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Abstract 

In this paper, a Self-Tuning Regulator (STR), one of the adaptive control 
strategies, is applied to the GLA system of a large civil aircraft. Two types of 
STR are introduced. For Algorithm 1, the restriction that the number of the 
inputs must be equal to that of the outputs is imposed. On the contrary, for 
Algorithm 2, this restriction is released. These two algorithms are applied to 
alleviate the gust response of aircrafts, firstly a rigid aircraft and secondly a flexible 
one. In consequence of simulations, it is found that the STR can alleviate the gust 
response of aircrafts favorably. A STR is more effective to alleviate response to a 
discrete gust than to a continuous gust. In spite of the inaccurate estimation of 
system parameters, the STR works well. Generally, the proposed STR's show 
better performance for a rigid aircraft than for a flexible one. However, even for 
the latter, by choosing initial values of parameters appropriately, we can get good 
results. 

Nomenclature 

A, B, C = polynomial matrices of plant 

d=steady state output to zero input 

E=expected value, disturbance matrix, Young's modulus 

Ji, l 2 =cost functions of Algorithms 1 and 2 

My, MF=bending moment, bennding moment at the root of wing 

P, Q', R=weighting polynomial matrices 

q=pitch rate 

q- 1 = backward shift operator 

Q1 , Q2 =weighting matrices 

t=time 

u =control vector 

U0 = flight velocity 

w=reference signal, plunge velocity, displacement 

* Department of Mechanical Engineering, Setsunan University. 
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w9 =gust velocity 

Xi, x 2 =data vectors of Algorithms 1 and 2 

X = state vector of flexible aircraft 

y = output vector 

Zw, Mw=stability derivatives 

.8 = forgetting factor 

r=Eq. (10) 

B,, B0 , BF=deflections of control surfaces 

c =prediction error, disturbance vector 

{} =component of 8 1 and 8 2, pitch angle 

81, 6l2 =parameter matrices of Algorithms 1 and 2 

A= tuning parameter 

~=disturbance vector, generalized displacement 

ip =Eq. (5) 

(l)=power spectral density of the gust 

subscripts 

1 =Algorithm 1 

2=Algorithm 2 

1~ Introduction 

61 

Advanced flight control technology is continuing to arouse its importance for the 

design of future aircraft. Particularly, for a recent large-scale civil aircraft, the 

flight control systems (FCS), such as GLA (gust load alleviation), RSS (relaxed 

static stability), MLC (maneuver load control), have been studied because of their 

economical efficiency1'. Usually, multi-variable linear control theories are applied for 

such systems. 

On the other hand, in the field of modern control theory, the adaptive control 

theory has been developed significantly during the last decade2•3'. In almost all 

papers in the past about the adaptive control theory, the systems to be controlled 

were single-input single-output (SISO) systems. However, multi-input multi-output 

(MIMO) systems have been treated recently••~'. It is apparent that the MIMO 

adaptive control system is more applicable for a real problem, particularly for aircraft. 

There are several papers discussing the adaptive flight control system (AFCS). 

However, for real aircrafts, the gain scheduling with the information about flight 

conditions is taken as one of the AFCS6•7•8', and genuine adaptive control systems 

have rarely been applied. 

In this paper, the MIMO adaptive control theory is applied to the aircraft control 

system. Among several adaptive control strategies, a Self-Tuning Regulator (STR) 
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is applied to the GLA system for civil aircraft. Two kinds of algorithms for this 

purpose are developed, and numerical digital simulations are performed so as to 

examine the effect of the proposed control strategy. 

2. Self-Tuning Regulator 

The control of systems with unknown parameters is one of the difficult problems 

even for modern control theory. Once the PIO-controller structure was invented, 

but recently, a self-tuning controller has been developed to become one of an im

portant class of controllers which are simple to implement, and have proved to be 

useful in a number of practical applications. Particularly, for scalar cases, the 

methodology is well discussed, but for multi-variable cases, the tuning of controllers 

has not been extensively considered. Recently, several papers have been presented 

about this interesting technical field9-m. 

u y 

PROCESS 

,----------------------
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PARAMETER 
ESTIMATOR 

---7 
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Fig. 1. Block Diagram of Self-Tuning Regulator. 

