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Abstract 

The elasto-static instability phenomena of structures can be typically classified by 
the catastrophe theory in the local form near a certain singular point of their total 
potential energy. Then, the imperfection sensitivity of the structures can be evaluated in 
terms of the bifurcation set, mapping the singular points of the equilibrium space to 
the control space. In ordinary structural problems, this consists of a simple loading 
parameter and some imperfection parameters. 

In this paper, several simplified column models are studied by the catastrophe 
theory. They include both continuous and discrete models exhibiting stable symmetric, 
unstable symmetric, asymmetric and their compound buckling. From a comparison of 
the results of the two-degree-of-freedom systems, namely the continuous systems and 
the finite element discrete systems, the following conclusions are drawn: 

(i) The discrete analysis can be shown to realize the instability phenomena, 
predicted by the continuous analysis. The results of the discrete analysis are shown to 
converge to those of the continuous analysis generally, as the number of discrete finite 
elements increases. 

(ii) The imperfection sensitivity of the structures can be evaluated qualitatively 
and quantitatively by means of the bifurcation set in the control space through the 
catastrophe theory. 

(iii) For a legitimate evaluation of the "cusp and dual cusp catastrophe", the 4th 
order non-linear terms must be earnestly considered in expressions for both the strain 
energy and the external work. Then, the stable symmetric buckling model is shown to 
indicate a typical cusp catastrophe. 

(iv) The unstable symmetric buckling model can be shown to indicate a typical 
dual cusp catastrophe for a relatively small stiffness of the elastic foundation, the cusp 
catastrophe for a relatively large stiffness and the compound double cusp catastrophe 
at a certain critical stiffness value. 

(v) The asymmetric buckling model can be shown to indicate the typical fold 
catastrophe for a relatively small stiffness of the inclined elasic foundation, the dual 
cusp catastrophe for a relatively large stiffness and the compound hyperbolic umbilic 
catastrophe at a certain critical stiffness value. 

1. Introduction 

71 

Studies on the stability of equlibrium states of continous systems were developed 
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by Euler and Lagrange. Poincare discussed the general bifurcation theory in terms 
of the topology of differential equations. Liapunov defined mathematically the 
stability from the viewpoint of the convergence of arbitrary perturbations. Also, 

Koiter unified the non-linear elastic bifurcation theory of continuous systems1> and, 
together with Budiansky and Huchinson, investigated the general elastic stability 
theory. This included the post-buckling behavior and the imperfection sensitivity 

of structures in the form of a Taylor expansion about a singular point of the total 
potential energy. Furthermore, applications of the generalized coordinates to this 
non-linear instability phenomenon had been accomplished by Thompson. 2> 

On the other hand, independently from those people just mentioned, topologist 
R. Thom treated such bifurcation phenemena as singular points of mappings. He 
called this the "Catastrophe Theory", and published "Structural Stability and 
Morphogeneses".8> In the catastrophe theory, the discontinuous phenomenon can 

be caused even by certain continuous changes of the relevant parameters, and the 
discussion is focussed on the singularity of the mappings. Zeeman clarified the 
feasibility of the applications of this catastrophe theory to Euler's bifurcation 
problem.4> 

Thompson and Hunt established the relationship between the non-linear elastic 
bifurcation buckling theory and the topological catastrophe theory, that is, those 
between the symmetric buckling, asymmetric buckling and limit points in the former 
theory and the so-called Thom's seven elementary catastrophes in the latter. 5

•
6

•
7> 

The present paper presents a comparative study on the continuous analyses and 
discrete analyses on column models in relation to the models by Niwa et al. 8> The 
first stable symmetric buckling model corresponds to an elastica model, normal 

simple struts and rings, struts on an elastic foundation and normal thin plates sub­
jected to in-plane loading. The stability of such models has been analyzed by 
Thompson in terms of the differential equation, continuous method and finite element 
method.9> The second unstable symmetric buckling model corresponds to a laterally 

loaded shallow arch, a column on an elastic foundation, a pony truss and a cylindrical 
or elliptic shell subjected to an external pressure and an axial load. Furthermore, 
the third asymmetric buckling model corresponds to a rigid frame in the well-known 

Roorda experiments,1°> and in Britvec's analysis, to a complete spherical or oblate 
spheroidal shell under external pressure. 

All the proposed models are assumed to be elastic conservative systems. There­
fore, the necessary and sufficient condition of the equilibrium of the systems is the 

total potential energy being stationary, whereas the condition of the stability of the 
equilibrium systems is the second variation of the total potential energy being positive 
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definite. t Furthermore, these column models are assumed to be inextensible along 
the neutral axis. The load is assumed to act conservatively in the axial direction, 

being controlled by a single loading parameter. Thus, the total potential energy of 
a column structure can be expressed in terms of a single loading parameter, the 

lateral deflections and the associated prescribed initial deflections. The initial 

deflections are assumed in the same modes as the considered buckling modes. The 

other imperfection parameters such as load eccentricities and residual stresses are 
not considered herein. 

Thus, several interesting comparisons can be made among those three catastro­

phe analyses: the two-degree-of-freedom analysis, the continuous analysis and the 

discrete analysis. The applicability and the feasibility of the proposed method are 

discussed in a later section. 

2. Catastrophe Analysis 

The load-carrying capacity of structures is generally adversely affected by 

imperfections such as initial deformations, eccentricities and residual stresses. This 

is what is called the "imperfection sensitivity of structures". 

