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Theoretical Studies of Translational Non-
equilibrium and Velocity Slip in a Freejet
Expansion of a Binary Gas Mixture

By
Norio TAKAHASHI* and Koji TESHIMA¥*

(Received March 31, 1983)

Abstract

Parallel temperature of each species and velocity slip in a freejet of a binary
rare gas mixture are numerically solved by using an ellipsoidal velocity distribution
function, the moment method of the Boltzmann equation and by assuming the flow as
a spherically symmetrical one. An attractive part of the Lennard-Jones (12, 6)
potential is used as an intermolecular potential model. In order to simplify the cal-
culation of collision terms between light and heavy species, an equal perpendicular
temperature for each species and a very small velocity slip are assumed. It is obtained
that the frozen parallel temperature of the heavy species is higher that of the light
species. Also, the ratio of their frozen parallel temperatures and the terminal velocity
slip increase by increasing the mass ratio and by decreasing the mole fraction of the
heavy species.

1. Introduction

The kinetic energy of a molecular beam is fixed by a reservoir temperature: an
energy of 65 meV is obtained from a room temperature reservoir for a monatomic
gas. For a higher energy beam, a reservoir-heating method, an acceleration of a heavy
species by a light carrier gas (the seeded beam method)? or their coupled method?
are generally used. The seeded beam method is the useful one to obtain the beam in
a wide range of energy by changing the concentration and the mass ratio. However,
the expansion is so rapid that the collision numbers are not enough to keep an isentropic
expansion at a few times orifice-diameter distance downstream from an orifice, so
that non-equilibrium phenomena as mass separation, velocity slip and translational
non-equilibrium occur.*~% Theoretical treatments for the velocity slip and translational
non-equilibrium have been made by Miller and Andres,® Willis and Hamel,® Cooper

and Bienkowski,”” and Soga and Oguchi.® They have solved this flow problem by the

* Department of Aeronautical Engineering
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moment method of the Boltzmann equation, assuming the flow as a spherically symme-
trical expansion. Willis and Hamel, and Soga and Oguchi have used the BGK model,
and have predicted that the frozen temperature of a heavy species is lower than that
of a light species. However, Miller and Andres, and Cooper and Bienkowski have
evaluated the collision terms more realistically, and gave predictions opposite to those
of Willis and Hamel, and Soga and Oguchi. Recently, Chatwani and Fiebig® have
calculated the same problem by the direct Monte-Carlo simulation method and
obtained that the frozen temperature of a heavy species is higher than that of a light
species. On the other hand, experimental studies!® have shown results similar to
Miller and Andres’ calculation, Cooper and Bienkowski’s theory and Chatwani and
Fiebig’s Monte-Carlo result. These opposite predictions about the translational non-
equilibrium between light and heavy species make the understanding of the translational
relaxation process of the binary mixture confused, which has motivated us to make
an another theoretical approach. We assume a freejet expansion as a spherically
symmetrical one and a velocity distribution function of each species as an ellipsoidal
one. We then solve the moment equation of the Boltzmann equation numerically.
This model has been already applied by Miller and Andres,”® Knuth and Fisher,'®
and Toennies and Winkelmann!'" to analyze the translational non-equilibrium in a
freejet expansion of a pure rare gas, and could explain the experimental results very
well.5:12:19 Although deviations from the Maxwellian distributions cannot be considered
in this model, we can directly evaluate collision terms using a realistic inter-molecular
potential model. In order to obtain simplified equations for the collision terms between
light and heavy species, we introduce two assumptions: (a) the perpendicular tempe-
rature is equal for each species, and (b) the velocity slip is much smaller than the
stream velocities. Hence, the present calculated results show that the frozen tempera-
ture of a heavy species is higher than that of a light species in accordance with the
theoretical predictions of Miller and Andres,” Cooper and Bienkowski,” and Chatwani

and Fiebig?, and also with previous experimental observations.!~%

2. Fundamental Equations

Basic assumptions of the present theory are that the expansion downstream from
an orifice is a spherically symmetrical flow and that a velocity distribution of gas

molecules of species i, f;(V,), obeys an ellipsoidal one given by

5V =n( i) (gl )oel - wr— g, @y

where u,, and v, are respectively the parallel and perpendicular velocity components

of velocity, V;, with respect to a streamline, 7; and T the corresponding translational

temperatures, n; is the number density, u; the stream velocity, m; the mass and £ the
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Boltzmann constant. In the following discussions, we denote subscripts 1 and 2 as light
and heavy species, respectively.

With the ellipsoidal velocity distribution function, the Boltzmann equation in
spherical coordinates can be written by

m; vu‘

gr i~ rkT O WA= o f 2( %{i )uﬂ,‘,f’ @2

Je=l1

where (3f;/dt) coll, describes the change of f, due to the self-or cross—collision. The
moment method is used to obtain the fundamental equations for four different func-
tions of velocity components, i. e., m;, mivy, m;(v,’,‘+v_’,_‘) /2 and m,-v_’,_‘/2. The results
are summarized in Table I, where 4,[®(V)] is called the collision term between
species i and j on some arbitrary function of velocity components, #(V;). According
to the parallel momentum and the total energy conservation principles during a
collision, the following conservation equations on collision terms are obtained:

dro[myoy ] + A3 [mav ] =0, (2.3
£[ T+ o) |+ [ TG, + ) | =0, 24

Equations (I) —(IV) in Table I are rearranged and normalized by using the following

reduced parameters:

_T *__ L T; w_. U
’*_7, = "o: T T0 o W ulu:l" (2. 5)

Table I. Fundamental set of moment equations of the Boltzmann equation using
ellipsoidal velocity distribution function.

