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By 
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Abstract 

Realization of a special class of input/output maps is considered. A linear 
input/output map which belongs to this class is called pseudo-rational, and it be­
haves in a way similar to the input/output maps of finite-dimensional systems in 
the following sense: To determine the canonical state space, only the output data 
on a bounded time interval is needed. Central examples of this class of input/output 
maps are those of delay-differential systems. A concrete representation for the 
canonical space is given; and then it is used to give an explicit differential equa­
tion description. Some spectral properties which are very similar to those of the 
delay-differential systems are also proved. Some examples are demonstrated to 
illustrate the realization procedure. 

1. Introduction 

221 

Infinite-dimensional realization theory has been developed, guided mainly by the 

well-established finite-dimensional counterpart. One of the troubles in this respect 

is that there can be (and there are) many different candidates in generalizing the 

useful system-theoretic concepts to the infinite-dimensional context due to the very 

nature of infinite-dimensionality. For example, there are some different notions of 

canonicity, each leading (or not leading) to a different type of an existence and 

uniqueness theorem of canonical realizations. Faced with such a seemingly chaotic 

situation, one is no doubt led to the following basic suspicion: Is infinite-dimensional 

realization theory meaningful to study ? 

The basic theme of realization theory is of course to give an effective way of 

constructing a model out of a given external behavior, It seems to the author that 

most of the infinite-dimensional realization theories remain rather abstract and have 
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not been very successful in this regard, especially when compared to the great 

success of the finite-dimensional theory. 

Our objective here is a rather modest one. We isolate a small class of input/ 

output maps which enables us to give a concrete description of the state space model 

in much the same way as in the finite-dimensional case. 

In trying to generalize the finite-dimensional theory, one is of course interested 

in what property of finite-dimensional systems one should focus his attention on. To 

get some idea as to this, consider the following transfer function: 

(1. 1) W(s) = 1/ (se• -1). 

Though the function W is not a rational function (hence does not admit a finite­

dimensional realization), its numerator and denominator allow the following "coprime" 

condition: 

(1. 2) 1 • l+(se'-1) • 0=1. 

In order words, if we allow the language of distribution theory, (1. 2) may be 

rewritten as 

CL s) o*,H Co' -1 -o*)O=o 
where oa denotes the Dirac distribution at a and o=o0• Similar coprime notions 

have been used in the study of delay-differential systems. However, since coprime 

factorizations (though in the realm of the polynomial ring of one indeterminate) have 

played an essential role in the finite-dimensional theory, it is reasonable to expect 

that there can be a suitable generalization of this concept for the infinite-dimensional 

realization theory. Of course, one has to clarify the following questions: 

1) How far can we go with such "coprime" factorizations? 

2) What do we mean by "coprimeness" in this context? 

In order to obtain some idea as to the first question, let us review what can be 

done to continuous-time finite-dimensional systems with coprime factorizations. It 

is meaningful to do so, because in the finite-dimensional theory, one usually does 

not deal with continuous-time systems, but bypasses the problem by resorting to the 

equivalent discrete-time problem, even with the presence of a coprime factorization. 

Consider the following impulse response function: 

A(t) =sin t (t>O) 

whose transfer function is of course 

W(s) =1/(s2 +1). 

Since the denominator and the numerator are coprime, it is a common understanding 

that the state space of the canonical realization must be completely determined by 

the denominator s2 + 1. We shall now construct the canonical state space directly in 

the context of continuous-time systems. 

Suppose that the present time is O without loss of generality, since the systems 
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we consider are constant. The input space .!J is a function space consisting of 

functions having compact support in the past, i.e., ( -oo, OJ. The output space 

I' is a function space consisting of functions which are locally V on [0, oo). Then, 

the input/output map associated with A(t) 

(1. 4) f(u) (t) = r .. sin(t-rn(:-)dz-

gives a continuous linear map: .!J-+I' which commutes with shifts. 

the factorization: 

n------------ r 

~/ 
im £ 

Now consider 

The space im f can be taken to be the state space of a canonical model (KALMAN, 

FALB, and ARBIB [1969]; YAMAMOTO [198lb]). So let us compute im f. 

Differentiating both sides of (1. 4), we obtain 

(j;2 +1)J(u)(t)=O forall t:::C::O. 

Conversely, one can easily check that if (d2/dt2+l)y(t) =0 for all t>O then y=f(u) 

for some u in .!J. Hence we have 

(1.5) imf={yEI': (d2/dt2 +l)y(t)=0 for all t>0} 

= {x1sin t+x2cos t: x;ER} ~R2• 

Once such a representation is obtained, it is almost straightforward to obtain a 

matrix representation of the canonical realization. Indeed, take 

(1. 6) F: =d/dt, 

G: =A (impulse response), 

H: yt-+y(0). 

Then, the triple (F, G, H) gives the canonical realization of A(t). In the present 

case, (F, G, H) are expressed, in terms of the basis {sin t, cos t}, as 

F=(~ -~), G=(~). H=(O, 1). 