It is a general practice to solve the elasto-plastic and geometrically non-linear 

equilibrium equations to evaluate the load-carrying capacity. For this purpose, 
such numerical procedures as Newton-Raphson's, perturbation, incremental and 
homotopy continuation methods are commonly used. Consequently, the load­

carrying capacity of structures can be plotted against the initial imperfections. 

However, these results can only be obtained in a discrete numerical form and are 
generally time-consuming. 

In this respect, an application of the catastrophe theory may be found to be 

useful. The load-carrying capacity of structures can be evaluated explicitly by 

means of the bifurcation set of the catastrophe map. The catastrophe map, herein, 
is defined to be a map of singular pointst t of equilibrium surface on the control space, 

spanned by a loading parameter and several imperfection parameters. The mapped 

surface is called the bifurcation set, designating the adverse effects of the initial 
imperfections. It can be evaluated without resorting to the solution process of the 

non-linear simultaneous equations. 

t Another definition of the stability may read: The origin of the state space is stable if in some 
region about the origin, there exists a Liapunov function. See "Huseyin, K.: Vibrations and 
stability of multiple parameter systems, Mechanics of Elastic Stability, Sijthoff & Noordhoff, 
1978." 

tt A singular point of the imperfect systems may be treated differently from a singular point of the 
perfect systems, herein. Such a singular point of the perfect systems may be referred to as a 
critical point. 
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3. Continuous Analysis 

(1) General remarks 
In this section, a continuous analysis on stable symmetric, unstable symmetric 

and asymmetric buckling models will be presented. The discussions will be made 

as brief as possible here, and detailed descriptions may be provided in a reference 

by Niwa et al. 11J 

Let W(X) and W0(X) designate the lateral additional and initial deflection of 

column structures, respectively, where X refers to the coordinate taken along the 

deformed neutral axis of the column. Fig. 3.1 illustrates a simply supported column, 

referred to as the stable symmetric buckling model. 

~ 
Fig. 3.1. Stable symmetric buckling model. 

In the inextensible column, a curvature, "x, at the coordinate X can be designated 
as5,9J: 

............ (3.1) 

where W, x=d W/dX and W, xx=d2 W/dX2
• 

Also, a shortening, LI, at the right end as shown in Fig. 3.1, can be shown as: 

LI= J)l-{l-(W,x+ Wo,x) 2}½] dx 

~ I: ( ~ W,x
2
+ W,xWo,x+-}w,/) dx ............ (3.2) 

where L is the constant total length of the column structure. In Eqs. (3.1) and 

(3.2), the terms of (W0 , x)2 and _the higher order terms of W, x are assumed to be 

negligible. 

Let us introduce the following non-dimensionalized parameters: 

Wo 
Wo=y, ............ (3.3) 

where El refers to the constant flexural rigidity of the column structure, and Prefers 

to the axial load applying at the right end. 

Then, the non-dimensionalized total potential energy, V, can be obtained by 
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Table 3.1. Comparison of various approximations of flexural curvature and edge shortening 

Approx-

I 
Curvature Kx 

I 
Shortening .d Remarks imation 

J:( ½ W,x2+ W,x Wo,x )dx 
Linear 

1 W,xx Eigen-Value 
Problem 

2 W,xx +½ W,xx W,.,,2 J:(½ W,x2 + W,xWo,x)dx 
-- -----·-· --~~- -- -----~-- --- --~--- - ------

3 W,xx J:(½w,x2 + W,.,,Wo,x+{ W,x4)dx 
-----~----~-~ ----~--~ 

4 W,xx + ½ W,xx W,x2 J: ( ½ W,.v 2 + W,x Wo,x +{ W,x4 )dx 
Present Analysis, 
Eqs. (3.1) & (3.2) 

the sum of the flexural strain energy and the external work under the axial load: 

V(w,J.,wo)= 1J:<w,;.,,+w,;,.w,~v)dx l 
-,lJ:( ;-w,;+w,xWo,x +{w,~) dx 

where W,x=dw/dx, Wo,x=dw0/dx, and w,:r::r:=d2w/dx2. 

............ (3.4) 

Usually, however, both the second term of "x in Eq. (3.1) and the third term of 
Ll in Eq. (3.2) are not taken into account for linear bifurcation problems. Table 3.1 

shows several possible combinations of approximate curvature and edge shortening. 

It can be shown, firstly, that the potential energy based on Approximation I leads 

only to a linear eigen value problem. Secondly, the potential energy based on 

Approximation 2 or 3 can be shown to fail in evaluating rigorously either the flexural 

strain energy or the external work. Finally, the potential energy in the last row is 
considered to be sufficiently rigorous, and is adopted herein in order to approximate 

the geometrical non-linearity. 

(2) Stable Symmetric Buckling Model 
Fig. 3.1 illustrates an arbitrary deformed state under a load, P. The non­

dimensionalized total potential energy of the model is given by Eq. (3.4). This 

equation may be interpreted as the map with a lateral deflection, w, as the state 

variable, and load, J., and the lateral initial deflection, w0, being the control 

parameters. 
The perfect column model without any initial imperfections has, in general, 

distinct bifurcation buckling points. The primary buckling mode is of a half sine 
wave. 

Therefore, the modal transforms (h1 x h2) given by 

............ (3.5) 
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can be adopted to transform directly the total potential energy, V, to a new potential, 

A. In Eq. (3.5), v1 and e1 refer to the parameters indicating the magnitude of the 

buckling mode and that of the imperfection of the same mode, respectively. 