The purpose of STR is to control systems with unknown but constant parameters, 

and, moreover, this regulator can also be applied to systems with slowly varying 

parameters. There are many possible STR's depending on the system to be controlled 

and the design and parameter estimation techniques to be used. Generally, a 

regulator is described by the block diagram shown by Fig. 1. The regulator can be 

thought of as being composed of three parts, i.e. a parameter estimator, a controller 

and a part which relates the controller parameters to the estimated parameters. 

The parameter estimations are based on recursive parameter estimation schemes, 

such as least squares (LS), extended least squares (ELS) and recursive maximum 
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likelihood (RML). The controllers are linear systems whose parameters are obtained 

from the estimated parameters. Two different types of controllers are frequently 

utilized, i.e. minimum variance (MV) and linear quadratic (LQ). The case LQ 

includes MV as a special case. In this paper, two types of STR algorithms are 

introduced. 

2. 1. Algorithm 110> 

It is assumed that the multi-variable system is described by a linear difference 

equation as follows: 

(1) 

wqere the output vector y and the control vector u have the dimension m. The 

disturbance vector ~ has the dimension m, and is a sequence of independent equally 

distributed random vectors with a zero mean and a covariance E{~~7'} =rf. d is a 

constant, steady state output response for a zero input signal. k is the time delay 

and q- 1 is the backward shift operator, i.e.q-1y(t)=y(t-l). The polynomial matricse 

A, B and C (m x m) are given by 

A(q-1)=J+A1q- 1 +•••+Anaq-na } 

B ( q- 1
) = B0 + B1 q- 1 + · · · + Bnbq-nb Bo : nonsingular 

C(q- 1) =l + C1q- 1 + •··+C...,q-nc 

Assumptions for the system (1) are given as follows: 

(1) Number of outputs is equal to number of imputs. 

(2) B0 is non-singular. 

(3) Roots of det C(a) lie outside unit circle. 

The cost function is given by the following equation: 

11 =E {IIP(q- 1)y(t+ k) -R(q-1)w(q-1)112+JIQ' (q- 1)u(t)JJ2} 

(2) 

(3) 

where w(t) is the known reference signal, having the dimension m, and P, Q' and 

R are m x m martices. E { } denotes the expected value. At time t, the measure

ments y(t), y(t-1), ... and the controls u(t-1), u(t-2), •·· in the past are known. 

The control u(t) is expressed by y(t), y(t-1), •·· and u(t-1), u(t-2), •·· Con

sequently, optimal control can be obtained by minimizing the criterion (3). The 

minimization problem for the cost function (3) is replaced by the problem to mini

mize 

where 

</> (t+k) =P(q-1)y(t+kJt)-R(q-1)w(t) + Q'(q- 1)u(t) 

</>*(t+kl t) =P(q-1)y*(t+klt)-R(q-1)w(t) + Q'(q- 1)u(t) 

(4) 

(5) 

(6) 

and y*(t+klt) is the optimal predictor of k-step ahead, and E is the prediction 

error. 

Now, the data vector x 1 (t) is defined as follows: 
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x1 (t) = [y7' (t) ... yT(t-na + 1); u7' (t) ·••uT(t-nb); wT (t) ···wT(t-nc); l] 

(7) 

The parameter matrix 8 1 is also defined by 

81 = [('1,···01,,.] = [Fo···Fna-1; Go···Gnb; Ho···Hnc; r y (8) 

where the dimension of x 1 (t) is p1 and 8 1 is the p1 x m matrix with integer p1 

denoting p1 =m(n0 +nb+n0 +2)+1. Note that - is dropped here and in the following 

equations. Using x 1 (t), 8 1 and ¢ (t+k) can be written component-wise as follows: 