Physical meaning (V) Resulting momentum equations
Conscrvati?n of mass m d (mengay1%) =0, (1)
for species i dr
Equation of parallel d d 2nkT
momentum for species i o, ﬂﬂlaTm:url- ,z —dTr’kan,“
=dy[mzy,], (11)
Equation of total ener 1 d(3
‘}.‘;? :;::acies : gy Em,(vﬁ‘+vi‘) math - (2 IcTu‘+———u,)+n.u,d kT,
=4,,[_2'_ o, +2) ), ()
Equation of perpendicular .1 _ , d 2nukT,,
energy for species i 2 ™l ""‘",T,TkTH v
—AM[T”L,] +Au[ 2 l’.l.,] (Iv)

where Au[d’(V-')]:S‘;qj V) (%ﬁ) dV;. (V)

t ety
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where n, is the density of species ¢ at the reservoir, Ty its temperature, d the orifice
diameter and u,,,; the maximum stream velocity obtained by a pure gas expansion of
species i, and is given by u,..=(5kTs/m)" Then, we obtain the following reduced

equations:
ntutr*’=F, (2.6)
%i=_3;£+w,,., 2. 9)
€= n%‘o . nl}“ < d,;[n), (2. 10)
Cum g — - e (A1~ A4, @1
Cu= 2no,.lz‘" ‘oiu...,.- ’ n}"lu}" (Aulol) + 45 [2D) @12

where F; is the reduced flux of the flow for species i and is constant during the
expansion. In order to solve Eqgs. (2.6)-(2,9), all the collision terms must be deter-
mined at each step of the numerical integration. Using the conservation relations, we
need calculate only 4,[¢} ], 4;,{n,), 4,11, 4,[4], 4;[74;] and 4,;[21] of all the
collision terms, and can determine 4;:[w,] and A,-,-[vﬁj] from Egs. (2, 3) and (2. 4).
However, because these calculations include the sixth-order multiple integrals, except
for A,-,-[v‘i‘] and Ajj[vj_j], simplification of these calculations is made in the next section.

3. Evaluation of Collision Terms

8.1 Collision terms between different species
A collision term on an elastic binary collision between species i and j is given by'®

4,007)1=" §" §30V) £,(Vo£,(C) goidadcaV, EB)

where V; is the velocity for species i, C; that for species j, o,; the collision cross
section between species ¢ and j, g the relative velocity, 6@(V,) =0(V?) —0(V)), and the
prime denotes the state after a collision. We calculate Eq. (3, 1) for @(V) =y, s
4, and v1, using the ellipsoidal velocity distribution function for each species. Fur-
thermore, in order to simplify the equations of the collision terms, we introduce the
assumption that the perpendicular temperature may be always equal for each species
during the expansion, that is, T, =T,,=T,. Then, the order of multiple integrals is
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reduced to four from six, and the following equations are obtained:

4ul) =472 B S“ S_lg"s Wi QW HAedWdrdg, (3.2
4[] = 2("’*) S"’ S_,S 5_1(377 —1) W Q@ HdedWdydg, 3.3
[0} ] = — 13[4 ] —2urdia [0y, ]
+872p (0 (' WigenQRHdEWindg, 3.4
() =~ (22) 42 ], | (3.5)
where
B=nunz (By,pr) " (B,Bs) /7, _ 3.6

_ __MW? pagt m_ g m
H= exp[ T ST 2gW677(ﬁu, M By M)

28, du(We+ T g7) — b, (4)%), @7
1' _1l(m 1—¢ ‘
Twerrs= —M‘(-T:— T, )E’ o , R CR)
] LRI bt/
seffyp ——H(T“—+ T"x )’72+ T, ' 3.9

In the reduction of Egs. (3.2)-(3.9), two transformations of the velocity coordinates
system have been made. One is the transformation to the center of mass (c. m.)
system (W,, g) from the Lab. one (v, %), and the other is that to the spherical
coordinates system (W, dw, Ow. & ¢, 0, from the rectangular one. The relations
between these velocity components are given by

vu=W,— Mg., vz»=W»+%‘—g., (3.10)
Wi—uy=W cos ¢y, Zi=g Co8 ¢,

Wa=W sin ¢y cos Oy, g&=gsin ¢, cos 4,, 3. 1D
Wy=W sin ¢y sin Gy, Z=gsin ¢, sin 4,,

where W is the ¢. m. velocity, ¢ the angle between W or g and the parallel direction,
and 6 the azimuthal angle between the plane including W or g and some arbitrary
reference plane including the parallel axis. In Eq. (3,2)-(3,9), du is the velocity slip
and is defined by du=u,;—u,, p, the reduced mass, B;=m,;/2kT;, £=cos ¢w, 7=co0s ¢,,
M=my+mg;, QF and Q@ are respectively the diffusion and viscosity collision cross
sections, and Tw,yy,, and T, the effective temperatures related to the c. m. velocity
and the relative velocity. In Eq. (3,7), the third factor of the exponential denotes
the translational non-equilibrium effect between species i and j, and the fourth and
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fifth factors denote the velocity slip effect. The assumption of the equal perpendicular
temperature for each species is made because of the prediction that a perpendicular
temperature would keep an isentropic expansion during the expansion from the calcu-
lated results for the freejets of pure gases.'® With this assumption, the order of the
fundamental equations is reduced to seven from eight, and the following relation on
collision terms is obtained from Eq. (2,9):