Upon transformation through Eq. (3.5), the Taylor expansion of the imperfect 

total potential energy, A, around the critical point, (vi, .t, e1)=(0, rr2, 0), of the 

perfect system, leads to12> 

............ (3.6) 

where 

C _2_ 6 
7t'2 

i 
AOC- -Auu- 8 7t'' u-- 2' 

n'4 
.t.=1r2. At•=-2• 

Since Afm>O, Eq. (3.6) indicates the stable symmetric bifurcation buckling 
corresponding to Thom's typical cusp catastrophe. It is well-known, however, 

that the bifurcation set of the cusp catastrophe does not provide any realistic meaning. 

In such cases, the load-carrying capacity of the model should be evaluated using a 

certain yield criterion of the material in the elasto-plastic range. However, such 

elasto-plastic characteristics are beyond the scope of this paper. 

(3) Unstable Symmetric Buckling Model 

Let us consider a column similar to the stable symmetric model, but with an 

elastic foundation at the right end as shown in Fig. 3.2. Then, the non-dimension­

alized total potential energy of the model is given by 

V(w, .t, Wo)= 1 J:(w,!x+w,!x w,!) dx 

-,t J:( 1 w,;+w,,, Wo,x + ! w,!,) dx+ ~ Wi ............ (3.7) 

Fig. 3.2. Unstable symmetric 
buckling model. 
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where wL= WL/L= W(X=L)/L, k=KL8/El, and K refers to the spring constant of 

the elastic foundation. 

Then, the following three typical instability phenomena can be shown to take 

place depending upon the magnitude of the non-dimensionalized spring rigidity, 

k, of the elastic foundation: 

(i) when k>rr2 

A distinct bifurcation with mode 2: 

w(x)= v2 sin 1rx 

may occur at the critical point {v2, )., c:2)=(0, rr2
, 0). The mode corresponds to a 

half sine waveform for the column buckling configuration. 

Then, the non-dimensionalized total potential energy of the imperfect model 

near the critical point can be expanded to the following form: 

............ (3.8) 

where 

Eq. (3.8) predicts the stable symmetric bifurcation buckling corresponding to 

Thom's cusp catastrophe. This model can behave similarly to the simply supported 

column without any significant effect from the elastic foundation. 

(ii) when k<rr2 

A distinct bifurcation with mode I : 

w(x)=v1 x 

may occur at the critical point (vi, )., c:1)=(0, k, 0). The mode corresponds to a 

rigid-body straight line configuration. 
The non-dimensionalized total potential energy of the imperfect model near the 

critical point can be expanded to the following form: 

where 

A;m=-3k, 

A{0 =-k, 

............ (3.9) 

Af~=-1, l 
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Since A1111 <0, Eq. (3.9) predicts the unstable symmetric bifurcation buckling 

corresponding to Thom's typical dual cusp catastrophe. 

Then, in such a case, the load-carrying capacity ).., of the model can be identified 
as the bifurcation set corresponding to the imperfection sensitivity surface. The 

surface can be expressed by the following non-dimensionalized form: 

- ).., 1 
A.,=-).-= 1 ± 2Aoc). (A1m)½ (3Al0e1)½ 

C 11 C 

............ (3.10) 

near the critical point (v1, )., e1)=(0, k, 0). This sensitivity is usually referred to as 

the two-thirds power law. 

(iii) when k=rc2 

The bifurcations of (i) and (ii) may occur simultaneously. Near the two-fold 

critical point (vi, v2, )., e1, e2)=(0, 0, k, 0, 0), the non-dimensionalized total potential 

energy of the model can be expanded to the following form: 

............ (3.11) 

where 

A~111=-3rc2
, 

Aff=-1, 

1 A2c ___ TC4 
2 - 2 ' 

Eq. (3.11) predicts the compound bifurcation buckling of the stable symmetric 
and the unstable symmetric bucklings corresponding to a double cusp catastrophe 

not included in Thom's seven elementary catastrophes. This catastrophe will not 

be discussed any further. 

( 4) Asymmetric Buckling Model 

The third model is a column similar to the unstable symmetric buckling model, 
but having an asymmetric elastic foundation at the right end as shown in Fig. 3.3. 

Then, the non-dimensionalized total potential energy of the model can be obtained as 

V(w, )., w0)=; J:(w,;x+w,;_,w,;) dx 

-). J:(; w,;+w,,,w0,,,+{-w,;) dx ............ (3.12) 
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Fig. 3.3. Asymmetric buckling model. 

where 

Let us consider the modal transform (h1 x h2): 

h1 : w(x)=v1x+v2sin7l'x 

h2: Wo(x)=e1x+e2sin7l'x. 

