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Inverse Laplace Transform and Its Application 

to Equation of Heat Conduction 

By 
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Abstract 

The numerical inversion of the Laplace transform is used effectively in many 
fields where analytical processing is difficult or impossible. The same situation occurs 
in the two dimensional inverse Laplace transform. To solve such a problem, a 
numerical processing of the two dimensional inverse Laplace transform is presented. 
The numerical inversion formulas and their computer algorithms are shown. As an 
example of the two dimensional inversion method, the equation of heat conduction is. 
analysed for various conditions. 

1. Introduction 
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The Laplace transform is used as a powerful tool to analyse the initial value 

problems for many systems whose properties are described by linear ordinary differential 

equations or partial differential equations with constant coefficients. 

The reason why the Laplace transform is used so effectively is the fact that the 

differential operations of the variable to be transformed change to algebraic operations. 

By the tran.sformation, the ordinary differential equation changes to an algebraic 

equation, and the operational solution can be obtained fairly easily. The original 

function of the operational function is obtained by the inverse Laplace transform. 

Today, many transformation pairs are tabulated in several publications, and in 

many cases the desired original function can be found easily. 

By the same transformation, the partial differential equation with two variables 

changes to the ordinary differential equation of an untransformed variable. The 

operational solution can be obtained by solving this differential equation, and the 

original function can be obtained in the same way as before. To solve this equation 

is slightly difficult compared to the case of the algebraic equation. However, if the 
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Laplace transform can be applied to the remaining variable, the procedure to obtain 

the operational solution can be done algebraically. 

Instead of successive applications of the Laplace transform, the above problem 

can be solved by the application of the two dimensional Laplace transform defined 

by the double integral'>. 

In order to apply the two dimensional Laplace transform to a two variable function 

j(x, t), it must be defined in the interval O;S;x< oo, O;S;t< oo. 

Furthermore, in order to solve the two variable partial differential equation 

algebraically by the two dimensional Laplace transform, strict restriction is imposed on 

the relation among the initial conditions and the forcing term of the equation. This 

point is the difference from the one dimensional Laplace transform, and this condition 

is called the compatible condition. 

The principle and the fundamental theorems are detailed in Reference (1). 

There, many transformation pairs are tabulated. In many cases, when the operational 

function which satisfies the compatible condition is determined, its original function 

can be found in the table. 

Let us consider the function of three variables of time t and point x, y defined 

in the interval O:;;t<oo, O:;;;x<oo and any finite interval of y. The partial differential 

equation of the initial value problem with respect to x and t and the boundary value 

problem with respect toy can be transformed into the ordinary differential equation 

of y. The boundary value problem is solved by the two dimensional Laplace transform 

and the operational solution can be obtained. 

In many cases, the desired original function can be found in the table, but its 

form is expressed by the integral or the infinite series of the special functions, and it is 

difficult to know its property. In some cases, it is impossible to find the transformation 

pair in the table. 

The same situation occurs in the one dimensional Laplace transform. However, 

in such a case, a sufficiently accurate numerical solution can be obtained by the 

numerical inversion of the Laplace transform2> ,3>. 

One purpose of this paper is to extend this method to the two dimensional 

inverse Laplace transform. Chapter 2 is allocated to this subject and there, numerical 

inversion formulas and computer algorithms are presented. 

The other purpose is to examine the validity of the inversion method by practical 

application. The equation of heat conduction is a complex example, such as stated 

above. Chapter 3 is allocated to this subject and there, some examples of inversion 

and various techniques to obtain numerical solutions are presented. These examples 

indicate that this method is accurate enough for practical usage. 
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2. Numerical processing method of the two dimensional 
inverse Laplace transform41 •6> 

For a two dimensional function j(x, t) which is defined by 

f { 
j(x,t) : O;:;;;;x< oo, O;:;;;;t< oo 

(x, t) = 
0 : elsewhere 

the two dimensional Laplace transform is defined by the following formula: 

F(si, S2) = rr e -·,•-•a• j(x, t) dxdt 
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(1) 

( 2) 

where we call j(x, t) an original function and F(si, s2) its operational function, if 

above integral exists on the complex si-plane and sa-plane. 

