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Aircraft Parameter Identification 
m the Presence of Atmospheric Turbulence 

By 

Hiroshi 0KuBo*, Teruyuki K.ANou** and Makoto KoBAYAKAWA*** 

(Received March 26, 1981) 

Abstract 

This paper investigates the method for identifying the unknown parameters in the 
dynamics of an aircraft from flight data affected by random disturbances due to wind 
gusts. Two general algorithms suitable for applying to such stochastic environments, i.e. 
the method of maximum likelihood (ML) estimation and the extended Kalman filter 
(EKF) technique, are examined for capability by numerical simulations. The advantages 
and shortcomings of each algorithm are discussed in detail, which leads to the conclusion 
that the combined use of the two algorithms provides a powerful on-line technique, in

sensitive to initial parameter estimates. 

Nomenclature 

an =normal acceleration, g 

l., l,. =distances from e.g. to accelerometer and angle of attack vane 

M,., Mq, M 8, =pitching moment derivatives divided by moment of inertia, rad/sec2 

V =mean velocity, m/sec 

tr. 

ll·lls-1 

=vertical turbulence velocity, m/sec 

=normal force derivatives divided by mass and velocity, rad/sec 

=angle of attack, rad 

=angle of attack induced by vertical gust, rad 

=elevator deflection, rad 

=pitch angle, rad 

=rms value of vertical turbulence velocities, m/sec 

=rms values of measurement noises 

=matrix trace function 

=vector norm weighted with respect to B-1 

* Department of Aeronautical Engineering, University of Osaka Prefecture. 
** Kawasaki Heavy Industries, Ltd. 

*** Department of Aeronautical Engineering. 



Superscripts 
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=time derivative of superscripted variable 

=estimate of superscripted variable 

I. Introduction 

365 

Techniques for identifying the stability and control derivatives of an aircraft 

from its response to known control inputs have received considerable attention 

for a long time. Recently, the progress of adaptive control technology has presented 

a new demand for developing digital techniques suitable for on-line processing by 

using airborn computers. There have been significant advances in analysis tech

niques, and numerous reports have been published on the topic during the last 

decade. 

Most of the well-established techniques are designed by assuming that the 

tests are performed in smooth air. But the responses of an aircraft generally are 

affected by random disturbance inputs such as atmospheric gusts. Moreover, the 

observed data are contaminated with measurement noises in the majority of cases. 

Several attempts have been made to establish a technique which will be effective 

under such circumustances. 

The computational algorithms developed may be classified into two groups 

according to an analysis technique based upon the maximum likelihood (ML) and 

the extended Kalman filter (EKF) methods, respectively. The former is a process

ing method for a bacth of data, and many successful results, including a case in 

atmospheric turbulence, have been reported.1>· 2> On the contrary, as for the 

latter, there are few satisfactory results in practical applications, since it is highly 

sensitive to the choice of the initial estimates.3> However, it is especially important 

because it is suitable for an on-line state estimation/ parameter identification re

quired in adaptive control systems. The advantages and shortcomings of these 

algorithms are fully discussed in the following sections. 

Il. Statement of the Aircraft Dynamic System Model 

The model of the system to be studied is linearized dynamic, and observation 

equations of an aircraft in a stochastic environment, which can be described as 

follows: 

x1 = F(O)x,+G(O)u,+w, 

y 1 = H(O)x1+D(O)u1+v1 

( 1 ) 

( 2) 

where {} is the vector of unknown parameters and w1 and v1 are the vector-valued 

uncorrelated Gaussian white noise process with a zero mean value and covaraince 

matrix Q and R, respectively. 
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We select the longitudinal short period dynamics subjected to the external 

disturbances due to atmospheric gusts as a typical example of the objective system 

for the parameter identification. The complete perturbed equations of motion for 

this mode, including the gust shaping filter dynamics, are given in terms of four 