Thus, the central problem is to obtain a concrete representation of im f (which 

we employ as the canonical state space instead of im f in the infinite-dimensional 

case) like (1. 5). 

What we are to prove is the following result: Suppose that we are given an im­

pulse response matrix A(t) which admits a coprime factorization A=Q-1*p where Q 

and P are suitable matrices with distribution entries. Then im f is represented as 

im f=Xfl: = {yEI': Q*y(t) =0 for t>0} 

(For a more precise statement, see Section 3, Theorem (3. 13).) One will no doubt 
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notice the similarty of this characterization to the Fuhrmann realization of finite­

dimensional systems. We shall indeed give a realization of "Fuhrmann-type" in 

Section 3. In Section 4 we turn our attention to some spectral properties of such 

realizations. It will be shown that such realization have some remarkable spectral 

properties, including the spectral minimality. A complete characterization of the 

spectrum and the resolvent set will also be given. The final section is devoted to 

examples illustrating how the results in Section 3 can be used to explicitly compute 

the canonical realizations of delay-differential input/output maps. 

2. Preliminaries 

We start with some mathematical preliminaries which are needed in the subse-

quent developments. We then review some basic facts on the abstract realization 

theory for constant linear continuous-time systems. 

In what follows, we deal only with systems over R, but the generalization to the 

systems over C presents no eserttial difficulty. Every function and distribution is R­

valued. 

Let us start by defining the input and output spaces. Assume the present time 

to be O without loss of generality, since we deal only with systems having constant 

structures. We assume that inputs and outputs are always locally £2. Also, assume 

that each input has support in the past ( -oo, OJ and each output has support in 

[O, oo). It is natural to assume that every input has compact support, since inputs 

are applicable only for a finite-time period. Assuming that there are m input and p 
output channels, and denoting the input space by SJ and output space by I', we 

have 

(2.1) SJ=(UL2[-n, oJr; 
n>o 

I'= (L10/[0, oo))P. 

The topology of Q is given as the strongest (finest) locally convex topology which 

makes all inclusions L2 [ -n, OJ _.SJ continuous. This topology is called the strict 

inductive limit topology induced from the sequence {£2[ -n, OJ}n>o• The topology 

of I' is generated by the family of seminorms, each of which is nothing but the 

£2-norm (though it is not a norm in the present context) on each bounded interval. 

These spaces are naturally equipped with the following shift operators which are 

strongly continuous semigroups. 

(2.2) ( )() ·-{w(s+t), s<-t 
O"tW S • -

0, s>-t, s<O, t>O, wE.SJ. 

(cr,)(s):=y(s+t), t, s>O, yE.I'. 

In the subsequent developments, the use of distributions 1s crucial, and hence 

we prepare some basic notations regarding this theory. 
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As usual, Q)' (R) denotes the space of (scalar-valued) distributions on (-oo, 

oo). Q)' +CR) denotes the space of distributions with support bounded on the left. 

€/ (R-) is the subspace of Q)' + (R) (and of Q)' (R), of course) consisting of distri­

butions having compact support contained in ( - oo, OJ. These spaces are each 

equipped with the standard topology based on duality. (For details, see SCHWARTZ 

[1966] or YAMAMOTO [1981a].) For any OEQ)' +• .e(O) denotes the greatest lower 

bound of the support of (), i. e., 

(2. 3) .e(O): =inf {t: tEsupp ()}. 

We need two notions of truncation mappings. Let Q)(R+) denote the space of 

C00-functions on (-oo, oo) having compact support in [O, oo). Similarly, Q)[O, a] 

(a>O) denotes the space of C00-functions having compact support in [O, a]. Q)(R) 

denotes, of course, the space of COO-function on ( -oo, oo), having compact support. 

Each space is endowed with the standard topology introduced by Schwartz. (SCH­

WARTZ [1966]). Let j and j 0 denote the inclusion maps: 

(2.4) j: Q)(R+)-Q)(R); 

ia: Q)[O, a]-+Q)(R). 

The desired truncations 1C and 1Ca are then defined as follows: 

(2.5) TC: Q)
1
(R)-Q)

1
(R+)(=(Q)(R+))'):(1eA, cp):=(A, jcp); 

1ea: Q)'(R)-Q)
1
[0, a](=(Q)[O, a])'):(1eaA, cp):=(A, iacp). 

Note that the inclusions (2. 4) are easily shown to be topological isomorphisms into 

Q)' (R). Hence the projections (truncations) (2. 5) are surjective. 

If 1C and 1Ca are applied to functions, then they clearly agree with the usual 

truncations: 

1ecp=cp lco.=J, 1eacp=cp lco.aJ. 
We are now ready to give the definition of our input/output maps. 

(2. 6) Definition. Suppose that A is a p x m matrix whose entries are functions 

belonging to L10c2 [0, oo). Then, the constant linear input/output map associated with 

A, denoted by IA, is given by 

l,tCu): =1e(A•u), uE!J. 

