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Abstract 

A theoretical study has been conducted to investigate the effect of liquid 
solidification (freezing) on the heat transfer characteristics for the turbulent flow of 
a heat generating fluid in a cooled circular tube. Steady-state conditions and a 
uniform wall temperature, which is lower than the liquid freezing temperature, are 
assumed. The radius of the liquid-solid interface and the local Nusselt number 
are determined as a function of position along the tube for several different values 
of the Reynolds number and the Prandtl number. The thickness of the frozen 
shell increases with distance down the tube. It approaches its fully developed 
value, depending upon a single dimensionless freezing parameter which measures 
the relative rate of wall cooling and internal heating. The local Nusselt number, 
however, first decreases rapidly and then approaches its fully developed value, 
which depends on the Reynolds number and the Prandtl number. 

1. Introduction 
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The problems of the solidification (freezing) of liquids flowing inside cold 

channels have been encountered in numerous engineering applications. This type 

of solidification process is of recent interest because of nuclear reactor safety con

siderations. For example, a loss of coolant flow may result in the disruption of the 

reactor core that involves fuel melting. The molten fuel would flow upward and/or 

downward with solidification on cold core structures. 

In a molten salt breeder reactor system, the fluorination of molten salt is re

quired at several points in processes being considered for the isofation of protactinium 

and for the removal of rare earths. The fluorinators will be protected for corrosion 

by a layer of salt frozen on the metal surfaces that will potentially contact both the 

fluorine and molten saltll. The chemical reaction and the decay of fission products 

in the salt will constitute the heat source in the processing system. 

In the current design of inertially confined fusion reactors2', a thick liquid 

lithium falling curtain is used to protect the chamber wall from the micro-explosion 

Department of Nuclear Engineering. 
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charged-particle energy deposition. If the falling curtain should be locally broken 

due to its flow instability, the charged particles will collide directly against the local 

portions of the wall, resulting in a local melting of the wall. We now propose an 

idea whereby the wall can be protected from charged-particle damage by a layer 

of frozen lithium formed on the wall, which is maintained at a desired temperature. 

Despite its relevance to many important technological and physical problems, 

the solidification of a liquid as it flows through a cold channel has scarcely been 

studied, neither analytically nor experimentally. Most past studies3-m have been 

conducted in a fluid without internal energy sources. So far, there exist very few 

works, except the theoretical study of Kikuchi and Shigemasam, which treat the 

solidification of a heat generating fluid. This led the present authors to carry out 

a theoretical study for clarifying the effect of liguid solidification on heat transfer 

in a fluid with uniform energy sources flowing through a cooled tube under turbu

lent flow conditions. Simple analyses are presented for predicting the radius of the 

liquid-solid interface and the local Nusselt number. This paper is a sequal to the 

preceding reportm which mainly covered the laminar flow case. 

2. Analysis 

2. 1. Basic equations and assumptions 

The liquid is assumed to have a uniform temperature T 0 and a fully developed 

turbulent velocity profile at the inlet where the cooling begins. Following this 

section, the tube wall is maintained at a constant temperature T,,,, which is lower 

than the liquid freezing temperature T1 . The heat generating liquid is cooled as it 

flows down the tube, promoting solidification and thus causing the thickness of 

the frozen shell to increase with distance down the tube. 

Fig. 1 illustrates the problem under consideration. The following assumptions 

are made in developing the formulation of the problem: 

1. Steady-state conditions are maintained everywhere. 

R 

0 

Fig. 1. Coordinate system. 

Tw 

T0 > Tf>Tw 
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2. The liquid flow is axisymmetric and turbulent, and has a fully developed 

velocity profile and a uniform temperature T 0 at the inlet (z=O). 

3. The liquid is Newtonian and incompressible. 

4. The physical properties of the liquid and solid phases are constant. 

5. The solid phase is smooth, homogeneous and isotropic, and has a gradually 

increasing thickness beginning at the inlet. 

6. The radial component of veloctiy due to the solid shell formation is neg

lected because the solid shell is thin. It is assumed that the fluid accelera

tion is not sufficiently strong to influence the structure of turbulent flow. 

