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Simplified Formula for Axial Strains of Buried 
Pipes Induced by Propagating Seismic Waves 

By 
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Abstract 

Pipe sh"ains developed in buried straight pipes by horizontally propagating seismic 
waves are analyzed. Extensive discussion is made for the generai slippage conditions 
between soils and pipes, as well as for the arbitrary angle of incidence of the 
longitudinal and transverse waves relative to the pipe axis. After the pipe strain 
solutions and their upper and lower bounds are obtained for the given values of the 
angle of incidence, solutions for the maximum pipe strains with unknown angles of 
incidence are discussed. In particular, simple approximate closed-form solutions for 
the IJlllJ[llllum pipe strains developed herein should be uscf ul for practical applications. 

1. Introduction 

'ti37 

Among major causes of structural damage to underground lifeline pipes during 

earthquakes, the effects of propagating seismic waves have been recognized and 

studied by many authors11 • 21 • 51 •81 •81 • 91 • 101 • Their results generally agree in the following: 

(1) Pipe failures are dominated by the ground strain. (2) Axial strain is of primary 

importance in comparison with the bending strain. (3) The mass effect of the pipe 

is negligile; i. e., a quasi-'static analysis can be applied in finding the pipe strain 

imparted from the ground. (4) Slippage between the pipe and the surrounding soil 

makes the pipe strain smaller than the free field strain of the ground. 

Such structural behaviors of buried pipes have been verified analytically, as well 

as from field observations. Some works have dealt with the stress concentration in 

curved pipes or junctions11 •81 • 91 • The effects of the angle of incidence, namely the 

angle between the direction of the pipe axis and that of the wave propagation, have 

also been analyzed for some particular cases51 • 

In those earlier studies, certain limitied assumptions have been employed as to 

the type of seismic wave, angle of incidence, or the slippape conditions. This study 
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deals with the response behavior of straight buried pipes subjected to a horizontal 

seismic wave propagation under more general loading conditions. 

The analysis is made by using two pipe-soil interaction models. One uses the 

standard equivalent spring constant, and the other assumes a certain analytical function 

for soil displacement along the direction perpendicular to the pipe. A horizontal 

propagation of sinusoidal seismic waves at an arbitrary angle of incidence is assumed. 

Both the longitudinal and transverse waves are considered. Along with the exact 

solution under partial slippage between the soil and the pipe, approximate closed-form 

solutions are obtained. 

After characterizing the input ground motions in Chapter 2, Chapter 3 deals 

with pipe strains for a given angle of incidence of the input seismic wave. It is a 

generalization of the pioneering works by Sakurai and Takahashi8> and of those by 

Miyajima and Miyauchi5> to general cases with longitudinal and transverse seismic 

waves, comprehensive representation of partial slippage conditions, and incorporating a 

closer lower bound solution. In Chapter 4, a maximum pipe strain with an unknown 

angle of incidence is discussed. After demonstrating its general behavior based on 

exact solutions, simple upper bound solutions are developed. It is shown under pipe

slippage that the maximum pipe strain for the longitudinal waves will be proportional 

to the cubic root of the free field normal strain. The maximum pipe strain for the 
transverse waves will be proportional to the square root of the free field shear strain. 

In Appendix A, the evalution of the spring constant and slippage conditions in pipe

soil interaction is discussed on the basis of the experimental works by Kuribayashi, 

Iwasaki, Kawashima and Miyata'>, from which some preliminary formulas are proposed. 

2. Input Ground Motion 

It is assumed that sinusoidal seismic waves propagate horizontally with an angle of 

incidence 8 to the buried pipe, as shown in Fig. l. Axial pipe strains caused by these 

seismic waves are dealt with. Longitudinal and transverse waves are considered, and 

discussion is· made with a general understanding that they represent the Rayleigh 

waves and the Love waves, respectively. Recent developments in the strong motion 

Sefs,.,. • . ,,,c 

Fig. 1 Buried Pipe and Horizontally Propagating Seismic Wave. 
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seismology3>, 11 >, 13> indicate that the major part of the energy of seismic motions, in 

frequency ranges affecting the ground strain, is carried by surface waves. Besides, 

when the effect of body waves on the pipe strains is concerned, formulation can be 

made in a similar manner. 

Let the ground displacement caused by the seismic waves propagating along the 

fp axis be represented by 

u,(t, e,) = ~; e,sin(wt-t e,) ............................................. ( 1) 

and 

u,(t, e,)=~; r,sin(we-te,) ············································· (2) 

Eq. (1) represents the effect of the longitudinal wave, in which u1= the longitudinal 

displacement, L,= the wave length, and e1= the normal strain. 