</>,(t+k) =x1(t)O,+s,(t+k) (9) 

where the components of x 1(t) are uncorrelated with s,(t+k). The control u(t) is 

computed as 

Gou(t) = -[:E F,y(t-i) + :E G,u(t-i) + :E H,w(t-i) +r] (10) 
i I i 

where y is constant in the predictor y*(t+k [ t). The control parameters, 8 1, are 

estimated by a standard recursive least squares algorithm summarized as follows: 

011(t+ 1) = 81,(t) + K(t) [ </>,(t) -Xi (t-k)01,(t) J (11) 

K(t) =P(t)x17' (t-k) [1 +x1 (t-k)P(t)x17'(t-k) J- 1 (12) 

P(t+l) = {P(t)-K(t)[l+x1(t-k)P(t)x1T(t-k)JKT(t)} //3 (13) 

where • denotes the estimated value, and K(t) is the gain vector, P(t) is the 

covariance matrix and /3 is the exponential forgetting factor which is selected appro

priately according to the system to be controlled. Since P=l, Q=J.I (A: tuning 

parameter), <p (t) is written by 

</> (t) =y(t) -Rw(t-k) + J.u(t-k) (14) 

Furthermore, for the case in which the reference values are constant, Eq. (14) is 

rearranged as follows: 

</> (t) =y(t)-Rw(t-k) +J.(u(t-k)-u(t-k-1)) 

Finally, Algorithm 1 is summarized as follows: 

(Algorithm 1) 

(1) Read new output y(t) and setpoint w(t). 

(2) Compute ¢ (t) from Eq. (14) or Eq. (15). 

(3) Make data vector x 1 (t-k) as Eq. (7). 

(15) 

(4) Update 811 by recursive least squares algorithm using Eqs. (11), (12) and (13). 

(5) Generate new control u(t) from Eq. (10). 

2. 2. AIGorithm 2m 

It is assumed that the multi-variable system can be described by a vector differ

ence equation13>. 

(16) 

where the control vector u has the dimension nu, the output vector y and the distur

bance vector s, have the dimension ny, It is assumed that y and u can be measured, 

and the disturbance term s is a sequence of zero mean uncorrelated random vectors. 
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The system's polynomial matrices are given by 

A(q-1) =A1q-l+A2q-2+ ... +Anab-na} 

B(q-1) =Bo+B1q-1 + ··· +Bnbq-nb 
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(17) 

and the coefficient matrices A 1, i=l, na and B;, j=l, nh are considered unknown 

but constant. A time delay is not introduced in this case. The significant difference 

of this algorithm from the preceding one is that there is no assumption of nu=ny-

The plant parameters in Eq. (16) are updated by means of a recursive least 

squares algorithm, as shown in the preceding section. At every sampling instant, 

the updated plant is used to derive a control strategy which minimizes the cost 

function 

(18) 

where Q1 and Q2 are symmetric weighting matrices. The time series vector xz,(t) 

is defined by the data vector x 2 (t) and the parameter matrices 8 2 are defined as 

follows: 

xz,(t) = [yT(t-1) ···yT(t-na); uT(t-2) ·••uT(t-nh -1) J 
X2(t) = [xz,(t); UT (t-1)] 

82 = [02,·--02,,.] 

=[A1 A2--·AnaB1 B2·--BnbBo]T 

(19) 

(20) 

(21) 

where the dimension of x2 (t) is p2 and 8 2 is p2 x m matrix with integer p2 denoting 

(J2=n, • na+nu(nb + 1). Furthermore, the predicted value of y(t) is denoted by y0(t) 

for u(t-1) =0. The parameter matrices 8 2 are estimated by the recursive least 

squares algorithm similar to Algorithm 1 (Eqs. (11), (12) and (13)). Then, the 

new time series vector is generated as 

xz,(t+ 1) = [yT (t) ••·yT(t-na+ 1); uT(t-1) ·••uT(t-nh) J 
and the new data vector as 

x2(t+l) = [xz,(t+l); OJ 

Consequently, the predicted value y0 (t+l) is computed from 

Yo(t+l) =192Tx2T(t+l) 

(22) 

(23) 

(24) 

The control signal is computed using the solution of the quadratic optimal control 

problem given as follows: 

u(t) = -[BoT(t+ l)Q1Bo(t+l) +Q2J-1B0T(t+l)Q1Yo(t+l) 

Finally, Algorithm 2 is summarized as follows: 

(Algorithm 2) 

(1) Read new output y(t). 