For a given operational function F(si, sa) which satisfies the compatible condition, 

the two dimensional inverse Laplace transfom is carried out by the following successive 

one dimensional transform. 

1 ~6+100 [ l ~.+1.. ] =-
2 

• e'a' -
2

. e•1• F(si, ss) dsi ds2 
,n 6-loo 11'1 a-loo 

( 3) 

In this formula, a;;;;;:O, b;;;;:;O are the real parts of the contours on the complex 

si-plane and s2-plane. 

When an operational function is given, its original function is known by the 

transformation table or by the residue theorem based on Eq. (3). However, in many 

cases, such an analytical procedure is very complicated or impossible. 

In the one dimensional inversion, the numerical processing method is used effe­

ctively for such cases. 

For the one dimensional inversion formula 

l ~•+1
00 

f (t) =-
2

. F(s) e''ds 
11'1 a-loo 

( 4) 

its numerical inversion is carried out by the following formula2>: 

.... [ K-1 l ] I j(t.) = ':,, R, ~ F(a+ik1r/T) e12.o11.11: -2F(a) 

t.=n•2T/K n=O, 1, ...... , K-1 

( 5) 

The subject of this chapter is to extend the numerical method to the two dime­

nsional inverse transform. Now, let us consider the two dimensional inversion method. 

For the first inverse transform, s2 is fixed to a certain value s:i., 

Then, by putting si=a+iwi, the following relation is obtained: 
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( 6) 

Here, F'(x, Sa,,,) is the intermediate inverse transform of F(s1, s2m) with respect to s1• 

By the series approximation 

( 7) 

and by putting Jw1 = n:/ X, the following relation is obtained: 

In this formula, the second term of the left hand side can be made sufficiently 

small by choosing the value of aX suitably, so that the following approximation is 

obtained. 

( 9) 

Truncating the infinite series by the sufficiently large term K, -1, and calculating the 

values of F'(x, s2m) at the K1-l points x1=l•2X/K1 l=0, 1, ······, K1-l in the interval 

0:s;;x<2X, the following approximate relation is obtained. 

-F(a, Sa,,,)] 
(10) 

x1=l·2X/K1 l=0, 1, ······, K1-l 

It is possible to reduce the execution time in calculation by applying the Fast 

Fourier Transform (F. F. T) to the series term of the above formula. 

For the second inverse transform, the same procedure stated above is applicable. 

By fixing x to a certain value x,, for the sequence {s2b,=h+ik'1t/T k' =0, l,•····, 
K2 - l, the following approximate relation is obtained. 

(11) 

t.,=m·2T/K2 m=0, 1, ······, K2-l 

Since x1 is real, by using the complex conjugate relation, the above relation 

becomes as follows: 
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b•m [ Kr1 . l ] 
f(xz, tm)'.:::::. eT R, "£/1 (xz, b+ik',r:/T)ei2ttml'IK2

- 2 F1(xz, b) I 
tm=m•2T/Ka m=0, l, ...... , K2-l . 

(12) 

In the numerical calculation using the above formulas, such parameters as a, X 
and K1 with respect to x(s1) and b, T and K2 with respect to t(s2) must be determined. 

The values of X and. T are determined by the necessary intervals to get the 

numerical solutions. To make the error caused by neglecting the second term of the 

left hand side of Eq. (8) minimum, aX is selected in the neighborhood of 3. 0. · This 

fact is correct to the value of bT. The values of K1 and K2 are determined to .make 

the errors caused by trucating the infinite series by finite in Eqs. (10) and ( 12) 

possibly small. In the numerical calculation, 2K1 XK2 complex .regions are necessary 

to store the complex spectra. It is impossible to make the values of K1 and K2 too 

large by the restrictions imposed on the volume of store memories and execution time. 

