 

At the first step the source term is integrated to advance the half timestep as 

Q1. = Q'! -~ H'! (6. 7) 
J J 2 J 

Then, using the procedure in Eq. (6. 1) to estimate the spatial gradient, we can 

advance the time to t+L1t/2 as 

Qj = Q} + ~t caQ1 /at); 

=Q1.-~(AQ~') (6. 8) 
J 2 J 

in which the contribution from the source term is omitted. The dependent variables 

at the cell boundaries can be estimated as 

Ql=Qj+ t Q; 

Q2 Q2 Jx Ql' n= j+l--2- j+l (6. 9) 

We can form the numerical flux function of Eq. (6. 4) and can advance the time 

to t+L1t by the time centered integration formula to keep the second order of 

accuracy in time as 

Q~ = Q}- J; (Ej+ 1,2 -Ej-1,2) (6. 10) 

To complete the integration, we must account for the rest of the contribution of the 

source term as 

(6.11) 

In a scalar equation such as Eq. (2.1), this procedure is sufficient. However, 

m a vector equation such as Eq. (6. 6), some problems arise at the intermediate 

stages (6. 8) and (6. 9). If we choose the conservative variables such as Eq. (3. 2) 

as the dependent variables, an instability can occur. In order to avoid this difficulty, 

van Albada et al. (1982) used non-conservative quantities such as Q= (p, u, p)"'. 
Since u and p are continuous across a contact surface, this procedure yields smoo­

ther intermediate quantities. 

7. Numerical implementation of the boundary conditions 

1) The inflow and outflow boundaries 

Consider a one dimensional problem for the sake of simplicity. The number of 
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variables, which can be determined at the boundary, depends on the number of 

characteristics that come into the computational region. In the case of supersonic 

inflow, three variables can be given at the boundary. In the case of subsonic 

inflow, two variables can be given, but one is determined by an inner condition. 

In the case of subsonic outflow, one variable is given and two variables are com­

puted by the inner variables. In the case of supersonic outflow, three variables are 

computed by the inner variables. 

If we introduce imaginary cells next to the boundary, we may give all variables 

in them to compute the fluxes by the Osher scheme. This procedure gives consis­

tent boundary conditions, since the Osher scheme itself contains the procedure stated 

above. 

2) The rigid (slippery) boundary 

In this case, the velocity normal to the boundary should vanish there, and the 

eigen-value 'u' should be identical to zero. Thus, only one characteristic, e.g. 'u­

c', exists. Using the corresponding Riemann invariants, we have the value of the 

variables at the boundary as 

Ub=O 

y-1 
Cb =c,. +----:z-un 

(>b = (ci/ ys,.)l/(T-1) (7. 1) 

where the subscript 'n' denotes the variables in the cell next to the boundary, and 

'b' denotes those at the boundary. 

3) Accreting boundary 

We introduce a vacuum cell next to the boundary. For a supersonic outflow, 

all variables at the boundary are given by those in the cell next to the boundary. 

If the flow is subsonic, a rarefaction wave appears on the boundary. The eigen­

value 'u-c' vanishes there. Using the Riemann invariants corresponding to the 

characteristic 'u+c', the variables at the boundary are given by 

Cb=Ub 

y-1( 2 ) = y + 1 u,. + y -1 c,. 

Vb=Vn 

(>b = (ci/ys,.) 11 <r-1> (7. 2) 

8. Numerical examples 

The numerical examples computed are summarized below. We compute an 

interaction between a gas ejected from a star and an accretion flow onto the star. 

We also compute an accretion flow about a gravitating solid body. 



254 Keisuke SAWADA, Eiji SHIMA, Takuya MATUDA and Takashi lNAGUCHI 

We use a spherical polar coordinate. The number of meshes in the radial 

direction is 50 or 100, while that of the circumferential direction is 60. A sphere 

with a radius r0 is placed at the center of the numerical domain. Beyond the outer 

numerical spherical boundary, of which the radius is set to be 130 r0, the uniform 

flow of gas is assumed. We start the calculation from the state of the uniform flow, 

i.e. an impulsive start. We follow the time evolution until a steady state is reached, 

if any exists. 