79 

. ........... (3.13) 

Upon substitution of Eq. (3.13) into Eq. (3.12), the potential energy, V, can be 

rewritten as D: 

............ (3.14) 

The following three typical instability phenomena can be shown to take place 
depending upon the magnitude of the spring constant k: 

(i) when k>27l'2 

A distinct bifurcation with mode 2: 

w(x)= v2sin7l'X 

may occur at the critical point (v2, ;., e2)=(0, 7r2
, 0). Taking into account the inter­

action term v1 v;, the non-dimensionalized total potential energy of the imperfect 
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model near the critical point can be expanded to the form of 

1 
A(v2, l, e2)=24A~H2v: 

+ ~ A~(l-l,)v2+A~v2e2, 

where 

............ (3.15) 

Since A~m<0, Eq. (3.15) predicts the unstable symmetric bifurcation buckling 
corresponding to Thom's dual cusp catastrophe. Then, the bifurcation set near the 

critical point is in a form similar to Eq. (3.10), and is given by 

............ (3.16) 

(ii) k<211:2 

A distinct bifurcation with mode 1 : 

w(x)=v1x 

may occur at the critical point (vi, l, e1)=(0, k/2, 0). The non-dimensionalized 

total potential energy of the imperfect model near the critical point can be expanded 

to the form of 

where 

3 
Ac -De - -k AOC- 1 111- 111-- 4 , u-- ' 

............ (3.17) 

Since A111 *0, Eq. (3.17) predicts the asymmetric bifurcation buckling cor­

responding to Thom's typical fold catastrophe. 

The bifurcation set is referred to as the one-half power law, and can be expressed 

as 

- Am 1 
' ---1±--(2Ac A 1•• )½ Am-,\ - Aoc,t 111 1"1 • 

C 11 C 

............ (3.18) 

where, since Ar1<0 and A!c<0 in general, Eq. (3.18) is valid only if e1 <0 for A111 <0. 
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(iii) when k=2TC2 

The bifurcations of (i) and (ii) may occur simultaneously. Near this critical 

point (vi, V2, l, ei, e2)=(0, 0, k/2, 0, 0), the total potential energy of the imperfect 
model can be expanded to the form of 

... ......... (3.19) 

where 

Since 

Eq. (3.19) predicts the semi-symmetric bifurcation buckling, that is, the homeoclinal 
bifurcation buckling corresponding to Thom's hyperbolic umbilic catastrophe. 

Detailed discussions on the bifurcation sets for each model just mentioned will 
be described in section 5. 

4. Discrete Analysis 

(1) General Remarks 
A catastrophe analysis through discretization will be presented herein. The 

discretization adopted herein are the finite element method (abbreviated as FEM) 
using the ACM shape function, that is, the cubic shape function, and a simplified 
element method (SEM), idealizing the column to consist of chains of rigid bars and 
a flexural spring, first introduced by Yamada and Watanabe.m These discrete 
numerical analyses are compared with the continuous analyses. All of the as­
sumptions made for the continuous analysis are also adopted herein. Also, the 
D. 0. F. at each nodal point is two for FEM and one for SEM, respectively. Thus, 
the total D. 0. F. in the SEM is much less than that in the FEM. 

The discretized total potential energy corresponding to Eq. (3.3) can be expressed 
as 
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I I 
V(wi, J., Wa1)= 2 Kt1w;w1+2 Kft2nw1w1wkw1 

A KGl A KG2 -2 iJ W1W1-g iJkzW;WJWkWl 

-J. Kt1w,w01 ............ (4.1) 

In Eq. ( 4.1 ), K fl and K tiz refer to the linear and non-linear flexural stiffness 

matrices, respectively, whereas, K¥J1 and Ktt refer to the linear and non-linear 

geometrical matrices, respectively. Each subscript i, j, k, I obeys the summation 

convention up to the total D. 0. F., N. 

(2) Stable Symmetric Buckling Model 

For the perfect model w01=O (j= I, 2, ... , N), the characteristic equation at the 

critical point: 

<let (Kf/-J.Kt1)=O ............ (4.2) 

provides n eigenvector matrices, ¢11 (i= I, ... , N; j= I, ... , n) where n eigenvectors are 

chosen corresponding to the smallest n eigenvalues. 

Then, the following modal transform is applied: 

l ~=I, 2, ... , N l 
J-1, 2, ... , n f 

1,s;,n«:._N 
............ (4.3) 

This transform diagonalizes the Hessian matrix of the total potential energy in Eq. 

(4.1) at the critical point. Upon substitution of Eq. (4.3) into Eq. (4.1), the di­

agonalized potential energy, D, can be obtained as 

D( ) - I K~ Bl I K~ B2 
v,, A, ej --2 ij V1v1+2 ijkl ViVJVkVl 

;. K~a1 ;. K~a2 -2 ij V1V1-g ijklvivjvkvl 

-J.K7}v;e1 ............ (4.4) 

Furthermore, let the same transform, Eq. (4.3), be adopted for the initial 
deflection w01 (i= I, 2, ... , N), that is, 

l ~ :'.' 1, 2, ... , N / 
J-1, 2, ... , n f 

1•-;;_n«:._N 

where e1 corresponds to vij=I, 2, ... , n), and 

[(B1-KBl,1, ,I, 
ij - mn'Pmi'Pnj, 

[(01_KGl,1, ,1, 
ij - mn'Pmi'Pnj, 

K tt = K "!2-µp,1'Pm1'PnJ'Ppk'Pq1, 

Ktt =K</,.~,pq'Pmi'PnJr/>pk'Pql• } 

............ (4.5) 

............ (4.6) 
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I 
1-D.O.F. 

