
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Optimal Operating Policies for a
Stochastic Clearing System with
Bounded Waiting Times

MINE, Hisashi; MAKI, Viliam

MINE, Hisashi ...[et al]. Optimal Operating Policies for a Stochastic Clearing System with
Bounded Waiting Times. Memoirs of the Faculty of Engineering, Kyoto University 1984,
46(4): 1-6

1984-12-15

http://hdl.handle.net/2433/281278



Mem. Fae. Eng., Kyoto Univ. Vol. 46, No. 4 (1984) 

Optimal Operating Policies for a Stochastic Clearing 

System with Bounded Waiting Times 

By 

Hisashi MINE* and Viliam MAKIS** 

(Received May 9, 1984) 

Abstract 

This paper is a continuation of a previous paper where we investigated the 
steady-state behaviour of a stochastic clearing system with Poisson input operated 
under the following clearing policy: all the quantity is instantaneously removed 
from the system whenever there are at least M items in the queue, cir every t time 
units since the first arrival after the last clearing, whichever occurs first. This 
type of policy was termed a bounded M-policy. The objective of this paper is to 
examine the behaviour of the expected average cost per unit time in the class of 
bounded M-policies and in the class of T-policies that clear the system every T 
time units. We find optimal policies in both classes by comparing the associated 
expected average costs, and present some computational results. 

l. Introduction 

We consider a stochastic clearing system with Poisson input operated under one 

of the following service policies: 

( i) a T-policy consisting in removing all the quantity currently present in the 

system every T time units, 

(ii) a bounded i-policy consisting in clearing whenever there are at least i 

items in the queue or every T time units since the first arrival after the last 

clearing, whichever occurs first. 

In the previous paper8>, we derived the steady state characteristics for the 

stochastic clearing system operated under a bounded i-policy, and discussed some 

limiting cases. In this paper, we examine the behaviour of the expected average 

cost per unit time over an infinite time horizon under each of the above-mentioned 

service policies. We find optimal policies in both classes, and present some com

putational results. We now consider the following cost structure. The cost of serv

ing i customers is K+ci, where K>O and c is any constant. The waiting cost of 

i customers in the queue per unit time is h(i) where h( •) is a non-negative function, 
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such that 

h(i+ 1) -h(i) >r >o (1) 

for any non-negative integer i. We assume that in both cases the waiting times 

are bounded and cannot exceed a given constant t>O. To ensure the finitness of 

the cost incurred in a cycle, we assume that 

(2) 

where {X,., u>O) is the input Poisson process with a given intensity J>O. Note 

that (2) holds for any polynomial or exponential function h( • ). Let h(x) = ea", where 

a is any real constant. Then 

En:h(X,.+l)du) = ~h(k+l) 1:q1 (u)du= ~h~) R1(t) 

+oo ea(l-eak) 
= ~lqi(t) 1-ea < +oo, 

where 

qi(t) = (!?k e-At, Ri(t) = I>q•-1 (u)du, Ro(t) = 1. (3) 

We proceed to find optimal operating policies in both classes. 

2. Optimal Operating Policies 

In this section, we examine the behavior of the expected average cost per unit 

time under the service rules defined in· Section 1, and find the optimal policy in 

each class. First, we investigate case (i). 

2. l. The optimal T-policy 

Consider a clearing policy that dears the system every T<,t time units. The 

long-run expected average cost can be obtained by applying a renewal argument. 

(See e.g. Ross4).) We have 

g(T) = (E(I~h(X,.)du) +K+cE(X7') )!T 
(4) 

for any T>O, where H(u)=E(h(X,.)) and {X,., u>O} is the input Poisson process. 

In the next lemma, we examine the behaviour of the expected average cost g( · ). 

Lemma 1. Let (1) hold. Then, the function - g( •) is unimodal with mode s0, 

determined by 

s0 =linf{T>O: d(T)=O), (5) 

where 

d(T)=[udH(u)-K. (6) 

PrQof, To prove that -g( •) is unimodal with mode s0, it suffices to show that 
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the derivative of g(s) is negative for s<s0 and positive for s>s0• We have for any 

s>o 

dg(s) sH(s)-J:H(u)du-K d(s) 
~= s2 s2' (7) 

and from (1), we get 

dH(s) (+ 00 +00 
) ~= J. t"i h(j)qj_1 (s) - Eo h(j)qj(S) 

(8) 

so that d(s) is increasing in s and from (7), we conclude that -g( •) 1s unimodal 

with mode s0 determined by (5). This completes the proof. 