7. The temperature at the liquid-solid interface is constant and equal to the 

liquid freezing temperature Ti. 

8. The wall temperature T w is uniform, constant, and below the liquid 

freezing temperature. 

9. Axial heat conduction, radiant heat transfer, and free convection are negli

gible. 

10. The tube wall has negligible thermal resistance. 

11. The volumetric heat generation is uniform and constant in the liquid and 

solid phases. 

Under these assumptions the liquid-phase energy equation is written as 

cnu aT =1__a_[k1(1+~-)r aT] +Q O<r<o, z<O (1) 
I' az r ar a ar ' 

which is subject to the boundary conditions 

T(o, z)=T1 

aT(O, z) O 
ar 

T(r, O)=T0 

The solid-phase energy equation, neglecting axial conduction, is given by 

with boundary conditions 

T(o, z)=T1 
T(R, z)=Tw 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

An additional relation necessary to determine o(z) is an energy balance at the 

liquid-solid interface, 1. e. 

k aT1(o, z) 
I ar 

k aT,(o, z) 
s ar (8) 

In order to simplify the description of the equations, the thermal conductivity 

of each phase is assumed to be the same. The following dimensionless quantities 

are introduced: 
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(9) 

By utilizing these quantities, Eqs. (1) through (4) are transformed into the 

dimensionless forms 

u*o* 2~=1-1-(r ao) +4Q*o*2 

az* n an nan ' 
0(1, z*) =0 

aoco, z*) 
an 

O(n, 0)=1 

0 

(10) 

(11) 

(12) 

(13) 

According to Assumption 6, the dimensionless velocity and total thermal diffu

sivity distributions are expressed by the following equations: 

u*(n, z*) =Uo*Cn)/0*2 

I'(n, z*) =I'o(n) 

(14) 

(15) 

where the subscript 0 refers to the value at the inlet. The expressions for u 0* and 

I'0 are given in the Appendix. 

Substituting Eqs. (14) and (15) into Eq. (10), we obtain 

uo* ::* = ~ lr;(ron~:) +4Q*o* 2
, O<n<l, z*>O (16) 

The dimensionless forms of Eqs. (5) through (8) are expressed by the following 

equations 

~ a:(n~:) +4Q*o* 2 =0, l<n<l*' z*>O 

0(1, z*) =0 

0(0~, z*)=-Ow 

a0,(1, z*) ao.(1, z*) 
an an 

(17) 

(18) 

(19) 

(20) 

In the following analysis, the flow channel is separated into two regions: (1) a 

fully developed region and (2) a thermal entrance region. Calculation is then 

carried out for each region. 

2. 2. Fully developed region 

In this region the solid layer thickness does not change and the liquid is 

isothermal along the axial direction. The left side of Eq. (16) is equal to 0. By 

solving this equation under the boundary conditions of Eqs. (11) and (12), we 

obtain the dimensionless liquid-phase temperature distribution 

0=2Q*o*2 flrpn (21) 
)q I'o 
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The dimensionless solid-phase temperature distribution can be calculated from 

Eqs. (17) through (19) and is expressed by 

o+ Ow=Q*(l-l>*2r;2) + [Ow-Q*(l-5*2)] ( 1 +l:: l,7/*) (22) 

Substituting Eqs. (21) and (22) into Eq. (20) and considering that I'0 is equal 

to 1 at the liquid-solild interface, we obtain the dimensionless radius l>* of the 

liquid-solid interface 

l>* = ✓1- 0 w/ Q*=✓l - r/> (23) 

where r/> is the dimensionless freezing parameter, which measures the relative rate 

of wall cooling and internal heating. 

With the relation of Eq. (23), the dimensionless solid-phase temperature distri· 

bution which is given by Eq. (22) becomes a simple form as 

0 + Ow= Q*(l-r*2) (24) 

The correlations of Eqs. (23) and (24) for the solid phase in turbulent flow are 

same as those as those in laminar flow, which are given in Ref. 12. 

The dimensionless heat flux q* at the liquid-solid interface can be determined 

from Eq. (21) and is given by 

*- _l__ aO(l, z*) _ 2Q*"* 
q - li* a71 - u (25) 

where I' 0 is again taken as 1 at 7/ = 1. 

