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Abstract 

The stochastic clearing system considered in this paper is characterized by an 
uncontrollable Poisson input process and bounded customers' wating times. We assume 
that all the quantity currently present in the system is instantaneously removed whenever 
there are at least M items in the queue, or every t time units since the first arrival 
after the last clearing, whichever occurs first. The objective is to study the steady-state 
behaviour of this system. Knowledge of this steady-state behaviour can be used for 
the evaluation of the system performance as a function of the system's parameters. 
We present explicit expressions for the queue length and waiting time distribution, the 
average queue length, and the average waiting time under steady-state conditions. 
This work is related to dispatching in transportation systems with stationary Poisson 
arrivals. 

1. Introduction 

Stochastic clearing systems are characterized by an uncontrollable stochastic input 

process and an output mechanism that removes instantaneously all the quantity cur

rently present in the system whenever it exceeds a level Q. This class of stochastic 

processes, which has many applications in the study of dispatching problems, queues, 

dams and inventories, has been investigated by Ross,5i Stidham,8• 9l Serfozo and Stid

ham,6l Whiu,izi and others. Ross,5l considered a truck dispatching problem with 

Poisson arrivals and batch services and proved that the average cost optimal policy is 

a control limit policy, i.e., a service begins if and only if the queue length is at least 

as large as some control limit. This result was later extended by Deb and Serfozo3i 

to an M/G/1 queue with batch services and a finite and an infinite service capacity. 

In all these studies, no restriction was placed on the customers' waiting times. 

However, it is necessary to take this into account m many real situations such as 

transportation of perishable items, transhipment of mail and military supplies, and the 

processing of computer programs. On the other hand, in the serving of people by 

shuttles and other mass transportation systems, the control limit policy without any 
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guarantee about passenger waiting times is not a very attractive policy if the input 

intensities are small.11 ) Tapiero and Zuckerman10l considered a vehicle dispatching 

problem for Poisson arrival processes and the following three dispatching policies: 

(i) a capacity policy C, i.e., a vehicle is dispatched whenever it is filled to capacity 

C (a control limit policy), 

(ii) a T-policy consisting in sending a vehicle every T periods, 

(iii) a (T, C)-policy consisting in sending a vehicle every T periods or whenever it 

is filled to capacity C, whichever occurs first. 

T and (T, C) -policies were considered to allow the dispatching of vehicles at less than 

full capacity in cases where the waitng time costs would be too large. The main 

disadvantage of T and (T, C)-policies is that they allow the dispatching of empty 

vehicles. Hence, such dispatching rules may be quite unrealistic for one-terminal 

systems. To overcome this, Makis'l considered a controlled M/G/ 1 batch service 

queueing system with bounded waiting times, i.e., each time of service is subject to 

control, and its choice is restricted by the requirement that the customers' waiting 

times cannot exceed a given constant t. The following cost structure was considered. 

The waiting cost of i customers in the queue per unit time is h(i), where h( .) is a 

non-negative real-valued function. The cost of serving i customers is K + ci, where 

K>O and c are any real constant. This cost is charged at the beginning of a service. 

Viewing the system as a semi-Markov decision process with unbounded costs, it was 

proved that a policy which minimizes the expected average cost per unit time over 

an infinite time horizon is of the following simple form: 

When the system is in state (i, s), s<t (i is the number of customers waiting m 

the queue and s is the length of time since the first arrival in a given cycle), a service 

begins if and only if the server is free and i is at least as large as some control limit 

i*(t), and whenever the system reaches state (i, t) a service commences immediately 

for any positive integer i. This type of operating policy was termed a bounded 

control limit policy. 

The objective of this paper is to derive a steady-state queue length and waiting 

time distribution for the stochastic clearing system with a Poisson input operated under 

a bounded control limit policy. Knowledge of this steady-state behaviour can be used 

for the evaluation of a system performance as a function of the system's parameters 

(the input intensity, control limit and constant t). The steady-state distributions are 

obtained using some asymptotic results for regenerative processes. (See e.g. <;inlaru and 

Stidham7l .) In the next paper, we examine the behaviour of the expected average 

cost per unit time in the class of T-polcies and in the class of bounded control limit 

policies. We find the optimal operating policies in each class and present some 

computational results. 
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2. The Steady-State Queue Length Distribution 

Suppose customers arrive according to a Poisson process with intensity -<>O and 

are served in batches under a bounded control limit policy. That is, if 7]1 is the first 

arrival time in a given cycle, the service begins in the time interval [7]1, 7J1 +t) if and 

only if the number of customers waiting in the queue is at least M where M is a 

given positive integer. Otherwise, the service begins at the time 7J1 +t. The cycle is 

completed each time a service begins. Suppose the system is in equilibrium after 

operating under a bounded control limit policy with a control limit M (henceforth a 

bounded M-policy) for a sufficient length of time. We find an explicit expression 

for the queue length distribution under steady-state conditions. The following notation 

will be used throughout the paper 

( l ) 

for any non-negative integer k, R0(t) =l ·and let ';J;=7J,+1-7Ji where 7Ji is the k-th 

arrival time in a given cycle. Put Z,= (X,, U,) for s;;;.O, where X, is the number of 

customers waiting in the queue at time s, and U, is the length of time since the first 

arrival after the last clearing. We write Z,=0, if there are no customers waiting in 

the system at time s. Then, {Z,, s?,:0} is a regenerative process and we have from 

Propositions (7.2) and (7.6) in <;inlar 11 (cf. also Stidham71 ) 

P(O) Elim P(Z,=0) 
.s-+oo 

=l-f
00

P(Z,=O, 'Z'l>ylZo=O)dy 
µ 0 

and for j?J:l, u?,,0 

P(j, u) Elim P(X,=j, U,~u) 
•-+oo 

l r+00 
• =-J P(X,=J, U,~u, r,>ylZo=O)dy 

µ 0 

(2) 