The optimal operating policy is given by the following theorem. 

Theorem 1. Let (1) hold. The optimal clearing time is given by 

S 0 pt= min (s0, t}, (9) 

where s0 is determined by (5). Moreover, 

Sopt¾So¾V2K/(J.y). (10) 

Proof. Formula (9) follows immediately from Lemma 1. Next, (6) and (8) yield 

for any s>O 

J
• J.ys2 

d(s)>J.y 
0
udu-K=-

2
--K, 

and the result follows, since d(s) is increasing and d(s)<O for s<s0• 

In the following section, we examine the behaviour of the average cost per unit 

time in the class of bounded i-policies and again find the optimal policy. 

2. 2. The optimal hounded i-policy 

We assume that the system is operated under a bounded i-policy for some posi

tive integer i, i. e., the system is cleared whenever the queue length reaches level 

i, or every t time units since the first arrival after the last clearing, whichever 

occurs first. It was proved elsewhere2> that this type of operating doctrine is the 

average cost optimal policy for a controlled M/G/1 queue with bounded waiting 

times. This is a generalization of the model considered here. We proceed to find 

the expected average cost per unit time. Under any bounded i-policy, the related 

decision process is a possibly delayed renewal-reward process. The long-run 

expected average cost per unit time is equal to the expected cost incurred in a cycle 

divided by the expected length of the cycle. The length of a cycle is the length of 

time between two successive clearings. The expected length of a cycle was derived 

in the previous paper8>, and is given by 
1 ,_, 

µ = T 'j;
0
Rn(t), (11) 

where R,.(t) is defined by (3). The expected average cost is given by the following 
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theorem. 

Theorem 2. Under any bounded i-policy, the expected average cost per unit 

time is of the form 

(12) 

Proof. To obtain (12), it suffices to evaluate the expected waiting cost E;(W) 

incurred in a cycle. (E; denotes the expectation under a bounded i-policy.) Con

ditioning on the number of arrivals Y1 in the time interval (r;i, r;1 + t], we get 

E;(W) =h(O)/A+ %-tq•(t)E(J:h(Yu+ l)du I Y1=k) 

+ f q•(t)E(fili-,h(Y,.+ l)du I Y1=k), 
k=l-1 Jo 

where r;; _ 1 = r;; - r;1 and r;,. is the k-th arrival time in a given cycle. 

k>i-1 

E(flii-,h(Y,.+ l)du I Y1=k) =
1ij h(j+ l)E(1Ji+i-1/i I Y1=k) Jo J=O 

t 1-1 . 

=k+l;~h(;), 

(13) 

We have for 

(14) 

where the second equality follows from Theorem 2. 34> and from formula (2.1. 6) 1>. 

Similarly, 

E(J:h(Y,.+l)dul Y1=k)=k!l~
1

h(j), (15) 

and (13)-(15) yield, after some algebraic manipulations, 

1 1-1 • 
E;(W) =T "{J

0
h(;)Rj(t), (16) 

and (12) follows from (11) and (16). This completes the proof. 

Now we examine the behaviour of the average cost g; given by (12). We denote 

for any positive integer i 
1-1 

r(i) = LJ (h(i)-h(n))Rn(t)-AK. 
'111=0 

We have 
I 

r(i+ 1) -r(i) = (h(i+ 1) -h(i)) LJ Rn(t), 
7'=0 

so that r( ·) is increasing. Next, from (12) 

g;+1 -g;=R;(t)r(i)!(}d Rn(t) ~ R;(t) ), 

and we get the following theorem. 