A is called the impulse response or weighting pattern of IA• 
For any such A, IA gives a continuous linear map of Q into I'. Furthermore, 

IA commutes with the shifts defined in (2. 2), and hence the term "constant". (For 

details, see YAMAMOTO [1981b].) 

(2. 7) Remark. The input/output map defined above is a little more restricted 

than the one considered by YAMAMOTO [1981b]. It is also possible to 

consider an impulse response which is not necessarily a function but only 

a measure. 

We employ the following simplified definition of systems. 
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(2. 8) Definition. A constant linear (continuous-time) system is a 4-tuple X= 

(x, <P, g, h) such that 

1) the state space X is a complete locally convex space; 

2) g: !J--+X, h: X--+I' are continuous linear maps; 

3) {<P(t)} ,~o is a strongly continuous semigroup in X; 

4) g<ft=<P(t)g, h<P(t) =<1th for all t>O. 

We understand that the state-transition is given by 

(2. 9) </> (t, x, u): =<P(t)x+ g<f t u) 

where <f>(t, x, u) denotes the state at time t>O for a given initial state x at t=O 

and input uEV[O, t], (<ft u)(s): =u(s+t). The linear map h gives the correspon­

dence: initial states I-+ future outputs under the assumption that the input is iden­

tically O during the observation. The instantaneous readout map H may be defined 

by 

(2. 10) Hx: =h(x) (O) 

for those x such that h(x) is continuous at 0. Note that this map H is often discon­

tinuous for infinite-dimensional systems and cannot be defined on the whole of X. 

Keeping in mind that X must always be equipped with a semigroup <P, we often 

abbreviate (X, <P, g, h) as (X, g, h). Note that for a finite-dimensional system 

(F, G, H), above g and h must be defined as 

g(w): = )~ .. exp(-Ft)Gw(t)dt; 

h(x) (t): =Hexp (Ft)x. 

(2. 11) Definition. A constant linear system X = (X, g, h) is quasi-reachable if 

g has dense image. It is observable if h is one-to-one. It is topo!ogically 

observable if there exists a continuous inverse 

h-1 : im h--+X. 

It is canonical if it is both quassi-reachable and topologically observable. 

It is topologically observable in bounded time T>O if 

7!r 0h: X--+7!r(im h)CV[O, TJ 

admits a continuous inverse. 

Given an input/output map/, we say that a system X=(X, g, h) is a realiza­

tion off if the following diagram commutes: 

r 

i.e., (X, g, h) is a "factorization" of the input/output map f 

Given an input/output map/, we can always find at least one factorization as 
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follows: 

"~_/i" 
im f 

The closure im f is of course taken in I'. The map j is the inclusion. 

Since im f is naturally equipped with a semigroup which is the restriction of 

{er,} t~o in I', it is trivial to check that (im f, f, j) is indeed a system. Furthermore, 

it is also canonical because f as above clearly has dense image in im f and j is a 

topological isomorphism into I'. It is also known that this is the unique canonical 

realization off (YAMAMOTO [1981b]). We denote this canonical realization by z1 . 

Actually, we can derive a differential equation description for 'Z 1 . Indeed, 

define 

(2.12) Fx: =dx/dt, for xEim Jn(H,0/[0, oo))P, 

(Hro/CO, oo)={yELroc2 [0, oo): dy/dtEL,0,2[0, oo)}); 

G;:=A;(=i-th column of A); 

Hx: =x(0), xEim Jn(C[O, oo))P. 

With these operators, system 'Z I is described by the following functional differential 

equation: 
m 

(2. 13) (d/dt)x,(fJ) = (d/dfJ)xtCfJ) + ~ G,-u;(t), 

y(t) =Hx,(fJ) =x,(0). 

where x, is the stateEim f (function of fJ) at time t. 

Our objective in the sequel is to give a concrete representation for (2. 12) and 

(2.13). 

3. Fuhrmann-type Realization for Input/Output Maps of Bounded Type 

We have seen in the previous section that any input/output map f admits a 

unique canonical realization, which in turn can be represented by the differential 

equation description (2. 13). Of course, this realization is highly abstract. What is 

then crucial to concrete realization is a concrete representation of the canonical state 

space im f as the dimension of the canonical state space is crucial to the computa­

tion of canonical realizations in the finite-dimensional case. 

Recall that im f is merely a Frechet space as a closed subspace of a Frechet 

space I'. It is in general hard to compute it. What kind of property can we impose 

on im f (aside from the one im f being finite-dimensional) so that it admits a nice 

representation ? 

An obvious mathematical choice is to impose im f to be a Banach (or Hilbert) 
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space. Another system theoretic one would be to require that im f be completely 

determined by the partial data on a bounded interval [0, TJ ; then we need not 

consider the problem of determining the space which depends on the data on the 

infinite time interval [0, oo ). Interestingly enough, these two directions entirely 

coincide. (YAMAMOTO [1982a, b]). 