Eq. (2) is for the transverse wave, in which u,= the transverse displacement, L,= 
the wave length, and r,= the shear strain. In these equations, w= the circular 

frequency. The effective input displacement to the pipe for obtaining the axial pipe 

strain is represented by the apparent displacement u.(t, ;:,'), and the apparent wave 

length L0 along the pipe axis ; i. e., 

where 

and 

Ua= 

L,/ cos 8 

L,/ cos 8 

l ;; e1 cos 8 

L, . 8 2,rr,sm 

; longitudinal wave •·· ··· •·· •·· •·· •·· •·· ··· ··· •·· ( 4) 

; transverse wave •····························•(4') 

; longitudinal wave · · • · · · · · · ·· · · · · · · · · · · · · · · · · · · · ( 5 ) 

; transverse wave •····························•(5') 
The strain amplitude eG = 2'1CuG/ L. represents the apparent normal free field strain 

along the pipe axis, and is given by 

{ 
e1 cos2 8 

ea= 
r, sin 8 cos 8 

longitudinal wave······························( 6) 

transverse wave •·····························(6') 

The relation between the apparent free field strain ea and the angle of incidence 8 

is shown in Fig. 2. 

If the position along the pipe is represented by 

z= ~• - ;; (wt- t z') •····················································· ( 7) 
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Fig. 2 Free Field Strain and Apparent 
Free Field Strain. 

Fig. 3 Ground Displacement, Frictional 
Force, and Pipe Strain. 

then Eq. (3) is rewritten as 

.......................................... ( 8) 

as shown in Figs. 2 and 3. 

3. Pipe Strains for a Given Direction of Incident Wave 

3.1 Pipe Model 

A standard method of calculating seismic loads imparted to buried pipes is to use 

a soil-pipe interaction model with an equivalent spring constant. Since the inertia 

force of the pipe can be neglected, the displacement is obtained from the following 

quasi-static equation of equilibrium. 

!)' +--iJ-=o ..................................................................... c 9) 

where u,=up(z) = the pipe displacement, E= the modulus of elasticity of the pipe 

material, d= the wall thickness of the pipe, f =f(z) = the seismic load acting per unit 

area of the pipe surface. The seismic load is determined from 

f(z) =K(u.-u,) ; lu.-u,1:;;;Ju., ·········································· (10) 



Simplified Formula for Axial Strains of Buried Pipes Induced by Propagating Seismic Waves 291 

or 

f(z)=K.du., ; lu.,-u,l>.du.,.••················· .. ··········· ............. (l0') 

where K = the equivalent spring constant of the soil-pipe interaction per unit area, 

and .du.,= the critical relative displacement for the initiation of slippage between the 

soil and the pipe. Eq. ( 10) applies to the elastic interaction forces, and Eq. ( IO') 

holds for the portion of the pipe where the ground displacement relative to the pipe 

exceeds a frictional limit .du.,, and slippage takes place. 

3. 2 Pipe Strain Solutions Using Equivalent Spring Constant 

(1) Exact solution 

The exact solution for the type of interaction forces of Eqs. (10) and (10') has 

been obtained by Miyajima and Miyauchi6>, though their discussion has been confined 

to the case of transverse waves. Herein, their solution is rewritten as Eqs. ( 11) ~ 
( 13) which are more general in that they also include the case of the longitudinal 

waves. 

elastic region .................. ( 11) 

plastic region •.............. (11 ') 

where 

................................. (12) 

The parameter e defines the boundary of the elastic regions. It is determined from 

the following relation: 

(l-a1) (½cos ef tanh -<e¼+ sin ef) 
(1-e) -<;., tanh -<e ~" + 1 

Clearly, e varies in the range O<t:;;:;l. 
The axial pipe strain is represented by 

..................... (13) 
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du lea(a,cost z-a2A~; cosh,<z); elastic region············ (14) 
e(z) =T = 

z ea ;; ( 1-4 i., ) ; plastic region ·· · •· · ··· ··· ( 14') 

From Eqs. (8), (10), (11), and (11') the seismic load f is represented by 

f(z) ={ K.a{O-a,)sin t z+a2sinh,<z} 

K Liu., 

Setting e= 1 in Eqs. (10) and (13) yields 

1 
l+(AL.,/2ir) 2 =l-a, 

elastic region · · · • • · • · · · · · (15) 

plastic region •·· •·· •·· (15') 

Solving this equation for Uc gives the values of Uc and ea on the intiation of slippage 

in the following form. 