(2) Make data vector x2 (t) as in Eq. (20). 

(25) 

(3) Update 02, by recursive least square algorithm using Eqs. (11), (12) and (13). 

(4) Generate new time series vector xz,(t+l) and new data vector x 2(t+l) as in 

Eqs. (22) and (23). 
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(5) Compute predicted value y0(t+l) from Eq. (24). 

(6) Generate new control u(t) from Eq. (25). 

3. Equations of Aircraft and Gust Descriptions 

The theory of the STR in the preceding ;chapter would be applied to aircraft 

longitudinal motion in cruising flight. The aircraft to be controlled is a large-scale 

civil transport. The effect of the proposed STR is examined through a numerical 

simulation of gust response. First, the aircraft is assumed to be rigid, so that the 

plant equation of motion has only rigid state variables. Next, the flexibility is 

included in these considerations. 

3. 1. Equations of Rigid Aircraft 

The linearized equation of rigid aircraft longitudinal motion with a short period 

approximation is written by 

x=Ax+Bu+Ewu (26) 

where 

(27) 

q --X 

z 

Out-board Aileron 

Fig. 2. Coordinate Axes of Aircraft and Location of Control Surfaces. 
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and Uo is the trim flight velocity and Zw, Mw etc. are the stability derivatives 

defined as 

Zw = - p UoSCiw/2M 

z •• = -rUo2scL0/2M 

Za0 = -pU02SCL.j2M 

Mw=p[foScCmw/2Iy } 

Mg= p UoSc2Cm/ 41 y 

M 0,=p [fo2ScCm0/2Iy etc. 

(28) 

The system of coordinate axes and the location of control surfaces are illustrated in 

Fig.2. 

3. 2. Equations of Elastic Aircraft 

For an elastic aircraft, the following equations are given (Fig. 3) 14l. 

Fig. 3. Mass Distribution of Elastic Aircraft. 

. . n . 
w(t) =Zww(t) + [foO(t) + }J(Ze,s;(t) +Ze,s;(t)) 

i=l 

+Za.,B,.(t) +Zwuw9 (t) 
.. . n . 
O(t) =Mww(t) +MgO(t) + }J(M,,s;(t) +Me,s;(t)) 

t=I 

+M0.,B,.(t) +MwgWg(t) 
.. . n 
s;(t) = -2f;;w;s;(t)-w;2s;2(t) +F1ww(t) + "f:/F10};(t) +Fie};(t)) 

+F,0i_.(t) +F;w9 w9 (t) 

The state vector and control input vector are defined as follows: 

X= [w (} s1···sn q ~1··-~nJT 

u=[B6 BaBF]T. 

(29) 

Then, the equation for the elastic aircraft in state space form are expressed as 

X=AX+Bu+Ew9 (30) 

The bending moment My is related to the forced displacement w(y, t) by the 

following equation 
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(31) 

The displacement w(y, t) is expressed by the generalized displacement ~; and the 

normalized mode shape rp;(y) as follows: 

" w(y, t) = zJ r/>;(y)Mt) 

Thus, 

3. 3. Gust Models 16l 

(1) Discrete Gust 

t-1 
(32) 

(33) 

An isolated sharp-edged step-function was adopted as the discrete gust over the 

years. However, the (1-cos) gust is now considered favorable. As a first type of the 

gust, (1-cos) gust is utilized as the discrete gust shown in Fig. 4, in which w9 is 

the gust velocity and d is the distance along the flight path. 

w, 

w. 

d 
d■ 

Fig. 4. (1-COS) Gust. 