"“l (An[A] + (A ]) =-"2— (4R, + 4l ]). (3.12

mu Nala

This relation means that the summation of the collision terms on the perpendicular
energy between light-light and light-heavy species is determined from that between
heavy-light and heavy-heavy species and vice verse. The evaluation of the colision
cross section between species i and j needs an inter-molecular potential model. In
the present calculation, the Lennard-Jones (12, 6) potential is used and is given by

Vii( R) =5-'j[( Rmij/ Ry12-2( Rm-'j/ R)],

where R is the inter-nuclear distance, ¢; the well depth of the potential and Rm,;
its location. In the case of a classical treatment, as discussed by Hirschfelder et. al.15:18
and Toennies and Winkelmann,'? the collision cross section at the small reduced
collision energies (E/¢;;<<0.7) is approximately given by

L\ 13
Q== AP ( 6%:: ) , (3.13)

where E=y;%/2, Ca;=2e;,;Rmf;, A{P=0,306 and AP =0, 331. Potential parameters
used in the present calculation are shown in Table II.

Introducing the assumption of the equal perpendicular temperatures, we can sim-
plify the collision terms including the sixth-order multiple integrals to those including
the fourth-order ones. In order to further simplify these calculations, we introduce the

. ) assumption that the velocity slip is much
Table II. Well depth ¢ and its location Rm

for Lennard-Jones (12, 6) poten- smaller than the stream velocities, and

tial model.® expand the collision terms in powers of

System ¢ (meV) Rm (A) the velocity slip with the truncation of
its second or fourth and higher order

He—He 0.91 2.99 in th b
Ne—Ne 3.78 3.09 terms in the next paragraph.
Ar—Ar 12.46 3.74 (a) First-order approximation of ve-
Kr—Kr 16. 40 4.03 loci i
He—Ne 1.89 3.01 ocity siip
He—Ar 2,90 3.55 In the first-order approximation of
He-Kr 2.13 3.75 the velocity slip, the fourth and fifth

a) Reference 17. factors of the exponential in Eq. (3.7)
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are expressed by
exp[ — 2,8,.24u(W6+——g7) B ()| = 1~ 2By du(We -+ T g). (3.14)

Substituting Eq. (3. 14) for Egs. (3. 2)-(8. 4, we expand the third factor in Eq. (3, 7)
into a power series as follows:

exp[ 2gW67](,19,,z ﬁu, )] E (_l) [2gWEﬂ(ﬂn,"X—}_ﬁu,—”1:—;)]’-

Introducing the following reduced parameters:

MWw?
@t = , ,L_lug
2kTw.ffm r 2kT ‘”12

we can replace the fourth-order multiple integral in the collision terms with an infinite
series of multiplications of four single integrals on &, 7, ® and 7. Further, the single
integrals on @ and y can be presented with known analytic functions. Then, in the
first-order approximation of the velocity slip we obtain

Aoy ] givn= 4(—2%?’—)( 10 M ) Acn( 6Cs12 ) ( nyng

M KT, /| (TRTDYTT
Au* m
x( Tt (52)sum1-sumz], (3.15)
_of 2kTy\* 2( 6Co1a Tl
01 o =2( L0 )7 (5 2 Y o (S ) T SUM 3, (.10
sz[v:,]ﬁm = —d [Uﬁ.l] first — 2y 412[”;11] firu"s( 2’;?’ )+
af 6Ce3 mn;
X( ml) 4 (IcTo ) (T.‘lT.‘;)*T_t’ SUM 1, (.17
where ,
2 (2U+D)!! oigra 8, . -
SUM 1=30235 2K (£a) r(3 1 o FW G+, (3.18)
suM | } EMWK’J(L) r(3+ j){FG(j)}FW(ﬁ (3. 19)
= (2n! 3 FI(j) ! :
FW () =§, T, e - (3.20)
FG (K =§ Tyuys 2 vy, (3.2D)
FI ()= S: s ¥ B — 1 dy, (3.22)

where [=2j or 2i+1, du*=A4u/tp,y1, I'(n) is the gumma function of n-th order and
K=(1/T§—1/T¥). Because Tw.yy, is the even function of § and T, is the even
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function on 7, the zero-order term of velocity slip in 4i[v,] and the first-order
term in 4y[#4 ] are identically equal to zero, and thus the effect of the velocity slip
is included only in 4y5[v,] and 4i2[3}] for the first-order approximation of the velocity
slip. In order to determine the collision terms, we need only to integrate FW(k), FG
(k) and FI(k) numerically, and to sum up Egs. (3,18) and (3, 19) until converging,
respectively,