state variables; i.e. x1=[a, 8, rJ, agY• The state measurements are provided by 

angle-of-attack vane, pitch attitude gyro and pitch rate gyro, respectively. The 

vertical accelerometer measurements are assumed to be available, i.e. y 1= [d m, 

{}m, an, am]. The matrices F, G, Hand Dare given by4l,SJ 

Z,. 0 Z,. Zi, 

0 0 0 0 
F= 

0 M, M. l G= 
M,. Ma, 

0 0 0 -w, 0 

0 0 1 0 0 

0 0 0 0 
H= l,M,.-VZ,. 0 l,Mq l,M,.-VZ,. , D= l,M8,-VZa, 

g g g g 

1 0 -l,./V 1 0 

and the noise covariance matrices are described as 

0 

0 

Q= 0 R= 

When {} is known, the optimal 

estimate of the state vector in the 

sense of the minimal error variance 

can be obtained by using the or

dinary Kalman filter equations. 

However, needless to say, the state 

estimate is not optimal when {}, 

used in the filter equations, is dif

erent from the true value. 

In the following sections, we 

investigate the algorithms for iden

tifying the unknown parameters 

Table 1. Inertial and aerodynamic data of the 
airplane. 

Total mass 

Mean aerodynamic chord 

Wing area 

Moment of inertia 

Air density 

Cruising velocity 

Aerodynamic derivatives 

m=38000Kg 

c=4.434m 

S=120.5m2 

IB=940800 Kg•m2 

p=0.652 Kg/m3 

V = 173.0 m/sec 

CL,_=5.13 I/rad 

C.,,.=-1.251/rad 

C.,q=-20.2 1/rad 

CLa, =0.390 1/rad 

C.,8, = -1.36 1 /rad 
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from the computer-generated flight 

data by using the above described 

dynamical system model. The 

numerical data of the example 

aircraft to be employed in simulat

ion runs are listed in Table 1, 
and ,the supplementary data for 

simulation are shown in Table 2. 

Table 2 Supplementary data for simulation 

m. ML Algorith1n 

We first discuss the method of 

maximum likelihood estimation. 

Real values of the parameters 

z,. ==-0.9167 I/rad sec 

M,. = -6.923 I /rad sec2 

M 9 = -1.434 1 /rad sec 

RMS velocity of vertical gust 

o,.
6 

=2.7 m/sec 

RMS measurement noise intensity 

(NOISE-I) 

0 01 =0.0002528 

0 02 =0.0002236 

0 03 =0.0021240 

0 04 =0.00014306 

(NOISE-II) 

0.001264 

0.001118 

0.010620 

0.0007153 

The marginal ML estimate of 8 is defined as the estimate that maximizes an "a 

posteriori" probability density of 8 based on the observation set yN ( = {y1,y2, ···, 

YN} ). If no "a priori" distribution of 8 is given and if the distribution is Gaus

sian, the ML estimate can be obtained by minimizing the following log-likelihood 

function L(8, N) with respect to 8. 

( 3) 

where Ilk and Bi, are the conditional estaimate of the measurement residuals and 

their covariance matrix, respectively: 

111, = Yi,-E[yi, I yk-1, 8] 

Bk = E[111,11f I 8] 

( 4) 

( 5) 

If the parameter values are not bounded, the ML estimate is computed by setting 

where 

8L 
P L(8, N) = - = 0 

88 
( 6) 

Since above equation is nonlinar in 8, the Newton-Raphson interative optimiza

tion technique is employed. The provided estimate is assured to be asymptotically 

unbiased, efficient and consistent. 

One difficulty with this algorithm is that the number of difference equations 

to be solved increases rapidly with the dimensions of 8. Therefore, it is pre

ferable to make some simplifications in view of practical use. We adopt the quasi 
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ML algorithm by neglecting the second term of Eq. (7) for a large N when (} does 

not include any element of the noise covariance matrix Q or R. The Newton

Raphson iterative algorithm based on this quasi ML criterion is summarized as 

follows: 

B(i) = B(i-l)-[P2L(B(i-l), Nr1PL(B(i-l), N) 
N 

PL(8, N) = ~ Pvf B,;;- 1
vk 

k=l 

N 

P2L(8, N) = ~ vvr B,;;-1Pvk 
k=l 

( 8) 

( 9) 

where Pvk are computed with the sensitivity equations for the Kalman filter. 