Elements 2 

D.O.F. 1 

le 9.870 8.000 

Ale 
1 -48.705 -32.000 

A°'' 11 -4.935 -4.000 

A~m 360.521 128.000 
(l.000) (0.355) 

Table 4.1. Stable symmetric buckling model. -Cusp Catastrophe-

Discretization methods 

Finite Element Method 
I 

Simplified Element Method 

4 8 16 32 64 4 8 16 32 

8 16 32 64 128 3 7 15 31 
(3, 5) (7, 9) (15, 17) (31, 32) (63, 65) 

9.875 9.870 9.870 9.870 9.870 9.373 9.743 9.838 9.862 

-48.684 -48.699 -48.708 -48.708 -48.708 -43.922 -47.468 -48.393 -48.630 

-4.930 -4.934 -4.935 -4.935 -4.935 -4.686 -4.872 -4.919 -4.931 

360.118 360.986 362.534 368.596 392.834 127.889 294.062 343.340 356.190 
(0.999) (l.001) (1.006) (1.022) (1.090) (0.355) (0.816) (0.952) (0.988) 

64 

63 

9.868 

-48.689 

-4.934 

359.436 
(0.997) 

00 
w 
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Table 4.1 shows the numerical results by the discrete analyses of the model, with 

those through the continuous analysis and one degree-of-freedom analysis. The 

convergence of the buckling loads Ac and the 4th derivatives A1111 with respect to 

the number of discrete elements is illustrated in Fig. 4.1. It may be seen that the 

discretization method can surely realize the instability phenomena of the continuous 

model. 

(A~111)dlscrete 

(A7, 11 )continuous 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

l:,r -

4 8 

Ac 
Buckling 
Load 

•--• 
I!,,.- --1:. 

16 

A~,,, 
Stability 
CoeWctent 

Uc>., .. ,.,. 
Uclcont1naous 

1.1 

0.9 

e>----0 FEM 
..,______. SE M 

32 64 
Number of Elements 

Fig. 4.1. Convergence of buckling load and stability coefficient. 

(3) Unstable Symmetric Buckling Model 

The discretized total potential energy corresponding to Eq. (3.8) is given by 

V(w,, J, Wo1)=; (Kt1+Kft)w,w,+; KfAi w,w,wkwi 

A KGl A KG2 -2 ;1 w,w,-8 iJkiw,w,wkwi 

-JKi1w,wo, ............ (4.7) 

where KJ;=kiJ;,iJ ,., superscript s refers to the spring stiffness, whereas subscript s 

refers to the nodal point on the elastic foundation, and a,, designates Kronecker's 

delta. 
For simplicity, a new stiffness parameter" will be introduced: 

KL3 

k= EI 

instead of the non-dimensionalized spring stiffness, k. 

............ (4.8) 
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Similarly to the continuous analysis, the following typical three instability 

phenomena may be found to occur, depending on the magnitude of ,c: 

0 < ,c < l : stable symmetric bifurcation 
(cusp catastrophe) 

,c = 1: double cusp catastrophe 
,c > 1 : unstable symmetric bifurcation 

(dual cusp catastrophe) 

Table 4.2 shows the numerical results with those of the two-degree-of-freedom 

analysis and the continuous analysis. As an example, the bifurcation set for ,c> l 

in the continuous analysis is illustrated in Fig. 4.2. 

Ez 

Fig. 4.2. Bifurcation set for unstable buckling model. 
- Dual Cusp Catastrophe - : c= 1.5. 

( 4) Asymmetric Buckling Model 

The discretized total potential energy corresponding to Eq. (3.16) is given by 

where 

V(w,, l, w01)= ~ (Kf]+Kr;)w,w,- ~ K?Jw,w,-J.Kf]W1Wo, 

+J_(K82 +Ks~) ~K02 w 2 iJk ijk w,w,wk- g ijkl jWJWkWI 

+ ~ <KfAi +KtJkl+Kt:ki+Knk1)w1w,wkwl 

SI _ _!_ GI 01 Kijkl- 8 kKjJKkl> 

K sa _J_k,,, ,,, KG1 ijkl- 8 Ui,U JI kl, 

............ (4.9) 
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2 4 8 16 32 64 4 8 16 32 
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128.000 360.118 360.987 362.534 368.596 392.834 127.889 294.062 343.340 356.190 
(0.355) (0.999) (1.001) (1.006) (1.022) (1.090) (0.355) (0.816) (0.952) (0.988) 

64 

64 

9.868 

2 

-48.689 

-4.934 

359.436 
(0.997) 

00 

°' 



Continuous 
method 

Elements 

D.O.F. 

-

i.c1 9.870 

J.cz 9.870 

Mode l, 2 

Ale 
1 -9.870 

A2e 
2 -48.705 

A"c 
11 -J.000 

A"c 
22 -4.935 

A;lll -29.609 
(1.000) 

Ai222 360.521 
(1.000) 

Table 4.2(b). Unstable symmetric buckling model. -Double Cusp Catastrophe­

tc =tc2EI/(kL3)= 1.0 

Discretization methods 

2-D.O.F. 
I 

Finite Element Method Simplified Element Method 

2 4 8 16 32 64 4 8 16 32 

-- ----------- -- --- ----- - - --------- - --

2 9 17 33 65 129 4 8 16 32 
(4, 5) (8, 9) (16, 17) (32, 33) (64, 65) 