Let us introduce the accretion radius defined as 

(8.1) 

where G, m and V are the gravitational constant, the mass of the body and the 

speed of gas at the far upstream. 

strength of the gravity is 

lJ=ra/ro 

A non-dimensional parameter describing the 

(8. 2) 

Another important dimensionless parameter is the Mach number, M, of the 

upstream gas, which is defined as 

(8. 3) 

where Coo is the sound speed of the upstream gas. 

The density and the sound speed of the gas are specified inside the surface of 

the central sphere. They are denoted as p0 andc0, respectively. The velocity of 

the gas is set to be zero in the sphere. The boundary condition at the spherical 

surface is computed by solving a Riemann problem between the interior state desc­

ribed above and the state just outside of the sphere. Therefore, the speed of gas 

ejected from or accreted onto the sphere is not necessarily zero. 

In the present study, we fix c0/coo=5, and M =2. 4. It means that the tem-

perature in the star is 25 times more than that at the upstream gas. However, its 

precise value has no significance for the present problem, since the size of the 

central sphere is arbitrarily chosen. Two cases of the density ratio p0/p,., are ex­

amined, i.e. 1 and 200. As to lJ, we compute two cases, i.e. lJ=0 and 10. The 

former case corresponds to the one in which gravity is not included. 

A) THE CASE WITHOUT GRAVITY 

We describe the results of the numerical calculations in which gravity is neglec­

ted. In Fig. 1, a and b, the result of the calculation for the case with M =2. 4, p0/ 

()oo=200 and y=5/3 are presented. Figure la shows the entropy -contours with 

velocity vectors, while Fig. I b shows the density contours. If the flow is steady, 

the isentropic lines coincide with the stream-lines except at shocks, and we can 

observe the stream-lines in Fig. I a. It can be seen that the contact surface forms 

a stream-line. 

A bow shock is formed at the upstream side of the body, and the inner non-
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Fig. 1. (a) Entropy contours with velocity vectors, and (b) density contours for the model 

with the Mach number 2. 4, the density ratio 200 and the specific heat ratio 5/3. 
The gravity is not included. The thick line is the sonic line at which the Mach 
number is unity. The radius of the central sphere is 0.1 rA. Time is measured in 
such a unit in which the radius of the central sphere is unity, and the sound speed 
of the far upstream gas is unity. Therefore, it takes about a 260 time unit for a 
sound signal to cross the whole numerical domain. MAX and MIN denote the maxi­
mum and the minimum values, respectively, of the physical quantities described. 
TMAX and TMIN do those of the contour values. DELTA shows a contour spacing. 
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Fig. 2. The density distribution on the symmetry axis. The 
parameter is the same as in Fig. 1. The contact 
surface and the inner shock are captured by two 
mesh points. 

spherical shock surrounds the central body. The latter shock is truncated by a 

plain shock at the rear side of the body. This shape was predicted by Wallis and 

Dryer (1976). Baranov, Lebedev and Ruderman (1979) computed the same case 

as ours by the time dependent finite-difference method. They obtained the shape 

of the shocks and the contact surface only in the leading hemisphere. 

agree well with theirs. 

Our results 

Figure 2 shows the density distribution of the same model on the symmetry 

axis. It can be observed that the inner shock and the contact surface are represen­

ted by two mesh points, and exhibit neither dissipation nor dispersion errors. As 

to the bow shock, one transition point lies between the left and right states, and 

exhibit negligable dissipation errors. This density distribution curve indicates the 

monotonic property of the present method. 

B) THE CASE WITH GRAVITY 

Next, we examine the case including gravity. The accretion radius describing 

the strength of the gravity is fixed to 10 times that of the central sphere, i.e. /J = 
10, and also the Mach number is fixed at 2. 4. Two cases of the density ratio, 1. e. 

1 and 200 are examined. In the case of the density ratio 200, we show further two 

cases with the specific heat ratio, y=4/3 and 2. 