This algorithm may easily be converted into a recursive form by defining 

-0.7 

-1.5 

-3.0 

-7.3 
-1.2 

-3.0 

0 

Estimate 
o ~ 0 = [-0.8,-7.2,-l.2JT 
o 00 = (-0.7, - 7.3, -(. 7) T 

• 90 =(-l.5 -3.0,-3.0]T 
---- True value 

2 3 4 5 
Iteration no. 

Fig. I. Convergence of stability derivatives for 3.0 seconds of data starting 
at three sets of initial estimates. 
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Pe(k) as [P'2L(O, k)r1 and applying the matrix inversion lemma: 

Pe(k) = [P;-1(k-l)+Pyf Bi'"1P'Ykr1 

= [l+K9(k)P'Y,,]P6(k-l) 

K 8 (k) = -P8(k-l)P'YT1r[P'Y,.P9(k-l)P'Yf +B,.]-1 

The Newton-Raphson correction term JO(k) can be provided recursively 

( 11) 

(12) 
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By means of computer simulation, we examined the quasi ML algorithm for 

capability in the practical application to the aircraft parameter 'identification. 

The parameter vector to be identified was assumed to consist of three unknown 

stability derivatives: i.e. ll=[Z .. , M .. , Mq]. 

A systematic examination showed that this algorithm had excellent convergence 

characteristics. The results of the simulation runs are summarized in Fig. 1, which 

is the illustration of the estimated parameter values z .. , M .. and Mq as functions of 

the iteration number starting at three sets of initial values. We see that the initial 

choice of the parameter values does not affect the converged value. Moreover, 

the estimates finally obtained are in good agreement with the true values which 

are indicated by the dotted lines. 

Figure 2 shows the relation between the size of the sampled batch and the 

iz.1-0.90 1--~-~~--==---~--~---==---===----~-~F 
Estimate 

o NOISE-I 

-0.98 • NOISE - II 

-6.84] f\ - True value 

(Mu) -~=====o:~:i-=====<qF 

IM.,l =f~ ]----

-1. so 
~, -----.---.. , --~, -----.-1--..-1 ---.

6
1,------r-1--..-1 ----...~ h sec 

0 2 3 4 T5 7 8 ~ 

Fig. 2. Effect of observation time interval on estimated stability derivatives. 
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accuracy of the estimated value by taking the length of the observed data in seconds, 

T, as the abscissa. Since the sampling cycle for the measurements is taken as 100 

Hz, the number of data points N = 100 T. The initial parameter values are selected 

as 8(0)=[-1.5, -3.0, -3.0]. If Tis larger than 1 second, there is scarcely any 

improvement in the estimated value, and the final accuracy depends on the measure

ment of the S/ N values. 

Another simultation run is made in order to show the capability of this algo

rithm in identifying the noise covariance parameters. The strict ML criterion is 

adopted in this case since the quasi ML approximation is not acceptable for a 

noise covariance parameter identification. The result of the a,,,
11 

identification is 

shown in Fig. 3 as a typical example. 

3.5 

3.0 

[O"wg) 2.5 

2.0 

1.5 

3.5 

3.0 
(O"wg) 

2.5 

2.0 

1.5 

0 

Data batch length 1sec. 

Dato batch length 3sec. 

2 
Iteration no. 

3 4 

Fig. 3. Convergence of RMS gust velocity for 1.0 and 3.0 seconds of data. 

IV. EKF Algorithm 

The second algorithm consists essentially of the application of the standard 

extended Kalman filter technique to the nonlinear system, derived by augumenting 

the state vector with the parameters to be iddentified: 

Yt = h(x,, 8,, u,, t) 
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~(~'------------------------
True 1 

8 
,-: 
0 
C\j 
'"j"' 