In the numerical examples stated later,' the value of K1 X K2 is selected as 128 X 128, 

and practically sufficient results are obtained. 

For the given value K1 XK2, the same number of numerical values are obtained 

in the interval 0:s:;x<2X, 0;;;;t<2T. However, to avoid the influence of a aliase 

effect, only the K1/2 x K2/2 numerical values in the interval o:s:;x<X, o;;;;t<T are 

taken. 

Next, we show the computer algorithms based on the above method. 

S 1: Set the values of the. paramet~rs of a, b, X, T, K1 and Kz. 

S2: Calculate the values of the spectra F(si, s2) at the points s1=a±ikrr:/ X 

k=0, 1, ...... , K1 - l and s2=b+ik'-rr/T k' =0, 1, ....... , K2-:L 

S3: Calculate the intermediate results for every value of Sz by Eq. (10), using 

F. F. T. 

S4: Calculate the final results for every value of x by Eq. (12), using F. F. T. 

S5: Take only the K1/2 X K2/2 values in the interval 0;;;;x< X, 0:s:;t<T. 

3. Applications to equation of heat conduction 

3.1 Operational solution of equation: of heat conduction1> 

Here we consider a function u (x, t, y), defined in the interval 0;:;;,;x< oo, 0:;;t< 00 

and yED. A linear partial differential equation of u(x, t, y), with respect to three 

variables x, t and y, can be transformed into a linear ordinary differential equation 

with respect to one variable y by the two dimensional Laplace transform. 

We consider the class of functions which satisfies the following two conditions 

where £'2 means the two dimensional Laplace transform. 



236 

I 

Satoshi ICHIKAWA 

t"bl { OU (x, t, y) } 0 t"b2 { ( ) } 0 U ( ) 
.;z; ay = ay .;z; u x, t, y = oy si, s2,Y 

II !i'2{lim u(x, t, y)} =lim !i'2{u(x, t, y)} =lim U(si, sa,y) 
,-R , ... R , ... R 

(13) 

(14) 

Here, R is a boundary point of the interval of D, and the capital letter means the 

operational form of the function of the small letter. 
As an example of such a partial differential equation, we consider the equation 

of heat conduction. The temperature on the x, y-plane is expressed by the following 

equation, where t means the time on the assumption that the conductivity is equal to 

unity. 

o2u + o2u =~ 
ox2 oy2 ot 

u=u(x, t, y) (15) 

Let us find out the temperature distribution at the time t>0 on the belt-shaped 

half plane 0:;:;;x< oo, 0:;;;;y<ir (shown in Fig-1). 

y 

b(t,y) 

t::.L..c..L.,'..LL'.LL.LLLL.C.L..,.'..LL'.LL..:..__➔ x 

c(x,t) 

Fig-1 Belt-shaped half plane 

The initial conditions are given by 

u(x, 0, y) =a(x, y) 

u(0, t, y) = b(t, y) } 
and the boundary conditions are given by 

u(x, t, 0) =c(x, t) 

u(x, t, ir) =d(x, t) 

(16) 

(17) 

Since the differential order with respect to the variable x is 2, the following 

boundary condition 

u.(0, t, y) =b1(t, y) ( 18) 

is necessary, where u,, means the partial derivative about x. Later, this condition can 

be eliminated by introducing a compatible condition. 

By the two dimensional Laplace transform, using the conditions ( 16), ( 17) and 

(18), the following relation is obtained. 
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{~U(si, s2, y) -s1B(s2, y) -Bi (s2, y)} - {s2 U(si, s2, y) -A(si, y)} 

+ d2U(si, s2, y) 0 dy2 

Let us rewrite the above relation as 

Then, the following solution is obtained: 

sin (ir-y) .jsr=s; siny.J~-s2 U(si, s2, y) =C(si, s2) . . _,... +D(si, s2) . ./~ 
sm iry~1-Sz sm ir 1-Sz 
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(19) 

(20) 

The process to obtain the final result is detailed in Reference ( 1), so we give its 

outline. 