(3. 1) Definition. A constant linear input/output map f (or its impulse response 

A) is of T-bounded type (or, simply, T-bounded') if its canonical realization 

~ 1 is topologically observable in bounded time T, i. e., 

7!7' lim r: im J-+-7!7'(im f) 

is continuously invertible. 

A sufficient condition for an input/output map f to be T-bounded is given by 

YAMAMOTO [1982b, 1983J. We quote the following theorem: 

(3. 2) Theorem. Let A be a p x m impulse response matirx. Suppose that there 

exists a distribution /3 such that 

1) there exists a convolution inverse 13- 1E.Q)
1 
+ (R); 

2) ord 13- 1 = -ord /3; 

3) 7!(/3*A) =0. 

Then A is T -bounded for any T>-.e (/3). [Here, ord /3 denotes the (globa[) 

order of distribution /41.J 

Let us see the meaning of the above conditions. First we prepare the following 

two lemmas. 

(3. 3) Lemma. 7!/41=0 if and only if supp i':IC(-oo, OJ. 

Proof. Immediate from the definition of 7!. D 
Now suppose i':IE.6

1 
(R-) and t;,E.Q)\(R). Since 7! is onto, there exists at least 

one CEQ)1
(R), such that 7!C=(,. Then define 

(3. 4) 7!(/41*0 =7!(/41*7!C): =7!Ci':l*C). 

This is well defined. Indeed, we have 

(3. 5) Lemma. Let i':IE.6' (R-) and (,i, (, 2E.Q)
1 
(R). Suppose 7!(,1 = 7!(,2• Then, 

7! (i':l*r:.1) = 7! (i':l*C2) C = 7! (/3*7!(,;)). 

Proof. By Lemma (3. 3), supp ((,1 -f;,2)C(-oo, OJ. Hence, supp (/41* 

((,1 -f;,2))C(-oo, 0]. Again by Lemma (3. 3), the conclusion follows. D 
Now suppose that an impulse response A satisfies the conditions of Theorem 

(3. 2). By condition 3), 7!(i':/*A) =0. According to Lemma (3. 3), this means that 

the support of each entry of ,8*A is contained in ( -oo, OJ. Since the support of 

i':l*A is obviously bounded on the left, it follows that i':l*a;; belongs to €,' (R-). (a;; 

=i-j entry of A). Writing i':l*a;;=: a;;, we have 

(3. 6) a;;=/41-1M;;, a;;E.6' (R-) 

Conversely, if each entry of A is of the form (3. 6) for some a;;E.li/ (R-) and /41, 
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that satisfies the conditions of Theorem (3. 2), A is T-bounded for any T greater 

than - .e (/3). 

In view of the above observations, we now give the following definition. 

(3. 7) Definition. An impulse response matrix A (or its associated input/ 

output map /,1) is pseudo-rational if it can be written as 

(3. 8) A=Q- 1•P 

for some p x p matrix Q = (qo) and p x m matrix P= (Po) such that 

1) each qi/, P;;EE/ (R-); 

2) Q is investible over Q)' + (R) with respect to convolution, (i. e., there 

exists (det Q)-1Er;/)\(R)); and 

3) ord (det Q)- 1 = -ord (det Q). 

(3. 9) Remark. Note that irA=A. Hence (3. 8) may be rewritten as A= 
,rCQ-l•P). 

If A is pseudo-rational, then 

ir((det Q)•A) =ir((det Q)•CQ-1•P)) 

=ir((det Q)•((det Q)-1•(adj Q)•P) 

=ir((adj Q)•P)=O 

where adj Q denotes the adjoint (cofactor) matrix. Hence A is of bounded type in 

T greater than -.e(det Q). 

(3.10) Remark. It is known (KAMEN [1975], YAMAMOTO [1982b]) that 

impulse responses of delay-differential systems are pseudo-rational. The 

input/output maps of finite-dimensional systems are, of course, pseudo 

rational. Another example is given by an impulse response function which 

is periodic. Though this class is certainly not too general, these examples 

suggest that it be of some theoretical interest for further study, especially 

since it enables us to study delay-differential systems in a unified general 

setting. 

To state and prove our main result in this section, we need one more notion. 

(3. 11) Definition. Let (Q, P) be a pair which satisfies the conditions of 

Definition (3. 7). The pair (Q, P) is called left coprime if there exist 

matrices R and S of suitable sizes with entries in €,' (R-) such that 

(3.12) Q•R+P•S=Mp 

where Ip is the identity matrix of size p, and a is the Dirac distribution 

at 0. In other literature on systems over rings, the condition (3. 12) is 

known as the Bezout identity. 

It is of course well known that any finite-dimensional input/output maps admit 

left coprime representations. Some input/output maps of delay-differential systems 

also admit left coprime factorizations. Under what conditions these impulse responses 
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admit left coprime factorizations does not seem to be totally known since our ring 

here is 61 
(R-)-much larger than the polynomial rings in Dirac distributions, which 

are usually employed in the study of delay-differential systems. (For some related 

studies, see KHARGONEKAR [1982J and VIDY ASAGAR et al. [1982J .) 