Ua,=Llu.,/ ( 1-a,) ········· ······ ······ ··············· ··· ········· •····· •·· •····· ( 16) 
ea,=(21r/L0 )Llu.,/(l-a1) ······················································(16') 

This condition gives a2=0 which reduces Eq. (10) to the following elastic solution 

where no slippage occurs. 

u,(z) =Uaa1 sin~ z; elastic response············································· (11") 
a 

In the same manner, setting a2=0 in Eqs. (14) and (15) gives the result for elastic 

response: 

e(z) =eaa, cost z ............................................................ ( 14") 

j(z) = KuaO-a1) sin~ z ··················································· (15") 
a 

Fig. 3 illustrates the relation between the elastic solution and the solution under 

partial slippage. It demonstrates that slippage between the soil and the pipe reduces 

the amplitude of the seismic load f and the pipe strain e,, as pointed out earlier5> ,a> ,9>. 

The pipe strain amplitude, which is the value of e(O), is obtained from Eq. ( 14) 

as 

I (a,-az,<.b_)ea; 
es= 211: 

a,ea ; 

plastic solution • • • • • • • • • • • • • •· • • • • • • • • • • •· • • • • • • (17) 

elastic solution •·· •·· •·· •·· • •· • •· •·· •·· •·· •·· • •· (17') 

It may be pointed out that the second term on the right-hand side of Eq. (17) 

represents the decrement of the pipe strain due to slippage. 
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(2) Upper and lower bounds 

When slippage between the soil and 

the pipe occurs, Eq. ( 13) requires iterative 

computations to determine e. Therefore 

closed-form approximate solutions will be 

useful. Herein, the upper and lower 

bounds for the pipe strain are discussed. 

Approximations can be made by assuming 

simplified distributions of j(;:,) along the 

pipe, such as those shown in Fig. 4. 

The approximation in Fig. 4(a) as

sumes that sJippage takes place everywhere 

along the pipe. This assumption has been 

used by Sakurai and Takahashi8>, Miyajima 

and Miyauchi5>, and Shinozuka and Koike9>. 

It provides an upper bound on the pipe 

f 

f 

f 

I 
I 

xact 
approximate 

~------+-,----~-z 
\ . 

(a) upper bound 

( b) I ower bound (I ) 

,,.elastic solution 
,,,--,'< pproximate 

exact 

( c ) I ower bound ( II) 

I 
I 

Fig. 4 Distribution of. Frictional Forces for 
strain. The solution is obtained by taking Approximate Pipe Strain. 

the limit of e--+O in the foregoing exact 

solution. Then, the upper bound es. on the pipe strain amplitude is obtained as 

L0 K .du., 
4Ed 

.................................................................. (18) 

It should be noted that Eq. ( 18) gives an upper bound independent of the apparent 

free field strain. Indeed, ea. is the limited value to which es in Eq. ( 17) is asymptotic 

as sG tends to infinity. 

The lower bound illustrated in Fig. 4(b) has been used by Shinozuka and Koike9>. 

The distribution of j(;:,) employed here is the elastic solution given in Eq. (15") at 

the initiation of slippage, that is, for uG = uG,• Therefore, by using Eq. ( 14"), a lower 

bound solution e~~ for the pipe strain amplitude is obtained as 

e~l =~uG a1=__g_ L. K .du., ··········•··•···········••·······•·········•··· (19) L. ' 1r 4Ed 

which is again independent of the apparent free field strain sG. 

As Fig. 4(b) implies, the lower bound e~l would not be close enough to the exact 

solution for some cases. Therefore, a closer lower bound solution is developed by 

using the approximation in Fig. 4(c). Here, the distribution of f(;:,) is assumed to 

coincide with the elastic solution when its value is no more than K.4u., and to take 

on a constant value of K.4u., in the portion of the pipe where the elastic solution 

exceeds K.4u.,. Then, the position on the ;:, axis, defined by e' in fig. 4(c), represents 
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an approximate boundary of the elastic and plastic regions. Then, letting f(;:,) =KJu.,. 

in Eq. (15"), solving for ;:,, and using it for e' L/4, we obtain 

e' =1_ sin-1[{1 + ( ).La )
2

} Ju,,] =1_ sin-I Uc, ••••••••••••••••••••••••••• (20) 
n: 2n: Uc n: Uc 

Then, using the boundary conditions that the slope of e1 (;:,) vanish at ;:.=0, that the 

value and the slope of ep(;:,) be continuous at i:.=e'L/4, and that ep(;:,) vanish at ;:,= 
L/ 4, a lower bound solution ef2>(;:,) is obtained as 

l 
L. K Ju,, [1 +1-{~ cos~ i:.-/(~)2 

-l-sin-1 Uc,}]; O:s;z:s;e'b_ 
4Ed n: u0 , L. Uo, u0 4 

ef2>(;:,) = .............................. (21) 

L. ~iu., (1-4 L); e ~- <;:.::::;; ~- .............................. (21') 

The corresponding lower bound for the pipe strain amplitude is obtained as 

It may be noted that ei: tends to es. in Eq. ( 18) as u0 -oo, and it coincides with eil 
in Eq. (19) when u0 =uc,• In Fig. 5, the upper and lower bounds obtained above 

are compared with the exact solution. Observe that the lower bound eil gives a 

much closer approximation than the other bounds for all values of s0 • 

The estimation of the spring constant K and the critical relative displacement 

Ju., governing slippage conditions is an important subject that requires extensive research 

efforts. A preliminary discussion is made regarding this in Appendix A. 