---- ·-----

8.000 9.870 9.870 9.870 9.870 9.870 9.870 9.870 9.870 9.870 

8.000 9.875 9.870 9.870 9.870 9.870 9.373 9.743 9.838 9.862 

I, 2 I, 2 I, 2 l, 2 1, 2 l, 2 l, 2 1, 2 l, 2 l, 2 

-8.000 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 

-32.000 -48.684 -48.699 -48.708 -48.708 -48.708 -43.922 -47.468 -48.393 -48.630 

-1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 ·-1.000 -1.000 -1.000 

-4.000 -4.930 _:4_934 --4.935 -4.935 -4.935 _:_4.686 . =-4.872 _:_4.919 -4.931 

-29.610 -29.605 -29.595 -29.553 -29.388 -28.724 -28.118 -29.230 -29.514 -29.585 
(1.000) (1.000) (1.000) (0.999) (0.993) (0.970) (0.950) (0.987) (0.997) (0.999) 

128.000 360.671 361.022 362.535 368.596 392.784 127.889 294.062 343.340 356.190 
(0.355) (1.000) (1.001) (1.006) (1.022) (1.090) (0.355) (0.816) (0.952) (0.988) 

64 
-----

64 

- ------ --

9.870 

9.868 

1, 2 

-9.870 

-48.689 

-1.000 

-4.934 

-29.603 
(1.000) 

359.437 
(0.997) 

00 
-i 



Continuous 
method 

Elements 
--

D.O.F. 

---

J.c 6.580 

Mode 1 

Ale 
1 -6.580 

AIT -1.000 

Ai111 -19.739 
(1.000) 

Table 4.2(c). Unstable symmetric buckling model. -Dual Cusp Catastrophe­

K = 11:2El/(KL3)= 1.5 

Discretization methods 

I 
2-D.O.F. ! 

I 
Finite Element Method 

I 
Simplified Element Method 

I 

2 4 8 16 32 64 4 8 16 32 
-·-·. ---- -- - -- ---·---- ·------ -- ------- ---- ---- ---

2 9 17 33 65 129 4 8 16 32 
(4, 5) (8, 9) (16, 17) (32, 33) (64, 65) 

-------- - ·----· -------

6.580 6.580 6.580 6.580 6.580 6.580 6.580 6.580 6.580 6.580 

1 1 1 1 1 1 1 1 1 1 

-6.580 -6.580 -6.580 -6.580 -6.580 -6.580 -6.580 -6.580 -6.580 -6.580 

-1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 

-19.740 -19.736 - 19.725 -19.684 -19.518 -18.854 -19.739 -19.739 -19.739 -19.739 
(1.000) (1.000) (0.999) (0.997) (0.989) (0.955) (1.000) (1.000) (l.000) (1.000) 

64 
------------

64 

6.580 

I 

-6.580 

-1.000 

-19.739 
(1.000) 

00 
00 
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and subscript s corresponds to the nodal point on the elastic foundation. 
Then, the following typical three instability phenomena may be found to occur, 

depending on the magnitude of IC introduced in eq. (4.8): 

0 < IC < 0.5 : unstable symmetric bifurcation 
(dual cusp catastrophe) 

IC = 0.5 : homeoclinal bifurcation 
(hyperbolic umbilic catastrophe) 

Fig. 4.3. Bifurcation set for asymmetric buckling model. 
- Dual Cusp Catastrophe - : A:=0.25. 

Fig. 4.4(a). Bifurcation set for asymmetric buckling model. 
- Hyperbolic Umbilic Catastrophe - : A:=0.5. 
Only the Lowest Sheet of Bifurcation Set is shown. 
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" > 0.5 : asymmetric bifurcation 
(fold catastrophe) 

Table 4.3 shows the numerical results with those of the two-degree-of-freedom 

analysis and the continuous analysis. The bifurcation sets in the continuous analysis 

are illustrated in Figs. 4.3, 4.4 and 4.5 for 1'=0.25, 0.5 and 0.75, respectively. 

Fig. 4.4(b). Bifurcation set for asymmetric buckling model. 
- Hyperbolic Umbilic Catastrophe -: K=0.5. 
All Sheets of Bifurcation Set are shown. 

Et 

Fig. 4.5. Bifurcation set for asymmetric buckling model. 
- Fold Catastrophe - : K=0.75. 



Continuous 
method 

I 
2-D.O.F. 

Elements 2 

D.O.F. 2 

Ac 9.870 8.000 

Mode 2 2 

A2c 
2 -48.705 -32.000 

Ao' 22 -4.935 -4.000 

ffs2 9.870 11. 739 

Di22 -97.409 -78.957 

D~222 1802.605 1075.480 

A~u -1081.563 -517.724 
(1.000) (0.479) 

Table 4.3(a) Asymmetric buckling model. -Dual Cusp Catastrophe­

"= rr2Ef/(KL3) =0.25 

Discretization methods 

Finite Element Method Simplified Element Method 

4 8 16 32 64 4 8 16 32 

9 17 33 65 129 4 8 16 32 
(4, 5) (8, 9) (16, 17) (32, 33) (64, 65) 

9.875 9.870 9.870 9.870 9.870 9.373 9.743 9.838 9.862 

2 2 2 2 2 2 2 2 2 

-48.684 -48.699 -48.708 -48.708 -48.708 -43.922 -47.468 -48.393 -48.630 

-4.930 -4.934 -4.935 -4.935 -4.935 -4.686 -4.872 -4.919 -4.931 

9.865 9.870 9.870 9.870 9.870 10.367 9.996 9.901 9.878 

-97.307 -97.403 -97.409 -97.409 -97.409 -92.504 -96.164 -97.096 -97.331 

1799.186 1802.880 1804.604 1810.678 1834.916 1428.387 1699.504 1776.166 1795.938 

64 

64 

9.868 

2 

-48.689 

-4.934 

9.872 

-97.390 

1800.941 

-1080.282 -1080.811 -1079.442 -1073.442 -,-1049.131 -1047.833 -1075.861 -1080.404 -1081.160 -1081.397 
(0.999) (0.999) (0.998) (0.992) (0.970) (0.969) (0.994) (0.999) ().000) (1.000) 

J 



Continuous 
method 

Elements 
·---

D.O.F. 