(3. 13) Theorem. Suppose that A is an impulse response matrix with the associated 

input/output map f. Suppose that A is pseudo-rational with the representation 

A=Q-1*P. Then 

im fCX12 : = {rEI': ir(Q*r) =0}. 

If, further, (Q, P) is left coprime, im f=X12• 

Proof. Take any w in !J. Then we have 

ir(Q*f(w)) = ir(Q*ir(Q-1*P*w)) = ir(Q*Q- 1*P*w) (by Lemma (3. 5)) 

=ir(P*w) =0 

by Lema (3. 3). Hence im f is contained in X12• Note that X12 is a closed 

subspace of I' due to the separate continuity of convolution and the con­

tinuity of ir. Hence im f is contained in X12• 

Now suppose that (Q, P) satisfies (3.12). First, suppose that y belongs 

to X12 and each entry of y is C00
• Let y be any C00 extension of r to 

(-oo, oo) such that supp y is bounded on the left. Since each entry of 

y belongs to C00 [O, oo), such an extension obviously exists. Then let w: 

=S*Q*'Y· Since r is C00
, so is w. Also, since the supports of S, Q and 

y are bounded on the left, the support of w is also bounded on the left. 

Furthermore, 

irw= ir(S*Q*r) = ir(S*ir(Q*r) =0 

by Lemma (3. 5), and hence supp w is contained in (-oo, OJ by Lemma 

(3. 3). Therefore, w belongs to !J. Then we have 

ir(Q- 1*P*w) =ir(Q-1*bS*Q*r) = ir(Q- 1*(5lp-Q*R)*Q*r) 

= ircr-R*Q*r) 

=:=iry-ir(R*ir(Q*r)) =r 
Hence, w belongs to im f. If we prove xencc [O, oo))P is dence in 

xe, it completes the proof. 

Take a family of C00 functions (on ( -oo, oo) p. such that 

1) supp p. is compact and contained in ( -oo, OJ; 

2) p,-+B as e-+O. 

Take any yin X12, and let y,: =ir(p,*r). It is well known (SCHWARTZ 

[1966, Chapter 6, Section 4J) that p,-+y in L 10l(-oo, oo) and each 

p,*rEC"'(R). Hence y. belongs to (C00 [0, oo))P and converges to r in 

I'. It remains only to prove that y. belongs to X12• However, since supp 

p. is contained in (-oo, OJ, we have 
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n-CQ*r,) = n'(Q*n-Cr,*r)) = n-(Q*r,*r) = n-Cr,*Q*r) 

= n-(r,*n-(Q*r)) =O 

by Lemma (3. 5). D 
(3. 14) Remark. The dual result of Theorem (3.13) in a different setting, 

using spaces of distributions as input and output spaces, was first given 

by KAMEN [1976]. Later it was extended to the multivariable case of 

delay-differential systems by DENHAM and YAMASHITA [1979]. How­

ever, the result in the latter does not seem to depend on the coprimeness 

of the fractional resresentation as (3. 8), hence does not seem to be 
entirely right. 

Having established the representation Theorem (3.13), we can apply (2.12) to 

obtain a differential equation description for a pseudo-rational input/output map. 

(3. 15) Theorem. Let A be an impulse response matrix with the associated input/ 

output map f. Suppose that A is pseudo-rational with the representation A= 
Q-1*P. Then the fellowing system J:'l is a topologically observable realization 
off. 

1) State space=X'l; 

2) State transition: 

d a (3.16) dtx1(0) =aox1(0) +Au(t), x1(0)EXen(H10.1[0, oo))P; 

3) Output equation: 

(3. 17) y(t) =x,(O). 

If the pair (Q, P) is left coprime, the above system is canonical. 

Proof. The last statement follows from the first half and Theorem 

(3.13). So we need only to prove the first half. 

We must give the semigroup, reachability map g, and the observability 
map h of 1:e. The semigroup genrerated by (a/aO) is the shift operator 

<io restricted to xe. This can be easily checked by computing the infini­

tesimal generator of <rolX'l. Then the solution of (3. 16) is given by 

x,C-)=cr,x0(")+}:Cu,_,A) ·))u(i-)dr-

=x0( "+t) + 1:A( ·+t-i-)u(i-)dr­

Hence the reachability map g is given by 

fO ~ fO 
(g(w) ( ·) = L . .°·_,(A( · )w( ·)di-= L .. A("-i-)w(i-)di-

The observability map induced by (3.17) is simply the inclusion map j: 

xe-,.r. Therefore, the topological observability of J;'l is obvious. It 

remains only to prove that J;'l is a realization. However, we have 

(jg(w)) (t) = (g(w)) (t) 
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= r
00

A(t-i-)w(i-)di­

=f(w)(t) 

This completes the proof. D 
In the final section we give some examples to illustrate how to apply this 

theorem to the realization of delay-differential systems. 

4. Some Spectral Properties 

In the previous section, we gave a topologically observable realization xe for a 

pseudo-rational impulse response A=Q-1*P. It is of great theoretical importance to 

study the spectral properties of this system, especially those of the infinitesimal 

generator F= (d/dt). 