__ 8su _________ _ 

2 

e5 : exact solution 
eSu : upper bound 

est : lower bound 

4 6 
Ba(I0-3) 

Fig. 5 Pipe Strain Amplitude. (L/D=l03, h/D=l5, D/d=IOO, G/E=2.5x 10-,, 

7.,= 1. 4x 10-,) 
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3. 3 Pipe Strain Solution Using Displacement Profile Function 

As discussed later in Appendix A, the spring constant and the critical relative 

displacement for the slippage condition will be indepedent of the depth of the pipe 

when the pipes are buried . below a certain depth. In such cases, it may be more 

convenient to represent the rigidity and the slippage conditions of the soil in terms 

of physical constants pertinent to the soil. In this sense Shinozuka and Koike9> pro

posed using a displacement profile function and to use the shear modulus to represent 

the soil rigidity, and the critical shear strain to represent the slippage condition. In 

this section, the pipe strains are analyzed using these concepts. 

(1) Elastic solution and relation between the displacement profile function and the 

spring constant 

It is assumed that the soil displacement around the 

pipe takes a certain functional form that coincides with 

the pipe displacement on the pipe surface, and converges 

to the. apparent. free field displacement u. as the distance 

from the pipe increases. As proposed by Shinozuka and 

Koike9>, the displacement profile function U(x) charac

terizes the soil deformation in the vicinity of the pipe, 

as shown in Fig. 6. The soil displacement around the 

pipe may then be represented by 

X 

~uvCx,z) 
•U(x) u0(z) 

pipe 
Fig. 6 Displacement Profile 

Function. 

u,,(x, z) = U(x) u.(z) ............................................................ (23) 
' . 

in which U(x) = the displacement profile function. 

The function U(x) can be related to the spring constant K in the following 

manner. Given the functional form of U(x), . the shearing force /(;::) acting on the 

pipe surface without slippage takes the form 

j(z) =G<p
0 

L"e
0 

sin~;:: ......................................................... (24) 
2ir L. 

where 

<po= [d U/ dx]•-D/2 ..................... • ......................................... (25) 

Substituting Eq. (24) into Eq. (9) leads to 

( L. )s G . 2ir • u_p(Z) = 2ir" Ed </J0e0 sm-r,;z , elastic solution ........................ (26) 

From the condition that the seismic load K(u.-u.P), determined by using the spring 

constant, be equal to /(;::) in Eq. (24), it follows that 



296 

Hence, 

Hiroyuki KAMEDA and Masanobu SHINOZUKA 

G<fto = K { l - ( ;; r iJ <Po} · · · · · · · · · · · · · · ·, .. · .... · · .. · · · · · · · .. · · · · · · · · · · · ·...... (27) 

K G<fto 

( L )2 G 1- -" -<Po 2ir Ed 

......................................................... (28) 

For the functional form of U(x), Shinozuka and Koike9> have proposed to use 

U(x) =Ct exp (-r; t ~) ................................................ (29) 

where 

in which case Eq. (27) reduces to 

<Po=Ct exp (-ct ~) ................................................... (30) 

Then Eq. (30) is rewritten as 

( 2ir r Ed 
K = --{(-=2ir'--'L),.~2 Ed_D_} _ . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . (3 l) 

exp r,; GT -1 

As the argument of the exponential function in Eq. (31) is much smaller than unity, 

K can be approximated by 

2G 
K- D ·······························································"·········· (32) 

Eq. (32) gives very large values of K, compared to Eq. (A. 2) in Appendix A, 

based on an experimental result. This difference directly affects the elastic solution 

for the pipe strain. However, it is the critical force KJum not K itself, that has 

primary effects on the pipe strains under partial slippage conditions. As will be seen 

later, the form of U(x) will have influence only on determining the location of the 

bounday of the elastic and plastic regions on the pipe, and not so much on the 

estimated pipe strain. 