Integration of Eq. (21) yields the dimensionless mixed mean temperature Om of 

the liquid phase as the following expression: 

T T f121t1/U*Od71 11 (11 d ) 0 - m- I Jo 1 =4Q*l,*2 7/Uo* 7/r7/ d71 (26) 
m To-Tf L21t71U*d71 o 7/ o 

The fully developed Nusselt number Nufd, therefore, can be determined from 

Eqs. (25) and (26), and becomes as follows: 

1'T. fd 2ql, 2q*l,* _ 1 
HU ~=----"-~ ~~~~- (27) 

k(Tm-T1 ) o;;;-- 1:7/Uo*(1:71:)a7/ 

where the diameter 2/i of the flow area is taken as the representative length of the 

Nusselt number. The values of Nufd are functions of Re and Pr. 

2. 3. Thermal entrance region 

In this region the liquid temperature is separated into two components 

T=T'd+T• (28) 

By utilizing the following dimensionless quantities 

Ofd Tfd o•- T•-T, (29) 
To-T1' - T 0 -T1 

Eq. (28) can also be transformed into the dimensionless form 

(30) 
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Each component satisfies the following energy equation and boundary conditions 

l__q_(r.,,a{}td)+4Q*o*2=0 0sn<l, z*>0 (31) 'YI a'Y/ o•, a'Y/ , ., 

{}Id (1, z*) = 0 (32) 

~~~o ~ 
a'Y/ 

ao•co, z*) 
a'Y/ 

(}•('Y/, 0) =1 

0 

(34) 

(35) 

(36) 

(37) 

By integrating Eq. (31) under the boundary conditions of Eqs. (32) and (33), 

we obtain 

(38) 

Eq. (34) can be solved under the boundary conditions of Eqs. (35) and (36) by 

a variable separation method and the solution is expressed by 

(}•=,.~ Cnc/Jn('Y/)exp(- ).n;z*) 
where 'Pn and J.n are the eigen-functions and eigen-values, 

lowing Sturm-Liouville problem 

1 d(r dc/Jn) Uo*). 2,/, -0 rf a71 o'Y/ d'Y/ +~ n 'f'n-

c/Jn(0) = 1 

dc/Jn(0) -O 
d'Y/ -

c/Jn(l) = 0 

(39) 

respectively, of the fol-

(40) 

(41) 

(42) 

(43) 

To evaluate the coefficients Cn we apply the boundary condition of Eq. (37) which 

specifies the value at the inlet. Using the orthogonal property of the Sturm-Liouville 

system, we have 

c/J'n(l) +4Q*f1'Y/c/Jnd'Y/ 
C -- Jo 
n- I:ro'Y/'Pn'2d'Y/ 

(44) 

The complete soultion for the dimensionless liquid-phase temperature distribu

tion is finally expressed by 

8=2Q*o*2f1 r/d'YI +tCnc/JnC'Y/)exp(- J.n
2
z*) (45) 

)1/ I'o n~o 2 

The dimensionless solid-phase temperature distribution is expressed by Eq. (22), 

which is the same in the fully developed region. 
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Substituting Eqs. (22) and (45) into Eq. (20), we obtain 

Bw-Q*(l-0*2) 

In o* 
oo ( J 2z*) "f

0
Cnc/Jn'(l)exp -~ 
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(46) 

With this relationship of Eq. (46), the dimensionless radius o* of the liquid-solid 

interface can be calculated numerically. 

The dimensionless heat flux q* at the liquid-solid interface can be calculated 

from Eq. (45) and is given as 

*- _ _!_ ao(l, z*) -2QO* _ _!_ ~ C ,/, '(1) (- An
2Z*) 

q - o* a71 - u o* i=o n'f'n exp 2 (47) 

Integration of Eq. (45) yields the dimensionless mixed mean temperature Om of 

the liquid. From the properties of the Sturm-Liouville system we can then write for 

f}m 

r2n-1JU*8d71 
(J -~occ-----

m - 1:27t7JU*d71 

=4Q*o*2 f17JUo*(f17J{l7J )d71-4"E, C~ c/Jn'Cl)exp(- liz*) (48) 
Jo Jo I'o n=O An 2 

The local Nusselt number may be determined from the definition and written by 

_ 2q*o* _ Q*o*2 -½~
1
Cnc/Jn'(l)exp(-~) 

Nu-u;;;-- Q*o*2f17JUo*(f171d71 )a71-'f. C~ 'Pn'Cl)exp(- J,.2z*) 
Jo J'I I'o n=O A,. 2 

(49) 

The rate Q7' of heat transfer from the tube wall for the axial length z can be 

determined from the relation 

Q7'= 1:2n-R[-k aT(!; z) ]dz (50) 

By utilizing Eq. (22) and (46) and introducing the following dimensionless quantity 

Q-* Q7' (51) 
• n-R2C(JUmo(To-T1) 

Eq. (50) can be transformed into the dimensionless form given by 

Q7'*=4Q*z*+4f Cn2 cp,.1(1) [exp(- Aiz* )-1] 
tl=O A,. 2 

3. Results and discussion 

3. 1. Fully developed region 

(52) 

In order to establish a base case of fully developed heat transfer, calculations 