Let /3 be a distribution which is Laplace transformable. Denote by /3 the Laplace 

transform of /3. We shall characterize <r(F)-the spectrum of F. Indeed, we shall 

prove 

1) <r(F) =<Tp(F), i.e., every point in <r(F) is an eigenvalue, 

2) <r(F) = {AEC: (det Q)A(A) =0}. 

For simplicity, we assume, as opposed to other sections, that the systems and 

functions (distributions) are defined over C. 

Let A=Q-1*P be pseudo-rational, and let xe be the system given in Theorem 

(3.15). A complex number A belongs to the resolvent set p(F), if and only if for 

any y(t)EXQ there exists a unique x in xencH, • .1(0, =))P such that 

(4.1) (i-ft)x(t) =y(t) for almost all t20 

Solving (4. 1) in I', we have 

(4. 2) x(t) =eAtx(O)-i:eACt-.ly(i-)di-

If A belongs to p(F), y=0 must imply x(O) =0. Hence we have 

(4. 3) Lemma. If a complex number A belongs to p(F), then the following 

statement holds: 

(4. 4) eAtvExe⇒v=0 (vECP) 

Proof. Since x(t) given by (4. 2) always belongs to (H10/[0, =))P, 

A belongs to the resolvent set only when no nonzero eAtv belongs to xe. 
Hence the assertion follows. D 

We~need the following lemma from distribution theory. 

(4. 5) Lemma. (Paley-Wiener-Schwartz Theorem for Laplace Transforms-A 

Special Case) A distribution /3 has compact support contained in [-n, 0] if 
and only if ~ is an entire function such that for some C~0 and a positive 

integer k 
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(4.6) I.B(s)l::;;:C(l+lsl)• exp (nRe s) if Re s~O, 

::;;:C(l+lsl)• if Re s<O. 

Proof. Omitted. (See Kaneko [1976].) D 
We can now prove the following proposition. 

(4. 7) Proposition. A function eAtv belongs to xe for some nonzero vECP if and 

only if (det Q)"(A) =0. 

(4.8) 

Proof. Recall that eAtv belongs to xe iff n-(Q*eAtv) =0, i.e., the support 

of Q*eAtv is contained in [ -n, OJ for some n. Then L(Q*eAtv) is an 

entire function by the previous lemma. However, we have 

L(Q*eAtv) = Q(s)v 
s-A 

Since Q(s) is entire, expand (Q(s) in the powers of (s-A). Then the 

constant term is Q(J). The right-hand side of (4. 6) is entire iff Q(A)v= 

0. Since v¾O, (det Q)"(A) =0. 

Conversely, suppose that (det Q)"O) =0. Then by the same argument 

as above, L(Q*eA'v) is an entire function for some v¾O. Since each entry 

of Q(s) satisfies the estimate (4. 6) for some n, so does each entry of 

Q(s)v. Since 1/ls-J I is bounded for large enoughs, I Q(s)v/(s-J)I satis­

fies the same type of estimate as (4. 6). Also, since Q(s)v/(s-A) is 

entire, it is bounded in a neighborhood of A. Hence Q(s)v/(s-A) satis­

fies the same type. of estimate as (4. 6). This implies n-(Q*eA1v) =0, i.e., 

eAtv belongs to xe. D 
( 4. 9) Remark. In the above proof eAtv must be considered to be Y(t)eAtv 

when forming the convolution with Q. Here Y(t) denotes the Heaviside 

unit step function. 

(4.10) Corollary. A complex number A is an eigenvalue of F if and only if (det 

Q)A(A) =0. 

Proof. Suppose that (det Q)"(A) =0. Then by Proposition (4. 7), 

there exists a nonzero vECP such that eAtv belongs to xe. Since eAtv 

clearly belongs to (H1o/[0, oo))P, it is an eigenfunction corresponding 

to A. 

Conversely, suppose that x(t) is an eigenfunction corresponding to A. 

By (4. 2) x(t) must be equal to eAtv for some nonzero vECP. Again by 

the previous Proposition (4. 7), (det Q)"O) =0. D 

Finally, we prove that 

r(F) = {AEC: (det Q)"O)¾0} 

This proves simultaneously that 

1) <1(F) = {AEC: (det Q)"(A) =0}; and 

2) <1(F)=<1p(F). 
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(4. 11) Theorem. The resolvent set p(F) is given by 

p(F) = {AEC: (det Q)A(,l) =\=O}. 

Proof. Lemma (4. 3) and Proposition (4. 7) have already shown that 

if A belongs to p(F) then (det Q)A(,l) must be nonzero. Hence we need 

only to show that (det Q)A(,l)=\=O implies AE:p(F). 

Suppose (det Q)A(,l)"'fO, and take any yEX'l. Then the solution of 

(4.1) with the initial value x(O) is given by (4. 2). The function x(t) in 

(4. 2) always belongs to (H,0,1[0, oo))P. Hence it suffices to prove that 

(4. 2) belongs to xe for one and only one choice of x(O). Note that x(t) 

is written as 

x(t) =eu( (x(O)-):e-l•y(i-)dt). 