(2) Upper and lower bounds on pipe strains under partial slippage conditions 

When the displacement profile function U(x) is used for estimating the pipe 

strains under slippage conditions, the upper and lower bound pipe strains correspond

ing to Eqs. ( 18), ( 19) and (22) are obtained in the same manner as in Fig. 4. The 

slippage condition in this case is given in terms of the critical shear strain Tcr of the 



Simplified Formula for Axial Strains of Buried Pipes Induced by Propagating Seismic Waves '21:)7 

soil at interface. The shearing stress acting on the pipe surface is represented by 

G r.,. Under slippage it is also clear that 

G r.,=K Ju., ........................................................ , ............ (33) 

Hence, from Eq. ( 18) we obtain the upper bound e~. of the pipe strain amplitude 

in the following form: 

ea. =~ ......................................................... , .............. (34) 

Likewise, the lower bound corresponding to Eq. (19) is obtained as 

eW = 2 L.Gr., ..................................................................... (35) 
1r 4Ed 

The lower bound closer to the exact solution corresponding to Eq. (22) is obtained 

as follows. Again observing Fig. 4(c), and noting that the elastic solution for j(z) 

is given by Eq. (24), the location e' of the boundary of the elastic region is repre

sented by 

where 

s~.= 2nr., ......................................... ~ ................................. (37) 
<ftoL. 

in which s~, represents the apparent free field strain on the initiation of slippage. 

For a particular case where the 'displacement profile function is given by Eq. (29), 

Eq. (37) is written as 

s~,= ~ exp(i: t ~) ............................................................ (38) 

Then, analogous to Eq. (21), the lower bound e;C2>(z) for the pipe strain is obtained 

as 

The lower bound for the pipe strain amplitude is then represented by 
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4. Maximum Pipe Strains with Unknown Directions of Incident Waves 

Since one can not predetermine the angle of incidence 8 of the seismic wave 

relative to the pipe, it is reasonable to use the largest value of the pipe strains for 

the various values of 8. In this chapter, solutions are developed for the maximum pipe 

strains with unknown values of 8. 

4.1 Elastic Solution 

When no slippage occurs between the pipes and surrounding soils, the elastic 

solution applies, and a closed-form solution for the maximum pipe strain with the 

unknown 8 can be readily derived. By substituting Eq. ( 4), ( 4'), (6) and (6') into 

Eq. (17), and referring to the first part of Eq. (12), the elastic solution for the pipe 

strain amplitude es is represented as a function of the input ground strain and the 

angle of incidence in the following form: 

f 
e1 cos2 0 

1 + /3, cos2 0 
longitudinal wave •······· ............. : ........... (41) 

es= l r, sin O cos 0 
1 +/3, cos2 0 transverse wave •··································· (41') 

in which 

( 
2ir )2 /3,= lL, ' /3,=(JLt ................................................... (42) 

The value of O that maximizes es in the above expression is obtained as follows; 

o,,=O longitudinal wave••······························· (43) 

0 l -1 -/3, 
·•=2 cos 2+/3, transverse wave••·•··•··•··•··•··•··•··•·····•··•·· ( 44) 

Then, the maximum pipe strain is given by the value of es corresponding to these 

angles, which yields 

e, e,, = ~l_,+,__/3~,- longitudinal wave •· • • • • • • • •· • • • • •·· • • • • •· • • • • • • •· • • • • ( 45) 

e,, r, transverse wave······································· (46) 

As {31 and /3, usually assume small values relative to unity, these results justify the 

often employed approximations assuming e,1'.:::::::.e1 and e.,'.:::::::.r,/2, and also O,,'.::::::.rr:/4. 

The limited values for the ground strains e, and r., up to which the elastic solu

tions apply, are obtained by substituting eG, in Eq. ( 16') into eG in Eqs. (6) and (6'), 

and solving for e1 and r,• These calculations are made with 0=0,1 and 0,., respectively. 

These limiting ground strains are represented by 
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; longitudinal wave ................................. (47) 

transverse wave (48) 

in which p, and fi, are given by Eq. ( 42}, and 

e, .. 

e,. 

L, K Ju,, 
4Ed 

L, K Ju., L,Gr., 
4Ed = 4Ed 

J ................................................... <•~ 

The non-dimensional parameter e,. coincides with the upper bound solution, Eq. (18), 

when a longitudinal wave propagates with 0=0. The parameters e,. and e,. will be 

used conveniently for expressing the approximate soluitons in 4. 3. 

4.2 Plastic Solution 

Under partial slippage conditions, it is difficult to derive. a closed-form solution for 

the maximum value of e8 , since the transcendental equation, Eq. ( 13) for determining 

e involves 0. This justifies the development of the approximate solutions in the next 

section. Herein the general features of the maximum pipe·· strains, under slippage 

will be discussed, using the numerical results based on the exact solution. 