2c1 9.870 

A2c 9.870 

Mode 1, 2 

Ale 
I -9.870 

A2e 
2 -48.705 

Aoc 
11 -1.000 

Aoc 
22 -4.935 

A~u -14.804 
(1.000) 

A~22 -48.705 
(1.000) 

Table 4.3(b}. Asymmetric buckling model. -Hyperbolic Umbilic Catastrophe­

K:=tc2EI/(KL3)=0.5 

Discretization methods 

2-D.O.F. 
I 

Finite Element Method I Simplified Element Method 

2 4 8 16 32 64 4 8 16 32 

- -------· ··--- -------- --~--

2 9 17 33 65 129 4 8 16 32 
(4, 5) (8, 9) (16, 17) (32, 33) (64, 65) 

------- - ·--- ---·· 

8.000 9.870 9.870 9.870 9.870 9.870 9.870 9.870 9.870 9.870 

8.000 9.875 9.870 9.870 9.870 9.870 9.373 9.743 9.838 9.862 

1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 1, 2 

-8.000 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 

-32.000 -48.684 -48.699 -48.708 -48.708 -48.708 -43.922 -47.468 -48.393 -48.630 

-1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 

-4.000 -4.930 -4.934 -4.935 -4.935 -4.935 -4.686 -4.872 -4.919 -4.931 

-12.000 -14.804 -14.804 -14.804 -14.804 -14.804 -14.804 -14.804 -14.804 -14.804 
(0.811) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) 

-32.000 -48.654 -48.701 -48.704 -48.705 -48.713 -46.252 -48.082 -48.584 -48.665 
(0.657) (0.999) (1.000) (1.000) (1.000) (1.000) (0.950) (0.987) (0.997) (0.999) 

64 

64 

.. ----

9.870 

9.868 

1, 2 

-9.870 

-48.689 

-1.000 

-4.934 

-14.804 
(1.000) 

-48.695 
(1.000) 



Continuous 
method 

I 
2-D.O.F. 

Elements 2 

D.O.F. 2 

Ac 6.580 6.580 

Mode 1 1 

Ale 
1 -6.580 -6.580 

AOC 
11 -1.000 -1.000 

A~n -9.870 -9.870 
(1.000) (1.000) 

Table 4.3(c). Asymmetric buckling model. -Fold Catastrophe­

tc=n:2EI/(KL3)=0.15 

Discretization methods 

Finite Element Method 
I 

Simplified Element Method 

4 8 16 32 64 4 8 16 32 
-·--- -- - -- --------- ----

9 17 33 65 129 4 8 16 32 
(4, 5) (8, 9) (16, 17) (32, 33) (64, 65) 

6.580 6.580 6.580 6.580 6.580 6.580 6.580 6.580 6.580 

I 1 I I I 1 I 1 I 

-6.580 -6.580 -6.580 -6.580 -6.580 -6.580 -6.580 -6.580 -6.580 

-1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 -1.000 

-9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 -9.870 
(1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) (1.000) 

64 
--- -

64 

6.580 

1 

-6.580 

-1.000 

-9.870 
(1.000) 
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5. Discussions 

Detailed discussions will be presented herein based on Tables 3.1, 4.1, 4.2 and 

4.3, and Figs. 4.1, 4.2, 4.3 and 4.4, comparing the numerical results of both the 

continuous and discrete analyses. 

Table 3.1 shows how the degree of the order of the approximation for either a 

curvature, ,c,,, or a shortening, Ll, may affect the form of the total potential energy. 

The first order approximations in the first row give a linear eigenvalue problem, 

from which only a critical bifurcation buckling load can be evaluated. The fourth 

order approximations in the last row are found to describe the geometrical non­

linearity with sufficient accuracy. The second and third rows in the table indicate 

that the potential energies fail to evaluate rigorously either the flexural strain energy 

or the external work. 

Three tables in Section 4 provide a complete comparison among the numerical 

results of stability coefficients such as A111, A1111 , for the one-degree-of-freedom, 

two-degree-of-freedom, continuous and discrete analyses, respectively. 

Furthermore, in these tables, the two figures in parentheses in the second row, 

pertaining to the FEM, refer to the D. 0. F. of the lateral deflection and that of the 

rotation, respectively. And, the value in parentheses in the rows of stability coef­

ficients such as A111 , A1111, indicate the ratio of the value of each coefficient through 

discrete analyses to the value of the corresponding coefficient through the continuous 

analyses. 

Table 4.1 shows the numerical results for the stable symmetric buckling model. 

Fig. 4.1 illustrates the convergence of the buckling loads and the 4th order stability 

coefficients Af111 with respect to the number of finite elements. Obviously, the 

discrete analyses can be shown to realize the instability phenomena, predicted by 

the continuous anlysis. The FEM used herein, however, may seem to tend to 

estimate the values of Aim slightly larger than the SEM, with an increase of the 

number of elements. 