(b) Third-order approximation of velocity slip
In the third-order approximation of the velocity slip, the fourth and fifth factors
in Eq. (8.7) are expressed by

exp[—2ﬁ,,2Au(W$+ﬁ‘—gy)—ﬁ,,z(Au)’] [1— By, () [ 12y du( W+ T g7)|
2 B (We+ T gn) T gty (We+ Tgn) (3.23)

Equation (3, 23) is substituted for Egs. (3.2)-(3.4), and in the same way as described
in the previous paragraph, the collision terms in the third-order approximation of the
velocity slip are obtained as follows:

di2[vy ) ihira = [1 —%(ﬂ)( ‘;’f:z )]Alz[vlll] sirn 8T ( 2:7;" )( g’x;) AP

x (%) (T.T"l')’f,,T.z ( "T"f )[4 sUM4—sUMS5 +2-5UME 2 -SUM7),

(3.29

4a[PA Jonira= [1 “—g‘( e )( #t‘ )]Au[v_’,_l],,-,,,+5\/?( 2]};;0 )+(%)+A§”

«(SCan)* T ( %’:) [sUM8-—+.sUM9+(2L) sum 10]

(3.25

(8] + A3, ] + 2ol ) s = 1+ 5 ( 22 ) #‘* : )]

X (A1 + Al ]+ 2l ) 2007 (Y (Y

6C nyn du*
x 49( kﬁz) (T*T‘:)‘Z”T“’( ) [SUM 4—2-SUM5+2-SUM61,  (3.26)

where

SUM 4— (_M)(mz )2(2‘+5) ! 2'K3‘+’( 2 )"r(§+i)FG(i)FW(i+2), (3.27)

2+1/
s Qi+3) 1 orgasf s (8 N (FODy
SUM{M} = () S B v fa2) 1 (5 +4) {FI(D JFWG+1), 3.28)
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FGG+1)

6 .
SUM{g} =(7 )2(2‘+3)" 2'K"+‘(ﬁﬁ)F(ﬂ+i){FI(i+l)}FW(z+l),

S @Qi+D! 3
(3.29)
FGG+1)

sum ([} =5 bt wme( ) 1) ([0

B! 3 JFWep. 330

The nomenclature is the same as that used in the previous paragraph. The second-
order term of the velocity slip in Eq. (3.24) and the third-order terms in Eq. (3, 25)
and (3, 26) are identically equal to zero. If FW(k), FG(k) and FI(k) are once
calculated to determine the collision terms for the first-order approximation of the
velocity slip at each step of the numerical integration, we can also determine the
collision terms for the third-order approximation.

3.2 Collision term between same species

A collision term on an elastic binary collision between same species i is given by!¥
4,00(V)1 =" (7 10V) +80(C) (V) £(C) g0,:d2dC:aV.. 3.3

We calculate Eq. (3.31) for @(V,) =4, together with Egs. (2.1) and (3, 13), and
obtain a much simpler equation than those for the collision terms between different
species as follows:

4t2)=(5)" () 40 () il 7 5)

X S: Touss, ** 3r2— D, , (3.32)

where T,,,,“*_1=77"’/T,‘,"f+(1——7)3)/TI‘. Equation (3, 32) is the same as that obtained
by Toennies and Winkelmann.!?

On the assumption ‘of the equal perpendicular temperatures we need only to
calculate one of the collision terms between the light-light and heavy-heavy species
because the other is determined from Eq. (3,12). Since the mole fraction of the
heavy species is usually very small in the seeded beam method, we calculate the
collision term between the light-light species, 4i:[¢% ], from Eq. (3.32) and determine
Au[vj_z] from Eq. (3, 12). However, we predict that the difference between 432[012]
determined from Eq. (3.12) and that calculated from Eq. (3.32) may not be small
Thus, its effect on the calculated results may become large with an increase of the
mole fraction of the heavy species. In order to include the collision term on the
perpendicular energy between the heavy-heavy species in the calculation correctly,
we also calculate 43;[0%,] from Eq. (3.32) by neglecting the relation of Eq. (3.12).

Even in this case, neglecting the non-equilibrium effect on the perpendicular tempe-
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rature in the calculation of the collision terms between different species, we use an
effective perpendicular temperature defined by

T, ITJ.1+XZTJ_29 (3.33)

= X

where y; is the mole fraction of species i.

4. Calculation Method

The set of Eqgs. (2.6)-(2. 9) is numerically solved together with Egs. (2.3) and
(2.4) to get the quantities n¥, nf, uf, u®, T, T¢ and T% or T and T2, with the
Runge-Kutta-Gill method. Because the assumption of the equal perpendicular tem-
peratures is introduced, Eq. (2. 9) is applied to T¥( =T‘1=Tj‘_2) and the relation of
Eq. (3.12) is added. Meanwhile, in the case of using Eq. (3.33), Eq. (2. 9) is solved
for both i and j species. The collision terms between different species are calculated
from Egs. (3.5) and (3. 15)-(8. 17) for the first-order approximation of the velocity
slip, and Egs. (3.5) and (3.24)-(3.26) for the third-order approximation of the
velocity slip. Since the first term in the left-hand side of Eq. (2, 9) describes the
geometrical term and contributes greatly to the cooling process of the translational
temperatures, we can use the criterion that each increment of €y, €, and % in
Egs. (2.7)-(2.9) becomes infinitesimal compared with the geometrical term, (—2T%/
r*), as the convergence condition of the collision terms between different species at
the location r*. On the other hand, the collision terms between same species are
calculated from Egs. (3.12) and (3.32) in the case of 7Y =T%=T%, or only from
Eq. (3.32) in the case of using Eq. (3. 33).