Fig. 7 shows examples of the pipe. strain amplitude under slippage conditions 

plotted against the angle of incidence 0. The exact solution has been obtained from 

---e 
_____ 

8
~ opproxlmote 

2 

'fl;-
--

Cl) 
"O 
~ 
'a 

stic solution 

e 
C 

C 
"6 ... -flt 
8. ·a 

60° 900 
e e 

(o) longltudlnol wove ( b) transeverse wave 

Fig. 7 Pipe Strain Amplitude. (1,=7,=2xl0-a, L1/D=L,/D=10a, h/D=l5, D/d=l00, 
G/E=2. 5x 10-•) 
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Eq. (17). The upper and lower bound solutions can be obtained by using Eqs. (18) 

and (22), or Eqs. (34) and ( 40). The elastic solution is based on Eq. ( 17'), or Eqs. 

(41) and (41'). 

Fig. 7 demonstrates a widely recognized idea that slippage between the soil and 

the pipe will reduce the pipe strain. As the slippage condition 7., decreases (implying 

that slippage takes place at a smaller ground strain), the maximum pipe strain repre

sented by e,.1 and e,., decreases. 

It should be noted that many previous works on the estimation of axial pipe strains 

have assumed the propagation of longitudinal waves in the direction of the pipe axis, 

claiming that it is a conservative assumption. However, it is clear from Fig. 7 that this 

is not necessarily true when slippage occurs. In each of the two cases of 7., shown 

in Fig. 7, the maximum pipe strain e,., obtained for the transverse waves is larger 

than the maximum pipe strain e.,1 for the longitudinal waves. 

This feature can be seen more clearly in Fig. 8 which shows the maximum pipe 

strains plotted against input free field strains. Observe that the pipe strain e.,, for the 

transverse waves tends to be larger than e,.1 for the longitudinal waves as the free 

field strain increases, causing slippages. 

It may be observed that the values of() corresponding to the maximum pipe strains 

e,.1 and e.,., denoted by 0,,.1 and (),., respectively, are fairly close when slippage occurs, 

whereas in the elastic solutions there is a difference of about 45° between them. 

Therefore, under slippage conditions, the maximum pipe strains induced by the longi

tudinal and transverse waves may be combined. If we assume independent ramdom 

phases for these two types, of waves, a conservative estimate of the combined 

-- exact solution, 
----- elastic Eqs.(45)&(46), 

2 t-----+l------+----1 

(a) longitudinal wave 

--- approximate, Eqs. (54) 8'(55) 
--- approximate, Eq. (52) 

E 
Q) 

2 4 6 
6'f c io-3> 

( b) transeverse wave 
Fig. 8 Maximum Pipe Strain with Unknown Direction of Incidence. 

(Same parameter values as Fig. 7.) 
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maximum pipe strain e •• may be obtained from 

e,..;;;;; v e!,1 + e!,, ..................................................................... (50) 

4. 3 Simple Approximate Formula for Maximum Pipe Strains under 

General Slippage Conditions 

Iterative computation is the only way to obtain exact numerical results for the 

maximum pipe strains e.1 and e.,, under slippage conditions. Herein, an approximate 

closed-form solution is derived. The resulting formulas are very simple, and they 

should be useful for practical purposes. 

The general idea comes from Fig. 7, in which the upper bound solution es. is a 

close approximation of the exact solution e8 • Then, the intersection of the upper 

bound solution and the elastic solution, for example point A in Fig. 7, will give a 

good approximation of the maximum pipe strain. Such points are determined by 

equating Eq. (17') and Eq. (18). By virtue of Eqs. ( 4) and ( 5), and noting that «1 

is approximately equal to unity under normal conditions, we obtain the following 

approximations of the maximum pipe strains under slippage conditions. 

For longitudinal waves : 

ej1= 3vef .. e, ........................................................................ (51) 

For transverse waves : 

The parameters e1,. and e,. have been defined by Eq. ( 49). 

Furthermore, from an asymptotic behavior of e~~ with an increase in 7,, Eq. (52) 

can be replaced by 

e~l=ve,.r, ........................................................................ (53) 

The approximate formulas for general slippage conditions may be developed by 

adopting the formula assuming a larger value from the elastic solution (Eqs. ( 45) and 

( 46), or from the approximate plastic solution (Eqs. (51) and (53) ). The results are 

as follows ; 

longitudinal waves : 

................................................ (54) 

transverse waves : 
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2vl+/3,' .......................................... (55) 

r,>r,, 

e14 = v ( 1 +/31) 8e,,. 

r,,=4(1 +/3,) e,., 
} ............................................................ (56) 

These results are plotted in Fig. 8. Observe that their agreement with the exact 

solution is satisfactory, and particularly good for small 7.,. 

A remarkable aspect of Eqs. (54) and (55) is that the maximum pipe strains e.,, 
arid e.,, are not bound by any fixed values, but will increase infinitely with the ground 

strains e, and t., whereas the pipe strain amplitude with a fixed value of the angle 

of incidence has a bound given by Eq. ( 18). 

Conclusions 

From the results of this study, the following conclusions may be derived. 