The numerical results are shown in Table 4.2 f~r the unstable symmetric buckling 

model. In this case, the discrete analysis can be also shown to realize the continuous 

model. Similarly, the FEM will tend to overestimate slightly the values of Af111, 

A~222 etc, in comparison with the SEM. 

Fig. 4.2 illustrates a bifurcation set for ,c> I in the continuous analysis. The 
surface of the bifurcation set represents the dual cusp catastrophe with respect to 

the buckling mode l, i.e, the mode for the buckling of the column structure. It is 
symmetric with respect to the plane of e1 =0, or e2-A plane. Furthermore, it has 
no dependence on the value of e2, which is called the two-thirds power law. For 
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example, if ei=l/1000, e2=0, then i,,.=0.985. The load-carrying capacity will 
thus be reduced by 1.5 %, compared to the buckling load. 

Table 4.3 shows the numerical results for the asymmetric buckling model. 
The bifurcation sets in the continuous analysis are illustrated in Figs. 4.3, 4.4 and 
4.5 for .t=0.25, 0.5 and 0.75, respectively. 

A bifurcation set for .t=0.25 is shown in Fig. 4.3. The surface of the bifur­
cation set corresponds to the dual cusp catastrophe with respect to the buckling 

mode 2, i.e., the straight line rigid-body mode. It is symmetric with respect to the 

plane e2=0 independent of e1, For example, if e1=0, e2=l/IOOO, then i,,.=0.971, 
so that the load-carrying capacity will be reduced by 2.9 %, compared to the buckling 

load. 
Fig. 4.4 illustrates the bifurcation sets of a typical hyperbolic umbilic catastrophe 

for .t=0.5. The bifurcation point has been called the homeoclinal bifurcation point 

of the semi-symmetric buckling by Thompson. For example, if e1=0, e2=1/1000, 
then i,,.=0.851, and if ei=l/1000, e2=0, then i,,.=0.937. Thus, the load-carrying 
capacity will be reduced by 14.9 % and 6.4 %, respectively, from the buckling load. 

C3. 4.5 illustrates the bifurcation set of a fold catastrophe with respect to the 
buckling mode 1 for .t=0.75. It will exist only if e1>0 independently on e2. For 

example, if ei=l/1000, e2=0, then i,,.=0.923, whereby the load-carrying capacity 
will be reduced by 7.7% from the buckling load. 

From these numerical results, the effects of the initial imperfections on the 
load-carrying capacity may be found to be significantly sensitive for the asyn;imetric 
buckling model. The imperfection sensitivity to mode 2, e2 of the compound 
buckling for .t=0.5, may seem to be much greater than that of a distinct buckling 

of mode 2 for .t=0.25. 

Next, several discussions on the error and convergence of each stability coefficient 
may be made. The values of the stability coefficients calculated by a discrete analysis 
may converge to those in a continuous analysis, as the number of discretized elements 
increases. Especially, the stability coefficients through the SEM may converge 

rapidly to the value through the continuous analysis. The value by the FEM, on 
the other hand, may have a tendency to overestimate slightly, as the number of 

elements becomes larger. The FEM provides a very accurate value of the buckling 
loads regardless of any kinds of models and buckling modes. 

The values of the stability coefficients for the rigid buckling mode 1 of the 

elastic foundation can be evaluated precisely for any modes, and in any analyses. 
Those for mode 2 of the column structure, however, may contain slight errors de­
pending on the degree of approximation of the mode shape. 
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6. Conclusions 

For several simple elastic conservative column structures, both continuous and 

discrete analyses were performed. The numerical results were compared with the 
two-degree-of-freedom analyses. 

The following conclusions may be summarized as: 

(l) The discrete analysis can be shown to realize the instability phenomena, 
predicted by the continuous analysis. The results of the discrete analysis are shown 

to converge to those of the continuous analysis generally, as the number of discrete 

finite elements increases. 

(2) The imperfection sensitivity of structures can be evaluated qualitatively 
and quantitatively by means of the bifurcation set in the control space through the 

catastrophe theory. 

(3) For a legitimate evaluation of the "cusp and dual cusp catastrophe", the 
4th order non-linear terms must be considered rigorously in expressions for both the 

strain energy and the external work. Then, the stable symmetric buckling model 

is shown to indicate the typical cusp catastrophe. 

(4) The unstable symmetric buckling model can be shown to indicate the 

typical dual cusp catastrophe for a relatively small stiffness of the elastic foundation, 

the cusp catastrophe for a relatively large stiffness, and the compound double cusp 

catastrophe at a certain critical stiffness value. 
(5) The asymmetric buckling model can be shown to indicate the typical fold 

catastrophe for a relatively small stiffness of the inclined elasic foundation, the dual 

cusp catastrophe for a relatively large stiffness, and the compound hyperbolic umbilic 

catastrophe at a certain critical stiffness value. 
(6) The value of each stability coefficient calculated by the SEM may converge 

to that by the continuous analyses. 
(7) The value of each stability coefficient calculated by the FEM may tend to 

overestimate slightly in comparison with the SEM, as the number of discrete finite 

elements increases. 

(8) The true load-carrying capacity of the column structure should be investi­

gated, taking into account such things as the extensibility, the elasto-plasticity of 

material and the residual stresses of the cross section. 

This study was financially assisted by a Grant-in-aid for Scientific Research 

from the Ministry of Education, Science and Culture in the years of 1981 and 1982. 
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