This function belongs to xe iff 

( 4. 12) 1t(Q*(Y(t)eHx(0) -(Y(t)eH) *(Y(t)y))) =0. 

Taking the Laplace transform of the left-hand side, we have the expres­

sion: 

(4.13) Q(s)x(O)-y(s) 
S-A 

This function CMs) is an entire function iff (s-A) divides x(O)-y(s), 

i. e., x(O) must be equal to y(A). [This is the only possible choice, 

because (det Q)A(,l)"'fO.] So let x(O) =y(,l). In order to show (4.12), 

we need only to prove that each entry of Q1 (s) satisfies the estimate of 

type (4. 6). To see this, first note that y belongs to xe. Hence Q(s)y(s) 

satisfies the estimate of type (4.6). Also, Q(s)x(O) satisfies the estimate 

of type (4. 6) since each entry of Q(s) already satisfies the same type of 

estimate. Since the set of all functions that satisfy the estimate of type 

(4. 6) (for some k, n, C) constitutes a vector space, Q(s)(x(O)-y(s)) 

satisfies the same type of estimate. Since 1/I s - A I is bounded for large 

enough s, Q1 (s) satisfies the same type of estimate. But since Q1 (s) is 

entire, it is bounded in a neighborhood of A. Hence Q1 (s) satisfies the 

estimate of type (4. 6). Therefore, the inverse Laplace transform has 

compact support contained in ( -oo, OJ. and this proves the theorem. D 
(4.14) Remark. We took for granted that y(t) is Laplace transformable. 

Proving this is not difficult, but rather messy to give here. The key idea 

is to note that xe is isomorphic to a closed subspace of (V[0, TJ)P for 

some T>O. Then the semigroup in xe, a-1, has only exponettial growth. 

These two facts imply that y is Laplace transformable. 

(4.15) Corollary. rr(F) =rrp(F) 

Proof. Obvious from Corollary (4.10) and Theorem (4.11). D 
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The above type of theorem has been obtained for delay-differential systems, 

(see, e. g., HALE [1977]). What is interesting here is, however, that we started 

with a "universal model" im f and then derived these interesting spectral properties. 

5. Examples 

We begin by examining the transfer function given by (1.1). 

(5.1) Example. Let W(s) be the transfer function: 

(5. 2) W(s) = 1/ (se• -1) 

Then the impulse response A(t) is given by 

(

0 for O<t<l, 
(5. 3) A(t) = ,>-1 

~ (t-i-l)i/i! for n<t<n+l 
t-1 

By (5. 2), we have 

(5. 4) A= (01- 1 -0)-1•0 = : 13- 1.a. 
It is easy to check that A is pseudo-rational (YAMAMOTO [1982b]), and the 

factorization (5. 4) is of course (left) coprime. Hence Theorem (3. 13) is 

applicable. Writing down the equation 11:(/3•y) =0 for a smooth y, we have 

(5. 5) r'(t+l)-y(t) =0 for all t>0. 

In other words, 

(5. 6) y(t) =r(l) + 1:r(-r -l)dr 

for l<t<2. Iterating this formula successively, we see that the values of y(t) 

for O<t<l and y(l) completely determine the values of y(t) for all t>0, 

provided that r is smooth and belongs to im f. 

Taking the closure of all such r's in I'(=L10l[0, oo)), we can obtain imf. 

Note that r lco,1J and y(l) can be assigned arbitrarily without breaking rule 

(5. 5) (in the sense of distributions). Therefore, we have 

(5.7) im/i"L2[0, l]xR. 

Denote an element of V[O, 1] x R by (z(fJ), x) instead of (y(t), y(l) ). Let 

us now apply Theorem (3. 15) to obtain the differential equation description (F, G, 

H). If we shift (z(fJ), x) by 6 to the left, then we have 

~ [(z(fJ+6), x+ 1:z(-r)d-r) for fJ<l-6 
(5. 8) u,(z, x) = 

(x+1:-1+•z(-r)dt, x+1:z(-r)dt) for 1-6<0<1 

by using (5. 6). Computing the limit of (1/ 6) (O',(z, x)-(z, x)) as 6--+0, we have 

(5. 9) F(z, x) = ((fJ/fJfJ)z, z(O)), zEH1[0, 1] and z(l) =x. 

Also, G=(O, 1) since A(t)=0 for t<l and A(l)=l. H(z, x)=z(O) is readily 

obvious from definition. 

Summarizing, we have obtained the following functional differential equation: 
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(5. 10) A_(z') = ((a/aO)z,(O)) + ( o )u(t), 
~ ~ ~0) 1 
y(t) =z,(0), 

which is nothing but the M2-space model for such a retarded delay-differential 

system (See, e.g., DELFOUR and MITTER [1972], MANITIUS and TRIGGIANI 

[1978]). 