were first carried out for the non-generating fluid (Q*=O) under the non-freezing 

condition (llw=0). Some calculated results of the fully developed Nusselt number 

Nufd are listed in Table 1 for Pr=l and for three Reynolds numbers. The calcu

lated values of Nu14 are slightly higher than the prediction from the conventional 
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Table 1. Fully developed Nusselt number for non-generating 
fluid of Pr= l under non-freezing condition. 

Investigators 

Present authors 

Dittus and Boelter 

correlation of Dittus and Boelter13> 

Nufd =0. 023 Re0•8Pr0•4 

Re=5000 

27 

21 

Re=lO000 Re=50000 

46 151 

37 132 

(53) 

Eq. (23) indicates that the fully developed dimensionless radius o* of the liquid

solid interface can be related to a single dimensionless parameter rp (freezing 

parameter) for various sets of the Reynolds number and the Prandtl number. The 

freezing parameter, which depends on the wall temperature and the internal heat 

generating rate, is defined as rp =0w/Q*=4k(TrTw)/QR2• The relationship 

between o*and rp is shown in Fig. 2. 

~0.5 
Liquid 

Fig. 2. Effect of freezing parameter on dimensionless solid 
layer thickness in fully developed region. 

It can be seen from the figure that o* decreases with increasing rp. This 

means that the lower wall temperature and the lower rate of the internal heat 

generation form the thicker shell of the solid phase. The flow channel is completely 

blocked at rp = 1. The dependency o* on rp for the turbulent flow is the same as 

that for the laminar flow12>. 

Fig. 3 shows the fully developed temperature distributions for several values of 

the Reynolds number. The Prandtl number is taken as 1. In this figure is also 
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0.5 
r"' 

Laminar ',, 
e=500(J, 

' ,10000 '\ 
'50000' 

' ' \ \ 
\ \ 
\ \ 

Liquid 
Solid 

Fig. 3. Effect of Reynolds number on radial dimensionless temparature 
distribution in fully developed region. 
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indicated the temperature distribution under the laminar flow condition. The solid 

and broken lines imply the liquid and solid phases, respectively. The thickness of the 

solid-phase shell increases with increasing ¢,. In the laminar flow the temperature 

distribution does not change, and can be described as a parabolic curve in both 

liquid and solid phases. In the turbulent flow, however, a flat temperature distribution 

is observed in the liquid phase, and the distribution becomes flatter with an 

increasing Re since the heat transfer is more enhanced with an increasing Re. 

Fig. 4 shows the effect of the Prandtl number on fully developed temperature 

distributions for Re= 10000. In the solid phase a parabolic distribution is always 

observed due to heat conduction. In the liquid phase, however, flat distributions 

are dominant and the flatness is more accentuated with a higher Pr since the 

turbulent mixing is more dominant than the heat conduction. 

An increase in the Prandtl number yields a decrease in the dimensionless tem

perature (0+0,,,)/Q* of the liquid phase for a given value of ¢,. This of course 

does not indicate an increase in actual heat transfer, but simply that the ratio of 

actual heat transfer to conductive heat transfer has increased since Q* varies in

versely with changes in the thermal conductivity. The actual heat transfer is 

decreased due to the lower values of the thermal conductivity resulting from higher 

Prandtl numbers. 

3. 2. Thermal entrance region 

A dimensionless frozen shell thickness (1-l>*) is plotted versus a dimensionless 
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Liquid 
0.5 
r* ----- Solid 

Fig. 4. Effect of Prandtl number on radial dimensionless temperature 
distribution in fully developed region. 