O<t< 25t 
== Uo 

otherwise 
(34) 

The severity of the gust is determined by Wm and dm, The specification for vertical 

gusts of FAR (USA) fixed 2dm as 25c. 

(2) Continuous Gust 

The continuous gust is a chaotic motion of air that is described by its statistical 

properties. The power specctral density of the gust is given by 

</J(Q) 2 Lw 1 +8/3(1. 339Lw.Q) 2 

=IJ'w 7r [1+(1.339Lwil) 2] 1116 (35) 

where .Q is the reduced frequency, Lw the scale length and IJ',,, intensity of the gust. 

This is called the Karman model. The following numerical data are used for the 

simulations. 
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4. Numerical Simulations 

Two kinds of self-tuning regulators (STR) are applied to an aircraft. So as to 

examine the effect of control, computational digital simulations are performed. The 

aircraft is a hypothetical large-scale transport with two engines. The dimensions 

and stability derivatives are abbreviated here. The elastic data are also omitted. 

Before the simulations, the continuous system equations (Eqs. (26) and (30)) should 

be written in discrete forms. 

First, Algorithm 1 is applied. There is a rastriction that the dimension of the 

inputs is equal to that of the outputs. Therefore, for a rigid aircraft, three control 

inputs 00 , o,, of are applied, while it has three outputs, i. e. w, (}, q. In the 

following simulations, setting w=O throughout one simulation interval, the parameter 

matrix H is equal to zero matrix and <p is used as a vector function. Before the 

simulation starts, initial values should be set. Let P(0) be 10001, where I is unit 

matrix, and G0, the element of 8 2 be I. Finally, the exponential forgetting factors 

/3 and R should be given as 0. 9 and 1. 0 respectively. An example of simulations 

for a rigid aircraft is shown in Fig. 5. For this case, it is very important to choose 

the tuning parameter in Eq. (12), because A changes the profile of simulation 

significantly. In this case, A =2. 0. From Fig. 5, it is found that just after the 

4, 00 6, [10 

TIMECSECJ 
4, 00 6. 00 

TIME(SECJ 

=~t= ~~b~1 ~~G-= ~o ~9 ~..; 

g ~ g 
· 9 ,-------.------,----, o-

0o. oo 4.Oo s.oo o.oo 4.00 0.00 o.oo ,.oo a.oo 
T!MECSECJ T]MECSEC) TIMECSECJ 

2.00 •. oo o.oo 10.00 

TIME(SEp 

4.00 6.00 

TIME( SEC l 

Fig. 5. Simulations of Rigid Aircraft by Algorithm 1 (Continuous Gust). 
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\1.00 6.00 
TIHE !SEC) 

11.00 6.00 

TIME (SECl 

11..00 6.00 

T JME (SECJ 

1/.00 6. 00 

T!ME!SECJ 

11.00 6.00 

TJMEISECJ 

~~L:~ ~~he ~:-[\} N~rv=, uci uci uci uci 

g ~ ~ ~ 
00.00 1/.oo ~ ';'o.oo ll.oo e.oo ';'o.oo 1/.oo B.oo '?~_oo 4.oo e.oo 

1 IME (SECJ T !HE fSECl TI Ml lSECl 1 I HE ISECl 

Fig. 6. Simulations of Rigid Aircraft by Algorithm 2 (Continuous Gust). 
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TIME (SECl f [HE CSECI T !ME ISECJ TI HE !SEC) 

Fig. 7. Simulations of Rigid Aircraft by Algorithm 2 (1-COS Gust). 
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beginning of simulation the aircraft shows an unfavorable performance for a while, 

and then the responses are alleviated mildly. The reason for this fact seems to be 

that the STR concentrates on the parameter estimation at an early stage of control. 

In addition, the estimated values of the parameter do not converge to the accurate 

values. 

Algorithm 2 has no restriction on the dimension of the inputs and outputs. 