Since the factors s1=./s2+n2 n= 0, 1, ...... disturb the regularity of the above 

solution, they must be eliminated from the solution. That is to say, in order for the 

above solution to be a two dimensional Laplace transform of u(x, t, y), the numerator 

must contain the same factors. Herce, the following relation must be kept. 

-C( ./s2 +n2, s2) ( -1) • sin ny+ D( ./s2+n2, s2) sin ny 

+(-1)• sinnyS"G(./s2+n2, S2, e) sinnede=0 
n o 

(22) 

This relation is nothing but the compatible condition, and by rewriting 

2~ -- 2• --
B1(s2, y) =-~nC(./s2+n2, s2) sinny--~(-l)•nD(./sz+n2, sz) sinny 

7r n==l 1r •-I 

+1-f: sin ny'" A("s2+n2, e) sin nede-.! i ./s2+n2 sin nyf" B(s2, e) sin nede 
7r •-1 Jo 7r ... 1 Jo 

(23) 

an additional condition B1(s2, y) can be eliminated and the operational solution can 

be obtained perfectly. 

The procedure of its derivation is very complicated, so we show the final result 

because there is not enough space for a detailed description. 

UA (Si, Sz, y) = _ _g_ f: sin nys· A(Si, e) -A("~' e) sin nede 
ir •-1 o sf- (s2 + n2) 
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2 00 C(s s2) -C(,J + n2 s2) U. (s s y) = - - ~ i, Sz ' n sin ny 
c i, 

2
' 11: •-1 sf-(s2+n2) 

(24) 

Analytical solutions of the original functions for UA, UB, Uc and UD are shown in 

Reference (1), but they are .very complex functions which contain integrals or infinite 

series of special functions. It is difficult to know their properties, so we obtain their 

numerical solutions by the method stated in the previous chapter. 

3. 2 Numerical Processing I (Operational function does not contain integral. ) 

Among the operational solutions given by Eq. (24), Uc and UD do not contain any 

integral, although UA and UB contain an integral. For some initial conditions, integrals 

can be done and can be transformed into forms which do not contain an integral. 

Hence, the numerical processing of inversion can be made easier than before. 

( i) Inversion of UB(si, s2, y) 

This term is caused by a thermal source, and can be written as 

(25) 

Here, we consider a case of b(t, y) = 1, then B(s2, y) = l/s2, The integral in the 

above equation can be done analytically, obtaining the following solution: 

(26) 

The original function can be known by its numerical inversion. 

The numerical solutions are shown in Fgi-2, where the values of the used parame 

-ters are X=2.56, T=3.2, aX=3.0, bT=3.0 and K1 =K2=128. These are the same 

for all the successive examples. 

The infinite series of Eq. (25) is truncated by 50 terms, based on the result of 

previous inspection. 

(ii) Inversion of U A (si, s2, y)' 

This term is caused by the initial distribution of the temperature, and can be 

written as 

(27) 

Here, we consider a case of a(i, y) =e-0•5cz+1>, then A(si, y) =e-0•51/(s1 +O. 5), and 

obtain the following result. 
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0.75 

05 x• 0.8 

! z 
2 
& 

x•l.2 E 
~ 

025 

x•l.6 

Time 
(a) Temperature at ':J•'!C/2 

y 

1.0 2.0 
(bl Temperature distribution at t ■ 3.0 

Fig-2 Inversion of Ua B=l/12 

n: even (28) 

n: odd 

The numerical solutions by inversion are shown in Fig-3, where the above infinite 

series is truncated by 20 terms. 
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X 
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X 
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(iii) Inversion of Uc (si, s2, y) and UD (si, s2, y) 