The initial conditions are determined by the Ashkenas and Sherman formula!® at
some distance downstream from the orifice in the range of r¥*=12—1 8, assuming
that the expansion is isentropic to the starting point. The numerical calculation is
terminated when the ratio of the perpendicular temperature to the parallel tempera-
ture of the light species becomes less than 0, 05.

5. Results and Discussions

The dependencies of the frozen parallel temperature of each species and the
velocity slip on the convergence condition for the collision terms between different
species calculated at Pyd=7 Torrecm and 7,=300 K for 98% He-2% Ar and 97%
He-32% Ar mixtures for the first-order approximation of the velocity slip are shown in
Table III. It can be seen that the calculated results are weakly depending on the
convergence condition and become constant for a condition less than 10-%. In the
following calculations, we used the value of 10-7 as the convergence condition.

Typical results of perpendicular and parallel temperature changes during the
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Table III. Dependency of calculated results on convergence condition for collision terms.
Convergence Pyd T, Xz Ty, Ty, Si, ST, A4/ thieen
condition  Torrcm K % K K — _— %
107! 7 300 2 3. 0908 11. 832 14, 337 22. 569 2. 5021
10-2 7 300 2 3.0910 11. 898 14, 336 22.510 2. 4883
103 7 300 2 3.1049 11.288 14, 303 23,116 2. 4559
104 7 300 2 3.1047 11,218 14, 303 23.188 2. 4538
103 7 300 2 3. 0936 11.197 14. 329 23.211 2. 4530
10-¢ 7 300 2 3. 0936 11.196 14. 329 23.211 2. 4530
1077 7 300 2 3.0936 11. 196 14, 329 23.211 2. 4530
107! 7 300 3 2. 9645 10. 636 14.133 23. 006 2.4136
102 7 300 3 2.9585 10. 559 14. 147 23. 092 2, 3887
103 7 300 3 2. 9699 10. 176 14. 119 23. 526 2.3716
10~ 7 300 3 2. 9699 10. 135 14.119 23. 574 2. 3704
105 7 300 3 2. 9699 10, 131 14,119 23. 578 2.3704
10-¢ 7 300 3 2. 9699 10. 131 14.119 23,579 2. 3704
1077 7 300" 3 2. 9699 10, 131 14,119 23. 579 2. 3704
I& LN L T T T T loz T T T LI B | L
' 9T%He-3%Ar ] C TO%He-30%Ar
Pod =7 Torr- cm — - Pod*7Torr-cm n
: N C To*300K |
10'~ . 10' - =
2 EE: Y e
J r 1 3 NN .
s [ i & T N
el T = Is:l(iropic —
pansion y
10 E 10° AR ™ E
a3 3 E NN T 1
- 3 S Con
I E F—-— (Au) &Ta=Tag=Te
- e (AU 8T 2 TapeTa . T (aw &Top#Tap A\ K
L—-e (B T2 T2 ) 4 - —— (AuPBTL#TLp \ .
—— (AP TL L R | LN
Jd , < loaul SIS AN NS T
10 bl 1 S f 10 Lot %D
o, 100 400 "
Fig' 1. Parallel and perpendicular temperature Fig. 2. Parallel and perpendicular temperature

changes during the expansion of a 97%
He-3% Ar mixture calculated at Pyd=
7 Torrecm and T,=300K for three
cases: (i) Ty, =T,,=T, using the (du)!
approximation, (ii) T, # Ty, using (du)!
and (iil) T,,+T,, using (du)d.