Thus, a, and a0 are used as control inputs since they are the most practical com

bination as GLA inputs. For the initial value of the cavariance matrix P(t), P(O) = 

10001 is also chosen and /3=0. 99 for this case. For this algorithm, the values of 

the weighting matrices Q1 and Q2 (Eq. (18)) are very important. Q1 =l is chosen 

for all simulations. Q2 effects more on the control property than Q1• The following 

values are used for Q2• 

Q2 =0. l x 10-051 (Rigid Model Aircraft) 

Q2 =0.1 x 10+ 001 (Elastic Model Aircraft) 

Finally, the initial value of e2 (Eq. (21)) should be determined. Since there is no a 

priori information of a previous estimation, the initial value of e2 is zero inevitably. 

In this case, certain non-zero values have to be enforced as the initial values of the 

control input u(t). Otherwise, the estimation procedure cannot progress, i.e. the 

system becomes uncontrolled. The results for the rigid aircraft are shown in Figs. 6 

and 7. Comparing Fig. 6 (results of Algorithm 2 to the continuous gust) with Fig. 5 

(results of Algorithm 1 to the continuous gust), it is clear that the former is super-

ior to the latter. For (1-cos) gust, variations of a controlled aircraft are hardly 

seen, but the control surfaces are moving considerably becausse of the gust. As far 

as the parameter estimation is concerned, Algorithm 2 does not estimate true values. 

However, there can be seen no transient part like the output responses. 

Figs. 8 and 9 show the simulation results for the elastic aircraft. In both cases, 

the output responses are not so favorable as those of the rigid aircraft. For the 

continuous gust (Fig. 8), the output responses vary violently in the early stage of 

the simulation, while they become mild in the later stage. The reason for these 

facts seems to be, like Algorithm 1, that the STR first concentrates on the parameter 

estimation. For (1-cos) gust (Fig. 9), the responses of a controlled aircraft are 

almost the same as those of an uncontrolled aircraft, i.e. the STR is ineffective for 

this case. The reason is considered to be that the zero initial values are a burden 

to the STR. Therefore, as the initial values, the estimated values in one-step before 

the control are appropriate. In this case, the approximate values to the true ones 

are applied as initial values. The results for (1-cos) gust are shown in Fig. 10. 

The responses of a controlled aircraft are improved significantly after the parameter 

estimation process. Similar results are seen for the continuous gust case. 
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\.oo 

II.DO 6.00 

TIME (SECJ 
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TIME ISECl 
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~. 00 6.00 

TIME I SE Cl 
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TIME !SECJ 
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TIME (SECl 
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Fig. 8. Simulations of Flexible Aircraft by Algorithm 2 (Continuous Gust). 
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Fig. 9. Simulations of Flexible Aircraft by Algorithm 2 (1-COS Gust). 
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Fig. 10. Simulations of Flexible Aircraft by Algorithm 2 (1-COS Gust). 

5. Conclusions 
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In this paper, two types of multi-variable self-tuning regulators (STR) are 

introduced and applied to the GLA system of a large-scale civil aircraft. First, two 

algorithms of STR are derived. For Algorithm 1, the restriction that the number of 

the inputs should be equal to that of the outputs is imposed. On the contrary, for 

Algorithm 2, this restriction is released. In consequence of the numerical simula

tions, some favorable results in utilizing the STR for the GLA system are obtained. 

So far as the two STR strategies are concerned, Algorithm 2 indicates better pro

perties than Algorithm 1. Furthermore, it is easier to alleviate the response to the 

discrete (1-cos) gust than to the continuous Karman type. In spite of an inaccurate 

estimation of parameters, the STR can work well and the output responses show 

favorable behaviors. It is for the rigid aircraft case more than the elastic case that 

the proposed STR shows a better performance. The overall STR ability depends on 

whether the initial values of the parameter matrices are given appropriately or not, 

particularly in the case of the elastic aircraft. For this purpose, utilization of a 

priori information about the system is necessary. For example, start-up experiments 

or previous flight tests are very important for the STR control system. 
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