These terms are caused by the initial distributions of the temperature on the 

boundaries, and can be written as 

CJ (s s y)=-_g_;, C(Si, s2)-C(vi;+ni, Sz) nsinny (29) 
c i, 

2' 1r: ;:'1 sf-(s2+n2) 

UD(Si, Sz, y) = _ _g_ :i: D(si, Sz) -D( vi;+ni, s2) n sin n(1r:-y) (30) 
1r: •-1 ~-(s2+n2

) 

Since the above equations are symmetrical, about y=1r:/2, we only do the inversion 

of Uc. Then, we consider a case of c(x, t) = 1-e-o.ss, then C(si, s2) =0. 5/s1s2(s1 +0. 5), 

and obtain the following result. 

0.75 

0.5 

; 

I 
j!!. 

0.25 

x•2.0 

x• 1.6 

X!' 1.2 

x• 0.8 

0 """'-----~~-~--,--.------.-------,------
0.5 

0.5 

e 
:::, 

00.25 
!. 
~ 

0.5 

1.0 15 
t 

( a ) Temperature • at lJ • Tt/4 

t 
( bl Temperature at -:,•7C/2 

2.0 

x•2.0 
x•l.6 
X • I 

x•0.8 
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t 
(c) Temperature at ;y•31C/4 

✓s2 +n2 ( ✓s21+n2 + 0. 5J 
(31) 

The numerical solutions by inversion are shown in Fig-4, where the above series is 

truncated by 100 terms. 

3. 3 Numerical Processing II (Operational function contains integral.) 

The general form of UA or Us contains an integral, and in many cases, an 

analytical processing of integration is impossible. 

Here, we consider a case where the operational function is given by 

(32) 

where Y(e) does not contain the complex variables s1 and s2. 

To obtain the spectra in the numerical inversion, we carry out a numerical inte­

gration by the Gauss integration formula which gives the value of a definite integral 

by the sum of the products of weight and the value of the integrand at the selected 

points in the interval. The sequences of weight and the selected point are tabulated 

for the number of selected points. 

The integrand is the form of Y(e)sin ne, which oscillates heavily as n increases. 

Therefore, it is necessary to increase the number of selected points. By example, for 

an integral ):sin nede n= 49, the relative error is about 0. 1 % for i=48 and 0. 015 

% for i= 100, where i is the number of selected points. This fact indicates that this 
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numerical integration can be regarded valid when i is selected about twice that of n. 

However, to fix the value of i, large forces unnecessarily increase the calculation for 

the small value of n. Since the total execution time is affected, we control the value 
of i by the value of n. 

Inversion of Us(si, sa, y) 

The complete operational function is given by Eq. (25). Now, let us consider a 

case of b(t, y) =yy/4, then B(s2, y) =vy/4/s2 and the obtained function is as follows. 

0.75 

0.5 

f 

I x•0.2 

l x•0.4 

0.25 
x•0.B 

x• 1.2 

0 
''l.5 1.0 1.5 2.0 

t 
0.75 Ca) Temperature at :J•lt/4 

:11-0.2 

x•0.4 

, X •0.8 

· X • 1.2 

0.5 1.0 1.5 2.0 
t 

(b) Temperatuer at ~• 7t/2 



244 Satoshi ICHIKAWA 

0.75 

x• 0.2 

0.5 X • 0.4 

... ... 
~ e 
8. 
E 

x•0.8 {!!. 
0.25 

X • 1.2 

0-"--------:,::------.-------,--------~----
0.5 1.0 1.5 

t 
(c) Temperature at '9=37C/4 

Fig-5 Inversion of U8 B={il4/sz 

2 00 sin ny 
Ua(si, Sz,y) =-~ ( +-1 + 2)/ 

1r •=1 Sz s1 vsz n 

} 

2.0 

(33) 

The numerical solutions are shown in Fig-5, where the infinite series is truncated 

by 50 terms, and the values of I are calculated by Gaussian integration. 