changes during the expansion of a 70%
He-309% Ar mixture calculated at Pyd=
7 Torrecm and To=300K for three
cases.
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expansion of 97% He-3% Ar and 70% He-30% Ar mixtures calculated at Pod=7
Torr-cm and Ty=300 K are respectively shown in Figs. 1 and 2 for three cases: the
summation of 4;[01)] and 45[v%] is determined from Eq. (3, 12) using the first-
order approximation of the velocity slip terms [the case of 7, =T, =T, using the (du)!
approximation], that is calculated from Egs. (3,5) and (3.32) using the first-order .
approximation [the case of T, #T,, using (4u)'] and using the third-order approxi-
mation [the case of T, #T,, using (4u)®]. It can be seen that the parallel temperature
of the heavy species always becomes higher than that of the light species during the
expansion for all cases. For the case of T, =T,=T,, the rate of the change of T,
becomes gradually smaller than that of the isentropic expansion with r*. For the
case of T, +T,, the perpendicular temperature of the heavy species becomes lower
than that of the light species with 7*: the temperature change of T, almost agrees
with that of 7', while the rate of the change of 7, becomes larger than that of the
isentropic expansion with an increase of r* and a decrease of the mole fraction of the
heavy species, y2. On the other hand, T, shows no apparent dependency on the
assumption of the equal perpendicular temperatures and the approximation of the
velocity slip, but T, shows a prominent dependency on them. In Fig. 1, T}, calculated
for TJ_lzTLz:TJ_ using (4u)! is almost equal to that for T_,_1¢T_L2 using (4uw)!, but is
much higher than that for T, #7,, using (4u)®. In Fig. 2, T}, calculated for T, #T,,
using (4u)! is much higher than that for T, =7, =Ty using (4u)', but is close to
that for T, #T,, using (4u)®. The difference between the change of T, for the (du)?
approximation and that for (4u)® in Fig. 1 is due to the truncation error of the
velocity slip in the calculation of the collision terms, and the difference between the
change of Ty for T, =T, =T,, and that for T, #7T,, in Fig. 2 is due to the difference
between the summation of An[vﬁ?] and An[vﬁ_z] determined from Eq. (3. 12) and that
calculated from Eqs. (3.5) and (3.32). From these results, we can know that the
assumption of the equal perpendicular temperatures is invalid, but has only a weak
effect on the result for T} in the small range of y. and further, it has no effect on
the result for 7y, On the other hand, the truncation error of the velocity slip in the
calculation of the collision terms has a prominent effect on the result for 7, in the
small range of y,, but no apparent effect on that for T.

Dependencies of a frozen parallel temperature, Ty;, a terminal speed ratio defined
by Sﬁ::(mm‘:‘“/?kT;:) 2 and a terminal velocity slip defined by 4u™=(4—u3)/ttisen
on the mole fraction of the heavy species calculated at Pod=7 Torr-cm and T,=300
K are shown in Figs. 3-5 for the He-Ne, He~Ar and He-Kr mixtures, respectively,
where u;,, is the maximum stream velocity achieved from the isentropic expansion of

the mixture. It can be seen that the frozen parallel temperature of the heavy species
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Fig. 3. Dependencies of (a) frozen parallel temperature of each species, (b) terminal speed
ratio of each species and terminal velocity slip on mole fraction of heavy species, y3,
for an He-Ne mixture calculated at Pyd=7 Torr-cm and T;=300 K for three cases:
(i) T\,=T,,=T, using the (du)! approximation, (i) T, #7T,, using (du)! and (iii)
T, #T., using (du).
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Fig. 5. Dependencies of (a) frozen parallel temperature of each species, (b) terminal speed
ratio of each species and terminal velocity slip on mole fraction of heavy species, ¥,
for an He-Kr mixture calculated at Pod=7 Torr-cm and 7T,=300 K for three cases.
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is always higher than that of the light species for all cases. - This result qualitatively
agrees with Miller and Andres’ theoretical calculation,” and Cooper and Bienkowski’s
theory” and Chatwani and Fiebig’s Monte-Carlo result.” With an increase of x;. the
collision frequency between the light-light species decreases, while those between the
light-heavy and heavy-heavy species increase. Because of the increase in the collision
frequencies between the light-heavy and heavy-heavy species, both Ty and Ty
decrease with y; as shown in Figs. 3(a), 4(a), and 5(a). The frozen temperature of
the light species shows no prominent dependency on the approximation of the velocity
slip and the assumption of the perpendicular temperature, except for the case of the
He-Ne mixture in y3>>20%, while the frozen temperature of the heavy species shows
a prominent dependency on them. For the case of T, =7, =7, using (dw)', T}
rapidly approaches Ty with y: and does not approach the value of the pure heavy
species. On the other hand, Ty, for T, #T,, using (du)® approaches the value of the
pure heavy species and the ratio of T/T}y shows a weak dependency on yz2. In the
smaller range of y,, its ratio gradually increases with y, and has a maximum at some
value of y2. It decreases in the larger range of y; for the He-Ne and He-Ar mixtures,
while it always decreases with y; for the He-Kr mixture: T3/Ty;=1.68 at y.=1%,
1.94 at 40% and 1,69 at 909 for He-Ne, 1,94 at 1%, 2.17 at 20% and 1,80 at
9095 for He-Ar, and 3,54 at 1%, 2,61 at 40% for He-Kr. The result whereby the
dependency of Ty/Ty on x: for the He-Kr mixture is different from those for the
He-Ne and He-Ar mixtures means that the velocity slip for. the He-Kr mixture is not
sufficiently small enough to neglect the fourth and higher order terms of the velocity
slip in the calculation of the collision terms between the different species. Campargue
et. al.® have obtained the value of 2, 2 at y,=19; and 2, 46 at 5% for the He-Ar mixture
by the molecular beam time-of-flight measurements. Although the present results
are slightly smaller than their experimental results, qualitatively good agreement in the
dependency of the ratio of T3/Ty on x2 between them is obtained for the’ case of
T, +T,, uwsing (4u). They also have obtained the ratio of Ty/Ty for several gas
mixtures: 2-2 5 for He-Ar (mz/m;=10), 4-4. 5 for He-Xe (mg/my=33) and 13-15 for
H;-Xe (my/mi=65). The present results qualitatively. explain- the dependency of
Ty/T5; on the mass ratio. The frozen parallel temperature of the heavy specigs for
TJ_lzstTJ_z using (4u)?! is almost equal to that for TJ_l=T_,_2=TJ_ using (4u)!in the smaller
range of y, for the He-Ar and He-Kr mixtures, but approaches the value for 7, *
le using (4u)® with y, for all cases of mixtures. This result means that the discre-
pancy between Ty for the (4u)! and (4u)® approximations in the smaller range of ys
is mainly due to the truncation error of the velocity slip in the calculation of the

collision terms. The discrepancy between those for 7, =7, =T, and T, #7,, in the
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larger range of y; is mainly due to the summation of 45[24,] and 45:[2%] determined
from Eq. (3.12) and that calculated from Egs. (3, 5) and (3, 32).