(5. 11) Remark. It should be noted that the derivation of the state space 

representation (5. 7) is different from the standard procedure. Usually it 

is posed a priori as a starting point whereas it is a consequence of the 

canonical construction of Theorem (3. 13) in the present context. Further­

more, the resulting system (5. 10) is canonical without further verifications. 

We now consider a multivariable case in the next example. 

(5.12) Example. We consider the case m=l and P=2. Let W(s) be the 

following transfer function matrix: 

(5.13) W(s) =[ e
8 d- l) ] 

e'(s - 1}(se8 -1) 

The corresponding impulse response matrix A= (Ai, A2)' for o:::;;:t::::::2 1s given 

by 

A (
0 for O<t<l 

(5. 14) I (t) = 
t for 1 <t<2; and 

A2 (t) =0 for O<t<2. 

It is easy to find a factorization of W(s): 

(5.15) W(s) =(sA-A O )-1( 1 )=: Q-1p 
-1 sA-l 0 

where A denotes e8
• Now take R and S as follows: 

(5.16) R:=(~ -~). S:=[1 SA-,l]. 

It is easy to check QR+PS=I. [To find R and S, consider the matrix [Q, P] 

and transfer this matrix to [I, OJ by fundamental column operations.] Hence 

L-1 [QJ and L- 1 [P] are left coprime. For brevity of notation, also denote the 

inverse Laplace transforms of Q and P by Q and P, too. 

It is readly seen that A is pseudo-rational. Hence we can apply Theorem 

(3.13). For a smooth y= (yi, y 2)', the equation ir(Q*y) =0 becomes 

(5.17) Y1(t+l)-r1(t+l) =0 for all t20, 

(5.18) Y2(t+l)-r2(t)-r1(t) =0 for all t20. 

Solving (5.17), we have 

(5.19) Y1 (t) =e1y1 (1) for all t2l. 
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Hence y 1(t) for t>l is completely determined by specifying the value y1 (1). On 

the other hand y 1lco,1J can be arbitrarily chosen without violating rule (5. 17). Hence 

(r1lco,1J, y1(1)) completely determines the values of y1(t) for all t:2:0. Once Y1(t) is 

determined, it is easy to solve (5.18) as follows: 

(5.20) Y2(t)=r2(l)+J>2Ct-l)dt+J:r1Cr-l)dt for l<t<2. 

Iterating this formula, we see that y 2lco,1J and y2(1) entirely determine the values 

of y 2(t) (note that y1(t) is already known). Hence the pair Cr1lco,1J, Y1(l)) and 

(r2lco,1J, y2(l)) completely determine the values of y(t) for all t>O. Taking the 

closure of all such pairs in I', we have 

(5. 21) im f~(L2[0, 1] x R) 2• 

Denote (y1l[o,1J, y2lco,1J, y1(1), y 2(1))' by (zi, z2, Xi, x2). Proceeding similarly as 

in Example (5. 1), we obtain the following functional differential equation description: 

(5. 22) _d_[::l=[ ~:~::~::~:~]+[ ~ lu(t) 
dt X1 X1 1 

X2 Z1(0) +z2(0) 0 

y(t) = (z1 (O), z2(0) )'. 

[In reading the above equation, note that each z; is a function of () at each time 

t.] Thus, we again arrive at an M 2-space model. 

In the following final example, we consider a system described by a neutral 

delay-differential equation. 

(5. 23) Example. Consider the following impulse response function. 

(5. 24) A(t) =n -1 for n<t<n + 1. 

Its transfer function W(s) is given by 

W(s) =l/s(e'-1). 

In other words, 

(5.25) A=(o'-1-0')-1*0=: 13- 1*a. 

This is the impulse response of the system described by the following neutral 

delay-differential equation: 

(5.26) x'(t)=x'(t-l)+u(t) 

y(t) =x(t- -1). 

It is easily seen from (5. 25) that A is pseudo-rational, and that the factoriza­

tion (5. 25) is (left) coprime. We apply Theorem (3. 13) to the present case. 

For a smooth y, the equation 7t(/3*y) =0 becomes 

(5.27) y'(t+l)-y'(t)=O for all t:2:0. 

Solving (5. 27), we have 

(5.28) y(t)=r(l)-r(O)+r(t-1) for I<t<2. 

Iterating this formula, we obtain all the values of y(t) for t~O as long as y lco,1J 
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and (y(l)-y(O)) are known. So denote the pair Cr ![o.1], y(l)-y(O)) by (z, 
x). Taking the closure of all such pairs in I', we have 

(5. 29) im f:;-;,;£2[0, 1] x R. 

Note that 

y(l+s)-r(s) =r(l)-r(O) 

in view of (5. 28). Hence the second coordinate of (z, x) does not change 

with time without input. Since Al[o,1]=0 and A(l)=l, G=(O, 1). Hence the 

following differential equation obtains: 

(5. 30) Jt(zt~~))=Ca;ao~z1(0))+(~)u(t) 

y(t) = Zt(O). 
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