-

80 = (-0.8, -7.2, -1.2 ]T 
80 • [ -0.7, -7. 3, -1. 7 ]T 
80= (-1.5, -3.0, -3.0]T 

8-
True r,..:..1.t-11-------------------------

• I 
8 
oo· 

I 

8 
0 

0 a,_ 
0 

True 1 1 

0 A------------------------------
(D.-

'"j"' -

~
~ 
~4 
f'(') 
I 

~-r "-----.-----,--.-----r--r----r--,---,---.----,---r,-.--,-.---,-,.----r---.,-., -.---.---,-,,r--i 
0.00 2.00 4.00 6.00 8.00 10.00 1200 14.00 16.00 18.00 20.00 

sec 
Fig. 4. Effect of starting values of parameter estimates on the convergence of the EKF algorithm. 
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[True) 
[-A-) 

~ 
I"" 

I 

g 
T 

[-A- J 

----------\__ ----
[True) 

(-C- l 

[-A-) 

[True) 

~it=======~====~ 
o (-8-) 

~ 
I"" 

I [-8-) 

(-8-) 

(-C-) 

C! [-C-) 
T .-.--.-....----,----.-----.----,-----,--,----, 

~ 
r,..: 
I .--.--.-....----,----.---,-----,-----,--,----, T .--.--....-....----,---,-----,-----,--,-..--, 

0.00 4.00 8.00 12.00 16.00 2QOO 0.00 4.00 8.00 12.00 16.00 20.00 0.00 4.00 8.00 1200 16.00 20.00 
sec sec sec 

Fig. 5. Effect of starting values of parameter variances on the convergence of the EKF algorithm. 

After the linear filtering theory is extended to nonlinear systems shown in Ref. 

6, we can readily obtain the EKF algorithm for this augmented system. It pro

vides on-line (sequential) estimates of the state and parameter vectors simultaneous

ly. A pair of Kalman gain matrices, corresponding to those for updating the state 

and parameter estimates, respectively, are computed either simultaneously through 

the perturbed covariance equations for the augmented system, or separately by 

using the Fridland's bias filtering algorithm. 

One of the main difficulties of the EKF algorithm in practice is that the selection 

of the initial values of the parameter estimates and their variances has a significant 

effect on the convergence characteristics. Figure 4 shows the estimates of each 

parameter as a function of time, starting at the same three sets of initial estimates 

that have been employed in the previous runs with the ML algorithm. It can be 

recognized from the figure that the results highly depend on the starting values; 

i.e. a good selection of the initial values provides a satisfactory result, whereas a 

poor one yields a biased estimate. This exhibits a striking contrast to the ML 

algorithm. 

The starting values of the parameter variances also have a significant effect 

on the result of the estimation. Figure 5 illustrates the results of the estimation of 

each parameter with four different sets of initial variances; one set is true ([0.047, 

0.142, 0.07]) and the other sets are erroneous (A=[0.02, 0.01, 0.03], B=[0.l, 0.6, 

0.2] and C=[l.l, 1.9, 1.0].) 

Combined ML/EKF Algorithm 

The preceeding examinations for the EKF algorithm have shown that an 

inadequate selection of the starting values results in a fatal error in the estimated 
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values. Therefore, there is a need for employing a start-up procedure which is 

insensitive to the initial estimates. 

We investigate here the combined ML/EKF algorithm, in which the iterative 

ML solution is obtained by using the initial batch of the provided data, followed 

by processing the remaining data with the EKF in order to miprove the estimates 

sequentially. A combination of the two algorithms gives a powerful method for 

parameter identification because the weak points of the original ones compensate 

each other. As a result, the new algorithm has advantages in that it requires no 

"a priori" information on the initial parameter estimate, and it gives an on-line 

estimate in real time with less computational time and a higher degree of accuracy 

than the ML identification on overall data. Moreover, as has been suggested by 

Tanaka7>, since these two algorithms include essentially the same computational 

structures, a large simplification may be possible by using a single computer program 

jointly, and switching over from one to the other. However, it uses an extensively 

approximated ML algorithm, and the convergence of such an algorithm is not 

Table 3 Convergence of stability derivatives of EKF algorithm, using ML algorithm for 
3.0 second of data as start-up procedure 

[True variance] [(True variance) x 4] [(True variance)/4] 
1.2 X 10-s 4.8x 10-s 3.0 X 10- 7 