( 1) A coprehensive analysis has been performed for axial strains developed in 

buried straight pipes by horizontally propagating seismic waves, including longitudinal 

and transverse waves. 

(2) Pipe strain amplitude under slippage between soil and pipe has been obtained 

for an arbitary direction of incident waves. Upper and lower bound solutions were 

also derived. 

(3) Maximum pipe strains with unknown direction of incident waves have been 

discussed extensively. It has been pointed out that under slippage conditions, the 

maximum pipe strain induced by transverse waves tends to be larger than that 

induced by longitudinal waves as the free field strains increase. 

( 4) Simple closed-form approximate solutions have been developed for the maxi

mum pipe strains. They imply that the maximum pipe strain under slippage for the 

longitudinal waves increases as a cubic root of the free field normal strain. For the 

transverse waves it increases as a square root of the free field shear strain. 

(5) It has been suggested that the maximum pipe strains from the longitudinal 

and transverse waves be combined in the form of Eq. ( 50), on the basis of the 

results under slippage conditions. 

Finally it may be pointed out that the analytical results obtained in this study 

should be discussed in the light of experimental results, pa~ticularly in estimating the 

stiffness of soil relative to the pipe, and in evaluating the slippage conditions. Some 

preliminary discussion is made concerning this in Appendix A. 
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Appendix A. On Estimation of Spring Constant K and 
Slippage Conditions Au., and r., 

In determining the pipe strains under partial slippage conditions, the estimation 

of the spring constant K and the critical relative displacement .Ju.., or alternatively 

critical shear strain r.,, is a key question. Herein, a simple method is proposed for 

this purpose on the basis of the experimental results presented by Kuribayashi et. al.O. 

It is expected that the values of K for the shallow pipes will depend on their 

depth h from the ground surface, Fig. A. l, but the 

values for the deeply buried pipes will be independent 

of h. Kuribayashi et. al.'> performed shake-table tests 

on cast iron pipes with an outer diameter of 16 cm 

buried at various depths in a sand box, as shown in 

Fig. A. 2. The shear modulus of the sandy soil used for 

the tests was found to be 580 kg f/ cm2 on the average. 

From the axial force and the soil displacement relative 

to the pipe in Ref. ( 4), the spring constant K can be 

roughly estimated by 

*)strain gages 

■ accelerometer 
e displ. meter 
0 load cell 500 

shake table 

h 

Fig. A. I Location of 
Buried Pipes. 

Fig. A. 2 Dynamic Tests of Buried Pipes by Kuribayashi et. al.4> 
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K ~ { 1. 4 kg ffcm3 

2. 8 kg ffcm3 

hfD=7. 5 

hf D= 13. 75, 20 
.............................. (A. 1) 

Plots of the these values in Fig. A. 3 would suggest that the value of K is proportional 

to the pipe depth h, when hf D is less than some 13, whereas it is independent of 

h for larger values of hf D. It is interesting to note that these experimental results 

on the effect of hf D on K agree qualitatively with the elastic solution obtained by 

Parmelee and Ludtke71 • It should, however, also be pointed out that the numerical 

values of the elastic spring constant, obtained from the result of Ref. (7) for the case 

of the model tests in Ref. ( 4), are excessively larger than the test results by two 

decimal orders. 

3r---------------~ 

I 
I 

I 
I 

I . 

I 

I 
I 

IO 
I 

I 
I 

I 

I 
I 

I 

,-0------0--------
/ 

I 
I 

0 0=-----....1.I0,---------2•~0---____.30 

h/0 

Fig. A. 3 Spring Constant Estimated from Experimental Result& in Ref. (4). 

Ugai and Yamaguchi121 made a theoretical analysis of the dynamic values of the 

spring constant K, assuming straight pipes buried in infinite elastic media, whose 

results were found to be in fairly good agreement with the experimental results. They 

concluded that the spring constant per unit area is roughly inversely proportional to 

the diameter D of the pipe, and proportional to the shear modulus G of the soil. 

Combining this with the results in Eq. (A. 1), K may be represented by 

K~ 

\ 

G h o. 059D D ; 

G 
0. 059 r4D h n>rd 

(in kgff cm3) .................. (A. 2) 

in which r4 = 13 is used for the numerical computation in this study. 

Likewise, the frictional force between the soil and the pipe in slippage has been 

shown to be proportional to hf D for hf D< 13, and constant for hf D> 13. From this, 

we may put 
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h 
15<rd 

h 
15>r" 

............................................. (A. 3) 

where w,= the unit weight of the soil above the pipe, and µ = the equivalent 

coefficient of friction. As for the experimental results in Ref. ( 4), where rd= 13, the 

value of µ has been found to be approximately 0. 5. 