(3) 

where 'Z'! is the length of the first cycle and µ=E(r1) (assuming that Xo=O). We 

proceed to evaluate the expected length of a cycle. Obviously, under a bounded 

M-policy 

(4) 

where 7J1 is the k-th arrival time in a given cycle. Thus, conditioning on the number 

of arrivals Y, in the time interval (7]1, 7J1 +t] yields 

( 5) 
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Next, using Theorem 2. 35> and formula (2. 1. 6) ,z> we have for k~ M-1 

~~~-t-~k~~--=- ro·~-l(t-s) k-M+'ds 
B(M-1, k-M+2) J 

where 

_ (M-l)t 
- k+l 

B(m n) =51

s•-1c 1-s)•-'ds 
' 0 

_ (m-1) ! (n-1) ! 
- (m+n-1) ! 

is a beta function. Thus, (5) and (6) yield after some algebra 

1 M-1 

µ=-~R..(t) 
.i •=-0 

where R,.(t) is defined by (1). Next, we have 

P(Z,=0, i-1>yl Zo=O) =e-':1 

and for l~j~M-1, y~t conditioning on the first arrival time yields 

for u~y~t, and 

P(X,=j, U,~u, i-1>ylZo=O) =q;(y) for y<u 

where q;(J) is defined by (1). Similarly, for y>t, we get 

P(X,=j, u,~u, i-1>ylZo=O) =e-lC:,-•>q;(u) for u~t<y 

=S' ie-''q;_,(y-v)dv ,-, 

From (2)-(12), we get 

P(O) = 1/ (.iµ) 

and for l~j~M-1 

= e-,e:,-•>q,(t) for t<u. 

l 5" =- q;_,(y)dy for u~t 
µ 0 

(6) 

(7) 

( 8) 

( 9) 

(10) 

(11) 

(12) 

(13) 
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and 

(14) 

From (8), (13) and (14), we have the following theorem. 

Theorem 1. Let P(j), j;;,O be the steady-state probability that there are j cus

tomers waiting in the system. Then, for any bounded M-policy 

M-1 

P(j) =R;(t)/"i:,R.(t) for 0:s;;j,s;;M-1 
n=O 

=0 otherwise (15) 

where R.(t) is defined by (l) . 

Corollary 1. Under steady-state conditions, the average queue length is given by 

M-1 M-1 

L= ( "i:,jR;(t))) / I:, R.(t). 
j=O n=O 

Obviously, (15) and (16) yield for t-+oo 

P(j) = 1/ M for 0:s;;j,s;;M-1 

=0 otherwise 

(16) 

and L= (M-1) /2, i, e., the steady-state queue length distribution under a capacity 

policy M is a uniform distribution. 

distribution, 

In the next section, we derive the waiting time 
\ 

3. The Steady-State. Waiting Time Distribution 

In this section, the steady-state results will be obtained by using (13) and (14). 

We have the following tlieorem. 

Theorem 2. Let W be the waiting time of an arriving customer assuming steady

state conditions. Then, for any bounded M-policy 

- l M-1 M-2 

P(W:s;;w) = J.µ ( ~
1 
R;(t) +RM_,(w) - ~

1 
R;(t-w) (l- RM-;-1(w))) for w<t 

= l for w>t (17) 

where R.(s) and µ are given by (1) and (8), respectively. 

Proof. Let U be the length of time since the first arrival after the last clearing, 

and X be the number of customers waiting in the queue immediately before the 

appropriate arrival assuming steady-state conditions. Then (13) and (14) yield for 

any w<t 
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Since the waiting time of any customer never exceeds t, we have P( W ~ w) = l for 

w~t and this completes the proof. 

Corollary 2. The average waiting time of an arriving customer under steady-state 

conditions is of the form 

M-1 M-1 

W = ( I;jR;(t)) /(JI;R.(t)). 
j=O n=O 

Proof. From (l 7), using the obvious equality 

we get 

dR;(w) 
dw 

r+- - i r' M-2 M-j-2 r' 
W= J wdP(W~w) =-(J qM-2(w) wdw+ I; I; J q;-i(t-w)q,(w)wdw 

0 µ 0 j=l •=0 0 

+ 
1~f f' wR;(t-w)qM-;-2(w)dw) +t(l-lim P(W~s)) 
j=l Jo 1tt 

(18) 

_ 1 M-2 M-;-2 ,r"Ot) H;+1 . 
-,y--((M-l)RM(t)+~ ~ ("-l)l(k)IB(k+2,J) 

" µ ,=• •-0 J • . 
M-2 +- e-,t (At) ;+M-j . t M-2 

+ ~I ~k! (M-j-2) ! B(M-J, k+ l)) + Aµ ~q.(t) (19) 

where B(., .) is a beta function. From (7) and (19), we have 

and (18) follows from (20) and from 

!;' j(j+ l) q;(t) + M(M- l) RM(t) = IiJR;(t). 
j=l 2 2 j=O 

This completes the proof. Observe that formula (18) can be obtained also from (16), 

using the well-known formula L=AW. For w=O, (17) yields 

and for w=t, we get 
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Now, we examine the case M-+oo. Obviously, this yields the following service 

policy : a service begins every t time units since the first arrival in each cycle. For 

M- + oo, we get from (15) and (16) 

P(j) =R;(t)/(l+Jt) for f;~O, 

L=~jR;(t)/(l+Jt) =-<t(l+ t )!0+-<t) 

and from (17), the steady-state waiting time distribution is 

P(W<w) =.<w/(l+Jt) for w<t 

= I for w?,,t. 
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