Assuming equal perpendicular temperatures, the present results give the physical
contradiction that the parallel temperature of the heavy species does not approach the
value of pure heavy species. However, by neglecting Eq. (3,12) and by evaluating
the collision term between the heavy-heavy species from Eq. (8, 32), this contradiction
can be avoided. This fact means that we should consider the translational non-equili-
brium not only between the parallel temperatures of the light and heavy species but
also between their perpendicular temperatures in the translational relaxation process
of the binary gas mixture. Nevertheless, this assumption has no apparent effect on the
result for T3, in a wide range of y; and their mass ratio. Furthermore, it has only a
weak -effect on the result for T} in the smaller range of y; and for the larger mass
ratio, where we should include the higher order terms of the velocity slip in the
calculation of the collision terms.

Although Ty is higher than Ty, the terminal speed ratio of the heavy species is
always larger than that of the light species for all cases. That of the light species has
a: weak dependency on the approximation of the velocity slip. and: thé assumption of
the equal perpendicular temperatures, and gradually decreases. with y; from the value
of the pure ligﬂt' species. However, S shows a strong dé‘p‘ehdency on them because
of the dependency of Ty, on them. The terminal speed ratio of the heavy species for
TJ_1=TJ1=TJ_ using (Au)l‘rapidly increases with y;, and becomes much larger than the
value of the pure heavy species. However, Sg for T, 7., using (4u)® decreases with
ya: for the He-Ne mixture it decreases with x, and approaches the value of pure
neon, but for the He-Ar and He-Kr mixtures it decreases with y, and has a minimum
at some value of iy and increases to approach the value of the pure heavy species.
It can be also seen that S" for TJ_ :I:TJ_z using (4u)?® in the smaller range of y is
larger than the value of "pure heavy species for the He- Ne and He-Ar mixtures.
These results qualitatively agree with the experiments of Campargue et. al.,» who
found that S°..; decreases with X and S}}; is larger than the value of the pure
heavy species in the smaller range of y;. For TJ_lthJ_z using (4u)!, SE decreases
with y; for the He~-Ne mixture, but increases for the He-Ar and He-Kr mixtures,
and approgches»-tha:t‘for T_quﬁT_,? using (4u) 3,

The stream velocity of the light species is larger than that of the heavy species,
and the terminal velocity slip increases with a decrease of y; and an increase of the
mass ratio for all the cases. The terminal velocity slip for T_,_‘=TJ1=TJ_ using (4u)?
shows the strongest dependency on y: of the three cases, while that for T, T, using
(4u)® shows the weakest dependency of them. The terminal velocity slip for T, #T,,
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using (4du)? almost agrees with 4u* for TJ_I#:TJ_Q using (4u)? in the cases of the He-
Ne and He-Ar mixtures, but approaches that for 7, =T, =T, using (4u)! with x; in
the case of the He-Kr mixtures. This discrepancy is also due to the truncation error
of the velocity slip in the calculation of the collision terms because of the larger velo-
city slip between helium and krypton.

Dependencies of the terminal speed ratio of each species and the terminal velo-
city slip on Pod calculated at y;=3% and Ty=300 K are shown in Figs. 6-8 for the
He-Ne, He-Ar and He-Kr mixtures, respectively. It can be seen that Sy, Si and
4du™ show an exponential dependency on Pud, except for the smaller range of Py,
where non-equilibrium effects may exist upstream from the starting point and further
the velocity slip may become larger in the expansion to make the assumption of the
isentropic expansion to the starting point and the very small velocity slip invalid. The
terminal speed ratio of the light species shows no apparent dependency on the
approximation of the velocity slip and the assumption of the equal perpendicular
temperatures, while Sp shows a strong dependency on them. For the (4u)! appro-
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Pod for a 979% He-3% Kr mixture cal- meter® together with their theoretical
culated at T;=300 K for three cases. prediction.

ximation, the ratio of Si/Si shows a prominent dependency on Pyd and its variation
is different depending on the extent of the velocity slip. On the other hand, its ratio
for T, #T,, using (4u)® shows a weak dependency on Pud: 1 64-1.75 for He-Ne,
2. 14-2, 32 for He-Ar and 2 33-2,73 for He-Kr against Ped=3-30 Torr-cm. This
result also means that the calculated result for the (4u)! approximation is influenced
by the truncation error of the velocity slip. The terminal velocity slip calculated for
T, =T,,=T, using (4u)! is the largest of the three cases, while that for T, #T,,
using (du)! agrees with Ju™ for T_,.Ia‘:T_,_2 using (4u)? in the case of the He-Ne
mixture, and shows a slightly stronger dependency on Pod than that in the case of the
He-Ar and He-Kr mixtures because of the increase in the velocity slip.