It is hoped that Eqs. (A. 2) and (A. 3) will provide rough estimates for the 

spring constant K and the critical relative displacement Ju.,. for cast iron pipes buried 

in sandy soils. For a practical estimation of K and Ju., for more general cases includ

ing other types of soil and other pipe materials and diameters, further experimental 

works will be of great value. 

The critical shear strain r., for slippage condition may be estimated from the 

above results. By using the second part of Eq. (A. 3) and Eq. (33), we have 

Gr .. =K Ju.,=µw,rdD 

Therefore, r .. is expressed as 

r.. µw;;,D ..................................................................... (A. 4) 

For sandy soils, the values of w, and G will vary in the range w,= 1. 6~1. 8 t/m3 

and G=300~1500 kg f/cm2• The pipe diameter D will be in the range 0. 1~1. 5 m. 

The equivalent coeffient of friction µ will depend not only on the soil properties, but 

also on the finish of the pipe surface. Here, we may assume that µ=0. l~l. 0. Then, 

from Eq. (A. 4), r.,, with r,= 13, will vary in the range r .. =0. 014X10-3,_,11. 7 X 10-3• 

Since µ is expected to increase with G, the above range for r .. may include some 

unrealistic extreme cases. In the case of the experimental results in Ref. ( 4) , with 

µ=0. 5, w,= 1. 7 t/m3, D= 16 cm and rd= 13, we have r.,=0. 3 X 10-s. 

Appendix B. Notations 

D = outer diameter of pipe ; 
d = thickness of pipe wall ; 

E = Young;'s modulus of pipe material 

e generally represents pipe strain ; 

e(z) = pipe strain at location z ; 

e,i, e,.= maximum pipe strains without slippage for longitudinal and transverse waves, 

respectively ; 

efl>, e~0 > = lower bounds on e(z) ; 

e1., = L1 K Ju.,/(4Ed) =L1Gr.,/(4Ed) 
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e,.. = maximum pipe strain with combined effects of longitudinal and transverse 

waves ; 

e,,,,. e.,,= maximum pipe strains induced by longitudinal and transverse waves, respec-

tively, with arbitrary angles of incidence ; 

e,, = approximate maximum pipe strain under slippage for longitudinal waves ; 

e~l, e~,= approximate maximum pipe strains under slippage for transverse waves 

e8 = pipe strain amplitude for a fixed angle of incidence ; 

e~1¾, e~, e~9>, e'8"i' = lower bounds on e8 ; 

e8 ., e~. = upper bounds on e8 ; 

e,. = L, K Ju.,/ ( 4Ed) =L,G;.,/ ( 4Ed) ; 

f = f (;:.) = shearing stress acting on pipe surface as seismic load 

G = shear modulus of soil 

h = depth of buried pipe 

K = equivalent spring constant 

L., L,, L, = apparent wave length, wave length of longitudinal waves, and wave 

length of transverse waves, respectively ; 

r4 = maximum value of h/D with influence of ground surface 

U(x) = displacement profile function ; 

u 

u. 
UG 

UG, 

= 

= 

= 

generally represents displacement 

apparent free field displacement along pipe axis 

apparent free field displacement amplitude ; 

value of uG on initiation of slippage ; 

u1, u,= free field displacements due to longitudinal and transverse waves, respectively; 

u, = axial displacement of pipe ; 

u,,(x, ;:.) = soil displacement in the vicinity of pipe 

w, = weight per unit volume of soil ; 

x = distance from pipe axis ; 

;:., ;:.' = absolute and relative positions along pipe, respectively 

ai, a2, a 8, a, = parameters ; 

p,. p, = (2rr/ JL1) 2, (2rr/ JL,) 2, respectively 

r = generally represents ground shear strain 

r., = critical shear strain for slippage ; 

r, = free field shear strain due to transverse waves 

T-4 = 4(l+fi,)e,. ; 
r.. = limiting free field strain for elastic solution of maximum pipe strain 

Ju., = critical relative displacement for slippage ; 

e = generally represents ground normal strain ; 

eG apparent free field normal strain along pipe axis 
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s0 ,, s~. = value of s0 on initiation of slippage ; 

s1 = free field normal strain due to longitudinal waves 

s1., = v(l+P1) 8e,,. ; 

s1, = limiting free field normal strain for elastic solution of maximum pipe strain 

C = (211:/L.) (G/Ed) ; 

8 = angle of incidence 

n.,, 8., = values of O corresponding to e,1 and e.., respectively 

O .. i, n .. ,= values of O corresponding to e,.1 and e,..,, respectively 

;. = vK/Ed ; 

equivalent coefficient of friction ; 

parameters defining boundaries of elastic and plastic regions along pipes ; 

position along direction of wave propagation 

[dU/dx].,.D12 ; and 

w = circular frequency. 