0.1 

Laminar 
~w=0.2 

Re-;~Laminar 
--10000 

..,,._--50000 Pr= l 
Q*=1 
~w=0.2 

0.5 
z* 

Fig. 5. Effect of Reynolds number on axial distribution of 
dimensionless solid layer thickness in thermal en
trance region. 

\ 

axial position z* in Fig. 5 for several turbulent flow cases (having different values 

of the Reynolds number) as well as for the laminar flow case taken from Ref. 12. 

The Prandtl number is again chosen as equal to 1. For the heat generating fluid 

(Q*=l), the thickness of the frozen shell increases with distance down the tube 
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and then approaches its fully developed value, which depends on the freezing 

parameter tp(=Ow/Q*) and is given by Eq. (23). For a given value of z* an increase 

in the Reynolds number yields an increase in the frozen shell thickness. This does 

not indicate an actually rapid growth of the frozen shell since z* varies inversely 

with changes in the Reynolds number. For a given tube with a reduced flow area 

due to freezing, an increase in the Reynolds number enhances the heat transfer, 

and thus causes the thickness of the frozen shell to be reduced. It is also noted 

that the turbulent flow frozen shell is thicker than the laminar flow case (with the 

same z*). This is because a fully developed condition can be established in a 

shorter tube for the turbulent flow than for the comparable laminar flow. 

In this figure is also indicated the calculated results for a fluid with no heat 

generation (Q* = 0). The growth of the frozen shell is significantly rapid in the 

non-generating fluid. The shell thickness increases monotonically with an in-

creasing axial length, and the channel is completely blocked at a given position 

along the tube. 

Fig. 6 is a plot of dimensionless solid shell thickness (1-13*) versus z* for flows 

of the same Reynolds number (Re= 10000) but having different values of the Prandtl 

number. For all cases the thickness of the solid shell again increases with an in

creasing axial length and then approaches its fully developed value. For a given 

value of z*, an increase in the Prandtl number yields an increase in the solid shell 

thickness. 

0.1 

1-----Pr:0.1 
1----+------ 1 

t-+--+------10 

o*=o ~w=0.2 

Pr :0.1 
~----1 

~---10 
Re:10000 
Q*= 1 ~w=0.2 

0.5 
z* 

Fig. 6. Effect of Prandtl number on axial distribution of 
dimensionless solid layer thickness in thermal 
entrance region. 
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Fig. 7 shows the axial distributions of the local Nusselt number Nu for several 

different turbulent flow Reynolds numbers as well as the laminar flow case. The 

values of Pr and Ow are taken as 1 and 0. 2, respectively. For the heat generating 

fluid (Q* = 1), the turbulent flow Nusselt number first decreases rapidly with an 

increasing z*, and then approaches its fully developed value predicted in Eq. (27), 

which depends on both Re and Pr. Nu becomes higher with a higher Re. All the 

turbulent flow Nusselt numbers are significantly higher than those for the laminar 

flow case. 

100 

::::, 

210 

-· Re=50000 

=-•- 10000 
5000 

~ Laminar 

-------·--•--·--•--·-

~ 
Pr=1 
~w=0.2 

1 
0.5 
z* 

Fig. 7. Effect of Reynolds number on axial distribution of local 
Nusselt number in thermal entrance region. 

For the fluid with no heat generation (Q* =0), the turbulent flow Nusselt numbers 

are shown only in the short region between the inlet and a given point where the 

channel is blocked completely. 

Fig. 8 shows the effect of the Prandtl number Pr on the axial distributions of 

the local Nusselt number for fluids with and without heat generation. The values 

of Re and ()w are taken as 10000 and 0. 2, respectively. Nu increases with a higher 

Pr since, for high Pr, the turbulent mixing becomes more dominant than the heat 