Tsec 9.0x 10-s 3.6 X JQ- 5 2.3 X 10-s 

4.0x 10- 5 l.6x 10-s 1.0 X J0- 6 

z .. M,,. Mq z .. M,,. Mq z .. M,,. Mq 

NOISE-I 
0 -0.9178 -6.926 -1.436 -0.9178 -6.926 -1.436 -0.9178 -6.926 -1.436 

(0.12% 0.07% 0.14%) 
10.0 -0.9166 -6.925 -1.435 -0.9166 -6.925 -1.435 -0.9168 -6.926 -1.435 

20.0 -0.9166 -6.924 -1.435 -0.9166 -6.924 -1.434 -0.9168 -6.925 -1.435 
(0.01% 0.01% 0.07%) (0.01% O.oI% 0.00%) (0.01% 0.03% 0.07%) 

True 1-0.9167 value -6.923 -1.434 -0.9167 -6.923 -1.434 -0.9167 -6.923 -1.434 

[True variance] [(True variance) x4] [(True variance)/4] 
3.0x 10-s 1.2 X 10-4 7.5 X Jo-s 

Tsec 2.0x 10-, 8.0 X 10- 4 5.0x 10-s 

I.Ox 10-s 4.0x 10-, 2.5 X Jo-s 

z .. M,,. Mq z .. M,,. Mq z .. ,,.M Mq 
NOISE-II 

0 -0.9224 -6.937 -1.446 -0.9224 -6.937 -1.466 -0.9224 -6.937 -1.446 
(0.62% 0.20% 0.84%) 

10.0 -0.9165 -6.934 -1.438 -0.9166 -6.933 -1.437 -0.9172 -6.936 -1.441 
20.0 -0.9167 -6.928 -1.438 -0.9164 -6.926 -1.437 -0.2173 -0.931 -1.440 

(0.00% 0.07% 0.28%) (0.03% 0.04% 0.20%) (0.07% 0.12% 0.42%) 

True 1-0.9167 
value -6.923 -1.434 -0.9167 -6.923 -1.434 -0.9167 -6.923 -1.434 
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assured. 

A typical result of simulation runs for the combined ML/EKF algorithm is 

shown in Table 3. The initial 3.0 seconds' data are employed in the batch

iterative ML identification, and the remaining data are processed by using the 

EKF technique. We see in the left column the result obtained by using the true 

initial variance, which exibits the excellent ability of this algorithm. The final 

estimates, obtained after 23.0 seconds in all, have a remarkable accuracy for three 

or four digits, which is superior to the result of the batch ML based on over 30.0 

seconds' data. The results obtained by using erroneous initial variances, i.e. four 

times and a quarter of the true values, are also shown in the same table. The 

influence of the initial variance values on the estimated results is not apparent 

within this range of variations. 

V. Conclusions 

We investigated the problem of aircraft parameter identification when there 

were external random disturbance inputs such as atmospheric gusts and stochastic 

measurement noises. Two general algorithms, i.e. the maximum likelihood (ML) 

method and the extended Kalman filter (EKF) technique, as well as a combination 

of them are examined by means of numerical simulations. The conclusions reached 

are summarized as follows. 

The strength of the ML algorithm lies in that it requires no "a priori" infor

mation on the initial parameter estimates. With the strict version of the criterion, 

it also is adopted for the identification of the noise covariance parameters, such 

as the rms velocity of wind gusts or rms measurement noises. However, it is not 

suitable for airborn rapid computation since it 1s a batch processing system by 

nature. 

The EKF algorithm computes an on-line estimate of the parameter in real 

time. It has a smaller program size and requires less computational time and 

memories than the former. But the convergence characteristics of this algorithm 

are largely affected by the starting values of the parameter estimate and its vari

ance. When "a priori" information on the initial values in poor, the practical 

use of this algorithm is doubtful. 

The combined use of the above two algorithms gives a useful method for an 

on-line parameter estimation. It uses the ML algorithm as a start-up procedure 

and processes the remaining data sequentially with the EKF technique. The 

results of simulation runs assured that this combined ML/EKF algorithm has a 

great capability in application to the aircraft parameter identification problem. 
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