Figure 3, a and b show the entropy and density contours for the case of p0/p"" 

=200 and r=5/3. A comparison of these figures with Fig 1, a and b, shows that 

the inner shock is pushed into the body, and the supersonic bubble does not exist 

any more. The gas flows out subsonically from the body. Figure 4 shows the density 
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Fig. 3. (a) Entropy contours with velocity vectors, and (b) the density contours 

for the Mach number 2. 4, the density ratio 200 and the specific ratio 
5/3. The accretion radius is ten times that of the body radius, i.e. o= 
10. The inners shock is pushed into the body, and the supersonic bubble 
does not exist any more. 
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Fig. 4. The density distribution on the symmetry axis. The 
parameter is the same as in Fig. 3. The accretion 
flow strips the gas emitted from the spherical body 
off downstream. 

distribution on the axis. The accretion fl.ow blows the gas emitted from the central 

body off downstream. The bow shock is sharply captured. 

Figure 5, a and b represent the entropy and the density contours for the case 

of p0/ (Joo= 200 and y = 2. When the specific heat ratio is 2, the mass loss from the 

body becomes negligible, and an atmosphere surrounding the body is formed. The 

gas accreting onto the body flows by the atmosphere. 

Figure 6, a and b represent the entropy and the density contours for the case 

of p0/poo=200 and y=4/3. The contact surface shows a wavy nature. Figure 7 

shows the density distribution on the symmetry axis. One can see that the slope 

between the bow shock and the contact surface is sharper than that in Fig. 2. It 

can be seen that the contact surface is Rayleigh-Taylor unstable. The density of 

the gas outside of the contact surface is higher than that of the inside. 

Taking the accretion radius as a typical length and Coo as a typical velocity, we 

can define a typical time scale as 

(8. 4) 

Let us assume that the maximum wave length of a disturbance is the distance from 

the center of the body to the contact surface measured along the front axis, i. e. the 

so-called standoff distance. Solving the dispersion relation of the Rayleigh-Taylor 

instability for compressible fluids, we find that the ratio of the e-folding time of the 

longest wave is considerably shorter than r. 

instability of the contact surface is physical. 

Therefore, we can conclude that the 
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Fig. 5. (a) Entropy contours with velocity vectors, and (b) the density 
contours for the Mach number 2. 4, the density ratio 200 and 
the specific ratio 2. An atmosphere surrounds the body. 
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Fig. 6. (a) Entropy contours with velocity vectors, and (b) the density 
contours for the Mach number 2. 4, the density ratio 200 and 
the specific ratio 4/3. The contact surface shows a wavy nature 
due to the Rayleigh-Taylor instability. 
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Fig. 7. The density distribution on the symmetry axis. The 
parameter is the same as in Fig. 6. The slope bet­
ween the bow shock and the contact surface is 
sharper than that in Fig. 2. 

Figure 8, a and b show the entropy and the density contours for the case of 

p0/ (Joo= 1, respectively. This case exhibits the accretion flow. These calculations 

have been done for the same Mach number and the same specific heat ratio as 

Hunt (1971). As is shown in Hunt's calculation, this flow also possesses a bow 

shock. As gas is drawn gravitationally toward the gravitational source, it becomes 

denser, and creates pressure forces. It is these pressure forces that support the 

shock. Behind the bow shock, one finds that some isentropic lines, i. e. stream­

lines, are drawn toward the gravitational source. 

8. 2. FLOW ABOUT A GRAVITATING RIGID SPHERE 

We compute a flow about a gravitating rigid sphere. The parameters are M = 
2. 4, o = 10 and y = 5/3. Figure 9, a and b show the entropy and the density con­

tours, respectively. We can find the occurrence of a vortex ring about the body. 

This phenomena is also observed by Takeda, Matsuda, Sawada and Hayashi (1985) 

for the supersonic Navier Stokes flows, and by Shima, Matsuda, Takeda and Sawada 

(1985) for the supersonic inviscid flow. 
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Fig. 8. (a) Entropy contours with velocity vectors, and (b) the density 

contours for the Mach number 2. 4, the density ratio 1 and the 
specific heat ratio 5/3. The accretion flow occurs. 
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Fig. 9. (a) Entropy contours with velocity vectors, and (b) the density 
contours for the Mach number 2. 4 and the specific heat ratio 
5/3. The inner sphere is a solid body. A vortex ring about 
the body is observed. 
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