conduction. 

Fig. 9 shows the radial dimensionless temperature distributions at several posi

tions of the thermal entrance region for the turbulent flow (Re= 10000) as well as 

for the laminar flow. Pr and Ow are taken as 1 and 0. 2, respectively. Q* ranges 

between 0 and 1. The solid and broken lines represent the liquid and solid tem

peratures, respectively. In the laminar flow, with an increasing axial length, a flat 

distribution of liquid temperature is seen to change into a parabolic one observed 
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100 
1,· Pr=10 

1-•- 1 

::, I\ 0.1 

z 10 "-•--·-

~ 
Re:10000 
~w=0.2 

1 

0.5 
Z* 

Fig. 8. Effect of Prandtl number on axial distribution of 
local Nusselt number in thermal entrance region. 

0.5 
rH' 

Laminar 

()> 
Pr:1 

<:)~ ""w=0.2 
\J•~ 

§jj 
Fig. 9. Effect of Reynolds number on radial dimensionless 

temperature distribution in thermal entrance re
gion. 
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in the fully developed region. In the turbulent flow, however, a flat distribution is 

always observed along the tube because of turbulent mixing. 

Fig. 10 shows the radial dimensionless temperature distributions at several posi

tions for flows of the same Reynolds number (Re=l0000) but having different values 



222 

J 
+ 

d;> 

Y oshihiro KIKUCHI and Yasushi SHIGEMASA 

0.5 
r* 

Fig. 10. Effect of Prandtl number on radial dimensionless 
temperature distribution in thermal entrance re
gion. 

of the Prandtl number. For all cases the dimensionless temperature at the tube 

center decreases with an increasing axial length, and then approaches its fully de

veloped value. An increase in the Prandtl number yields a flatter distribution of 

the liquid temperature. 

Fig.11 shows the axial distributions of the dimensionless heat transfer rate QT* 

Q*=1 Pr=-1 
4 

3 

0.5 
z* 

Fig. 11. Effect of Reynolds number on axial distribution 
of dimensionless heat transfer rate in thermal 
entrance region. 
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Both Q* 

and Pr are taken as 1. Q7'* first increases rapidly and then approaches a straight 

line, whose gradient is dependent on Q*. In the turbulent flow, the Q7'* curves are 

almost identical over most of the range z* values considered, the only deviation 

occurring near the inlet. The values of Q7'* are independent of Ow, as defined in 

Eq. (52). The plots of Q7'*, therefore, are identical with the non-solidification ones 

for Ow=O. 

Fig. 12 is a polt of Q7'* versus z*, but for the cases involving variations of Pr. 

It can be seen from the figure that, for a given value of z*, the turbulent flow 

dimensionless heat transfer rate Q7'* is only moderately sensitive to changes in Pr, 

with in creases in Pr resulting in higher values of Q7'*· 

.1 

0.5 
Z* 

Fig. 12. Effect of Prandtl number on axial distribution 
of dimensionless heat transfer rate in thermal 
entrance region. 

4. Conclusions 

The effect of freezing on the turbulent flow heat transfer characteristics of a 

liquid with internal heat sources flowing in a cooled circular tube is investigated 

analytically. Steady-state conditions and a uniform wall temperature, which is lower 

than the freezing temperature of the liquid, are assumed. The radius of the liquid

solid interface, the local Nusselt ·number and the heat transfer rate from the wall 

are determined as a function of position along the tube for various sets of the 

Reynolds number and the Prandtl number. 

(1) The radius of the liquid-solid interface decreases with distance down the 

tube and approaches its fully developed value predicted easily in Eq. (23), which 

has only the variable <f, defined as the relative rate of wall cooling and internal 
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heating. The fully developed correlation of Eq. (23) for the turbulent flow is the 