Theorem 3. Let (1) hold. Then g; is unimodal in i with mode 

i*=inf{i: _,%t (h(i)-h(n))Rn(t)>AK}, 

(17) 

(18) 

and the bounded i*-policy is the optimal operating policy. In the final section, we 

compare both optimal policies and present some computational results. 
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3. Comparison of Operating Policies and Concluding Remarks 

5 

In this section, we assume that h(i) =hi for some h>O and all non-negative 

integers i. Then 

H(u)=E(h(X,.)) = J.hu, 
(' J.hs2 

d(s) = J.h J
0
udu-K= 2 - K, 

and the optimal clearing time is 

S 0 pt=min {v2K/ (J.h), t}. (19) 

Note that for t->+oo, s0;1=v2K/(J.h), which is also the optimal length of time be

tween orders for the inventory system in Sivazlian6 >, and the optimal dispaching time 

for a two-terminal shuttle system6>. 

In the class of bounded i-policies, the expected average cost per unit time de

termined by (12) is in the linear case of the form 

g;=h(u+ ~jRJ(t) )!~Rn(t)+J.c, 

Table 1. i* and (g,•-lc)/h as functions of J.K/h and ). for t=l. 

J.K/h J.: 0.2 I 0.6 I 1 I 2 5 I 10 

0.5 1, 0.5000 1, 0.5000 1, 0.5000 1, 0.5000 1, 0.5000 1, 0.5000 
1 1, 1.0000 1, 1. 0000 1, 1. 0000 1, 1. 0000 1, 1. 0000 1, 1. 0000 
1. 5 2, 1. 4233 2, 1. 3445 2, 1. 3063 2, 1. 2681 2, 1. 2508 2, 1. 2500 
2 2, 1. 8465 2, 1. 6891 2, 1. 6127 2, 1.5363 2, 1. 5017 2, 1. 5000 
2.5 3, 2.2659 3, 2.0310 2, 1. 9190 2, 1. 8044 2, 1. 7525 2, 1. 7500 
3 3, 2.6830 3, 2.3489 3, 2.1940 3, 2.0550 3, 2.0023 3, 2.0000 
5 5, 4.3500 4, 3. 6113 4, 3.2385 3, 2.8685 3, 2.6796 3, 2.6668 

10 9, 8.5167 7, 6,7375 6, 5. 7499 5, 4.6478 5, 4.0495 5, 4.0008 
20 17, 16.8500 13, 12.9875 11, 10.7500 8, 7.9999 7, 6.0980 6, 5.8423 
30 26, 25. 1833 20, 19.2375 16, 15.7500 12, 11. 3333 8, 7.8762 8, 7.2797 

Table 2. (g(s0 p1)-g,•)/h as function of J.K/h and J. for t=l. 

J.K/h J.: 0.2 0.6 1 2 5 10 

0.5 2.1000 0.6333 0.5000 0.5000 0.5000 0.5000 
1 4.1000 0.9667 0.5000 0.4142 0.4142 0.4142 
1. 5 6.1767 1. 4555 0.6937 0.4639 0.4812 0.4820 
2 8.2535 1. 9442 0.8873 0.4637 0.4983 0.5000 
2.5 10.3341 2.4356 1. 0810 0.4456 0.4835 0.4861 
3 12.4170 2. 9511 1. 3060 0.4450 0.4472 0.4495 
5 20.7500 5.0221 2.2615 0.6315 0.4827 0.4955 

10 41. 5833 10.2292 4.7501 1.3522 0.4227 0. 4714 
20 83.2500 20.6458 9.7500 3.0001 0.4020 0.4823 
30 124.9167 31. 0625 14.7500 4.6667 0.6238 0.4663 
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and the optimal clearing level i* is 

i*=inf{i: 
1

~ (i-j)R;(t)>u}, 
J=O 

where u = ).K/h. In Table 1, we present pairs i* and (g;•- Ac) /h and in Table 2 the 

differences (g(s 0p1) - g;•) /h for t= 1 and for several values of u = ).K/h and A. The 

results in Table 2 reveal that the optimal bounded i-policy is much better than the 

optimal T-policy. Since bounded i-policies are very simple, they are ideally suited 

for practical applications and can be used instead of the more traditional policy of 

a scheduled periodic service. The resulting saving will be substantial especially for 

the systems with low input intensities. 
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