The terminal velocity slips calculated at y;=39% and T,=300 K for a y,-constant
and at Pyd=7 Torr-cm and Ty=300 K for a Pyd-constant (only in the case of the
He-Ar mixture) are plotted against a slip parameter, V,,,, introduced by Miller and
Andres® in Fig. 9, together with their theoretical prediction. In the slip parameter, 7
is the average mass of the mixture, and Csy; is the coefficient of the attractive term
in the Lennard-Jones (12, 6) potential between the light and heavy species given in
Eqg. (3.13). It can be seen that Ju™ calculated for the y;-constant has a good corre-
lation with the V., while 4u™ calculated for the Pyd-constant has the same correlation
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with the V,;;, as that for the y;-constant in the much smaller range of y;, but deviates
from its correlation with an increase of y,. The terminal velocity slip calculated for
the y.—constant for 7, =7, =T, using (4u)! is in good agreement with the Miller and
Andres theoretical prediction, but those for 7, #7,, are smaller than their theoretical
prediction. From this figure, we can find the following relations between the terminal
velocity slip and the Miller and Andres slip parameter in the range of y less by
about 89:

A4/ Uippn=1. 064(V,,,;,) =1.°7% for T_,_l:TJ_z:T_,_ using (du)!,

AU/ ;40 =0, 866 (V ;) =317 for TlﬁtTJ-z using (4u)?! and (du)d.

The reduced frozen parallel temperatures of the light and heavy species calculated
at y3=3% and T,=300 K for a y,-constant and at Pyd=7 Torr-cm and T,=300 K
for a Pyd-constant (only in the case of the He-Ar mixture) are plotted against
a frozen temperature parameter of Patch?, T ..., in Fig. 10(a) and (b). Patch’s frozen
temperature parameter is a complicated function of the reservoir density, mass ratio,
mole fraction and potential parameters presented in Egs. (46)-(50) of Ref. 4. In
his parameter, (m;/m;+5) in Eq. (47) must be replaced with (m/m;+532;(1, 1)*/
22.:(2, %), where 2,;(1, )* and 2,;(2,2)* are the standard collision integrals which
occurred in the Chapman-Enskog expression for binary diffusion and viscosity, respe-
ctively.!® It can be seen that T3’ has a good correlation with its scaling parameter

independent of the approximation of the velocity slip and the assumption of the
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equal perpendicular temperatures, except for.the much larger value of y, in the
case of the Pyd-constant.: On the other hand, Ty has a dependency not only on them
but also oni the mass ratio. Only in the case of T, ,#T., using the (du)? approxima-
non, Ty calculated for the xg—constant has 2 good correlation. with Patch’s frozen
temperature parameter Ty for the Pyd-constant has the same correlation with that
for the Xz constant in the much smaller range of y;, but. deviates from its corrclatxon
with an increase of X2 From these ﬁgures, we can find the following relations between
the frozen tcmperatures of the light and heavy species and Patch’s frozen tcmperature
parameter as follows:
( ij for light species,
L TRR=3 42T b,
(n) for heavy species in the range of 12 less by about 54,
T;;" =3, 21(T,,,ch) £12 for TL =f=T_,_2 usmg (duy®. -

6. Conclus:ons -

By assuming the elhpsmdal velocity ‘distribution- function as the veloc:ty distribution
function of gas molecules, we could consider the realistic inter-molecular potennal
model in' the evaluation of the  collision terms. - Furthermore, by assuming equal per-
pendlcular temperatures and a very small velocity slip,- we “could” replace the sixth-
order multlple mtegral to an infinite serxes of multiplications of four smgle integrals in
the calculation of the collision terms between light and heavy spec1es Also, we could
numerlcally analyze the problem of the’ translatxonal non—equlhbnum and the  velocity
shp in the spherlcally symmctrlcal expansmn of the bmary gas mixture. Although
the -assumption of the' equal perpendlcular temperatures seems physically -unrealistic,
its effect on the results for T is very small and' the effect on the results for Ty,
becomes smaller w1th an increase of the mass ratlo, mz/ml, and -a decréase of the
mole fraction of the heavy species, y2. On the other hand, -the truncation error of the
velocxty slip in' the calculatlon of the colhswn terms has no apparent effect on the results
for Ty, but has.a larger effcct on the results for Ty with an increased my/my and a
decreased ;. From the presént results, we have obtained the following conclusions: °
1) . The frozen parallel temperature of the heavy species is higher than that of the

hght species, and the ratio of Ty/Ty; increases with an increase of ma/my.

2 The ‘stream velocity of the heavy species is smaller than that of the light species,
. and the terminal velocity slip increases with an increase of my/m and a decrease of
Pyd ‘and y,." DA : '

3 Thc termmal speed. ratio of the heaVy species is larger than that of the light
specnes, and the ratio of S,,/S,, increases with mg/my.

These results qualitatively explain the previously obtained expenmental results.
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