3. 4 Numerical Prcessing III (Integrand contains complex variables.) 

The operational functions of UA and Ua are generally given by the following 

form: 

(34) 

(35) 

In these cases, numerical integration can be carried out the same as in the previous 

case. In the previous case, the integrand does not contain the complex variables s1 

and s2• Also, the time of the numerical integrations is the same as the number of the 

terms of the truncated finite series. However, complex variables s1 and Sz cannot be 

separated from the integrands in Eqs. (34) and (35), so the integration must be 
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done for every pair of s1 Xs2, whereby the total number of integrations becomes very 

large. For example, the inversion of Eq. (34) needs 5120 integrations when the series 

is truncated by 20 terms. However, this number can be reduced by special values 

of y where some terms vanish, for example sin nir/4=0 for n=4m m= 1, 2,······ 

Inversion of UA(si, sz, y) 

The complete operational function is given by Eq. (27). Now, let us consider a 

case of a(x, y) = C"', then A(si, y) = 1/ (s1 + y), and the operational function is obtained 

as follows. 

2 ~ sinny 
UA(si, s2, y) = --; ;.:', ~- (sz+nz) I 

I=S:s,~e sinnede-s: ~s2+ln2+e sin nede l (36) 

The numerical solutions are shown in Fig-6, where the series is truncated by 20 terms. 

The process of inversion is the same as in the previous case, except for doing too 

many integrations. 

0.5 

1.0 
X 

(a) Temperature at ':J •TC/4 

1.0 
X 

(b) Temperature at , ■ JC/2 

1.5 2.0 
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0.1 

f 
::, 

'6 0.05 

' i!! 

o~~_=:::::~~~~ 
0.5 1.0 1.5 20 

X 
(cl Temperature at ,■3lr/4 

Fig-6 Inversion of UA A=l/(s,+y) 

3. 5 Accuracy of numerical solution 

As mentioned in 3. l the analytical solutions of u.(x, t, y), u6(x, t, y), u.(x, t, y) 

and u4 (x, t, y) are shown in Reference ( l), but it is difficult to know their properties. 

However, the inversion of the operational function UA, caused by the initial temperature 

distrfbution, can be done analytically by the residue calculation, and the original 

function u. is given by the simple form when operational function A(si, y) is a special 

form. For example, when A(si, y) = 1/s1 [a(x, y) = l] u. is given by 

4 (X)°" l 2, u.(x, t, y) =- erf 
2
,/- :E-

2
--

1 
e-C2a+i>.1sm (2n+l)y 

1r t ■-o n+ 
(37) 

Where the value of the term decreases rapidly as n increases, we can calculate 

the exact values of the function at given points. 

In Fig-7 we compare the differences at some points between the exact value 

and the numerical value obtained by the inversion of UA at the point y=1r/2. 

This result shows that the two dimensional numerical inversion method gives 

practically sufficient accuracy. The process of inversion for other examples is based on 

the same policy, and their accuracy is regarded as being the same as in this case. 

4. Conclusion 

One of the purposes of this paper is to extend the numerical inversion method to 

the two dimensional inverse Laplace transform. The numerical inversion formulas and 

their computer algorithms are shown. 
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The other purpose is to apply this method to practical problems. As an example, 

the temperature distribution on the belt-shaped half plane is considered. The tempe­

rature distribution is expressed by the partial differential equation of three variables. 

Its .operational solution is a very complicated function, which contains integrals and 

the infinite series. An analytical processing of such an inversion is diffiqtlt or impossible. 

Therefore, this problem provides a good opportunity to apply the numerical 

inversion method. 

The numerical solutions for various conditions are obtained, and it may be 

concluded that the numerical processing of the two dimensional inverse Laplace 

transform has enough accuracy for practical usage. 

The author wishes to express his gratitude to Mr. Fuyuki Iwakabe, a student of 

Kyoto University, for his cooporation with the numerical computation. 
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