same as that for the laminar flowm. 

(2) The local Nusselt number first decreases rapidly with distance and then 

approaches its fully developed value, which depends on the Reynolds number and 

the Prandtl number. 

(3) The heat transfer rate from the wall first increases rapidly with distance 

and then approaches a straight line whose gradient is dependent on the internal 

heating rate. 

Application of the present simple analysis is limited to the case of a thin frozen 

shell, since the effect of a liquid-solid interface curvature on the structure of turbu

lent flow is neglected. For a thicker frozen shell case, however, the fluid accelera

tion due to the change in the flow area may possibly influence the turbulence structure. 

Hence, further works, both theoretical as well as experimental, are needed. Also, 

other studies are required for liquid metals with a low Prandtl number. 

Appendix. Correlation for turbulent velocity and eddy diffusivity 

To obtain the solutions of Eq. (16), it is necessary that the variations of u0* and 

I'0 with 11* are specified. A number of attempts have been made to predict the 

turbulent velocity distribution and the eddy diffusivity of heat. In the present 

calculation, for simplicity, the eddy diffusivity s8 of heat is assumed to be equal to 

the eddy diffusivity EM of the momentum, and the following simple equations are 

used. 

0:::::;yt<26 (boundary layer): 

1 [ ( yl) yl ] u0
1=o. 36 1n(l+0. 36y1) +7. 2 1-exp - 12 - 12exp(-0. 37y1) 

I'0 =1+0.1242u0ly'Pr[l-exp(-0.1242u/y1)] 

26<y1 (center region): 

Uo
1 = o.\6 ln(y1/26) + 12. 85 

I'0= 1 +Pr[O. 36y1(1-y1/R1)-1] 

where yt, R1 and u0 are the dimensionless quantities given by 

y1= (R-r)u,/v, R1=Ru,/v, Uo1=uo/u,, u,=✓,.w/(J 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

The turbulent velocity ut0 of Eqs. (Al) and (A3) is similar to that given by Deissler10 

but having a modified form. The total thermal diffusivity I'0 of Eqs. (A2) and (A4) 

is taken from Sparrow et alm. 
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Nomenclature 

a thermal diffusivity 

c specific heat 

c,. coefficient defined by Eq. (44) 

k thermal conductivity 

Nu local Nusselt number ( =2ao/k) 

Pr Prandtl number (v=/a) 

Q internal heat generating rate per unit volume 

Q* dimensionless internal heat generating rate (=QR2/4k(T0 -T1 )) 

q heat flux 

q* dimensionless heat flux (=qR/k(T0 -T1 )) 

Q7' heat transfer rate 

Q7'* dimensionless heat transfer rate (=Q7'/-n:R2cpu,n0(T0-T1 )) 

R radius of tube 

r radial coordinate 

r* dimensionless radial coordinate ( =r/R) 

Re Reynolds number (2um0R/ v) 

T temperature 

T1 freezing temperature of liquid 

u velocity 

u* dimensionless velocity ( =u/umo) 

ut dimensionless velocity ( =u/u,) 

u, friction velocity ( = v-. wl ()) 
y distance from wall ( =R-r) 

yt dimensionless distance ( =yu,/v) 

z axial coordinate 

z* dimensionless axial coordinate ( =2z/RePrR) 

Greek letters 

a heat transfer coefficient ( = q/ (Tm-TI)) 

I' dimensionless total thermal diffusivity defined in Eq. (9) 

o radius of liquid-solid interface 

o* dimensionless radius of liquid-solid interface ( = o/ R) 

EH eddy diffusivity of heat 

EM eddy diffusivity of momentum 

r; dimensionless radial coordinate ( =r/o) 

{} dimensionless temperature ( = (T - T 1 ) / (T0 - T 1)) 
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{) w dimensionless wall temperature ( = (T ,-T w) / (T0 -TI)) 

An eigen-value 

v kinematic viscosity 

p density 

,p dimensionless freezing parameter (=4k(T1 -Tw)/QR2) 

'Pn eigen-function 

Subscripts 

l liquid 

m mean condition 

s solid 

w inside surface of tube wall 

0 inlet condition 

Superscripts 

e thermal entrance region 

fd fully developed region 

* dimensionless quantity 
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