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On Pole Assignment and Stabilization for the Heat Equation 

By 

Teruo HAMATSUKA*, Abdul-Aziz Mo'oMEN** and Hajime AKAsm* 

(Received March 4, 1981) 

Abstract 

For one type of infinite dimensional linear systems, specifically the heat equation, 
the possibility of assigning the infinite set of poles of a closed loop system formed by means 
of a suitable linear state feedback operator is discussed. Necessary and sufficient con­
ditions arl' derived for the existence of a feedback opeartor to shift all the eigenvalues 
of the controllable system, and to assign an arbitrary finite set of poles of the closed loop 
system. As an application of this result, it is shown that an open loop controllable 
system can be stabilized in a desired order of convergence by a suitable choice of the 
feedback operator. 

1. Introduction 

We consider the heat conduction problem which is normally described by the 

partial differential equation of the parabolic type: 

( 1 ) 

with the adiabatic boundary conditions 

and initial temperature data 

This equation governs the evolution of the temperature distribution of a homogene­

ous insulated rod held to zero temperature at the ends 71=0, 7/= 1, where 7/ 

denotes the position along the rod. Also, we assume zero temperature gradients at 

the ends. 

* The authors are with the Department of Precision Mechanics, Faculty of Engineering, Kyoto 
University, Kyoto 606, Japan. 

** ABDUL-AZIZ MO'OMEN is with the Department of Precision Mechanics, Faculty of Engine­
rering, Kyoto Univesity, Kyoto 606,Japan, on leave from the Department of Mechanical engine­
ering, Ain-Shams University, Abbasia, Cairo, Egypt. 
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One way that we might generalize our view of the "formal" ( or "classical") 

description of the system by equation (1), would be to set up the abstract version 

which is completely equivalent. There are several good reasons why it is actually 

preferable, not the least of which is the possibility of making use of the functional 

analysis methods. Another reason becomes apparent when we regard the control 

problem for such systems which we wish to motivate, especially for introducing the 

control forces and monitoring some feedback. 

( 2 ) 

Let the Hilbert psace X=L2(0, 1) and consider the linear system _£ 

!!_u(t) = Au(t)+BJ(t), 
dt 

with A~~. and the domain .1':>(A) of A given by 
ax2 

.1':>(A) = [u I u, u' a.c., u',u"( •) E •L2(0, I), and u'(O) = u'(I) =0] . 

Also, A: % ::::) .1':> (A)- Xis the infinitesimal generator of a strongly continuous semi­

group of bounded operators T(t) on%, t ~O. B is a bounded operator from the 

Hilbert space 'U (the control space) to the Hilbert space % (the state space). If, 

however, either dim 'U=m or (range of B) =m, we write .I! as .J!m 

( 3) 
d m 
-u(t) = Au(t)+ ~ bJ;, (the independent vector b; %, and_[;= scalar) 
dt i=I 

Suppose we are free to modify (2) by setting 

f (t) = Fu(t) +g(t) , t ~ 0 

where g(t) is a new external input, and F: X-'U[3] is a bounded linear operator 

(e.g. an integral operator). We refer to F as the state feedback. The obvious 

result of introduicng a state feedback is to achieve stability, or to speed up re­

sponse. In the finite dimensional case, it is always possible to stabilize a com­

pletely controllable system by the state feedback, or to improve its stability by 

assigning the closed-loop poles to locations in the left-half complex plane [IO]. 

It is impossible to generalize this result directly to the infinite dimensional case due 

to a number of difficiulties. For example, the spectrum of an operator on infinite 

dimensional space consists, generally, of something more than eigenvalues. Also, 

the number of the elements of the spectrum of the operator in the half plane 

Re. s<-e, e>O, may not even be countable. We point out that our selection for 

the heat equation reduces some of these difficulties. However, the spectrum of 

the operator A are not finite. The problem of stabilization for controllable linear 

systems in the infinite dimensional case, and in the framework pertinent to the 
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present paper, was first considered by Slemrod, in two papers [7], [8]. Slemrod's 

approach-motivated mainly by hyperbolic systems and carried out for Hilbert 

spaces X and if-parallels the Lyapunove type of argument used in [5] in finite 

dimension, by relying on Hale's generalization of LaSalle's invariance principle 

for Banach spaces. In particular, the stabilizability of .I! is sought in [7] and 

[8] under the assumption of its approximate controllability- or the D.-assumption­

plus some further hypotheses. Also, slemrod considered only the problem of sta­

bilization without being concerned about assigning the poles of the closed loop 

feedback system. Triggiani, in his paper [9], tried to extend the finite dimensional 

theory by decomposing the state space into two suitable subspaces (invariant under 

A), and studying the projection of the original system on such spaces. However, 

he restricted himself to the case where only many finite eigenvalues of A lie in the 

right half plane, and was then able to reduce the problem to the finite dimensional 

case. In [4], the authors made no such assumptions. However, their main result 

(theorem3) included the crucial condition: a(A+b@c)na(A)=¢. This con­

dition is introduced with no explanation about its realization. Unfortunately, the 

examples given there did not treat such a condition. Here, we examine this con­

dition well, and introduce an alternative proof for theorem ( l) [ 4] so as to avoid 

making use of the discretized system. 

Some basic notions are defined in Section (2). Section (3) explains the re­

duction to a single-input system, with some discussion about the rank one operator 

which is used as a stayte feedback operator in this paper. In Sections (4) and (5), 

we treat and solve two important problems in the case of infinite dimensional and 

of long-standing interest in control theory: pole assignment and stabilizability by 

the state feedback respectively. 

2. Preliminaries 

We have assumed that A is the densely defined self-adjoint heat diffusion 

operator. As is well known [l], A has a pure point spectrum with no finite limit 

point, i.e. 

n = 0, 1, 2, ···} 

and 

<Pn(x) = v2 cos mr:x 

is an eigen function corresponding to eigenvalue An• It is easy to prove that A 

generates a compact semigroup T(t) such that 

T(t)u = f e-n'"21 (u, <Pn)<Pn 
0 
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where 

The resolvent operator is compact for all ..lEp(A); and 

R(l, A)u = [U-Ar1 u = ~-1
-(u, </>,.)</>,.. 

l-l,. 

It is known that the system (2) has a solution iff (t) is sufficiently smooth in [O, 00 ), 

for instance continuously differentiable, and it is always so assumed. 

Definition 1. By a system [ A,B] we mean (2), a state u in X is called con­

trollable if for any e >O, there is f E C1((0, t), U) such that the solution of (2) with 

u(O) =0 satisfies 

llu(t)-ull <e for some t >O. 

where C1((0, t),U) is the set of control which is continuously differentiable. The 

set of every controllable state of [A, BJ-denoted by Xc(A, B)-is said to be the con­

trollable subspace. [ A, B] is controllable if Xc=X. It is well known that 

Xc(A, B) = LJ T(t) Range B 
1;;,o 

where denotes the closure. 

3. Reduction to Single Input-System 

The first step in our procedure will be to reduce the problem to the cast 

where B is a rank one operator. Our later discussion will be devoted to the sys­

tem .!m subjected to a feedback operator of rank one denoted by b@c. 

Theorem 1. If [ A, B] is controllable, then there is a vector b E Range B such 

that [ A, B] is controllable. 

Proof. Since {bi, ···, bm}are the basis of Range B: 

~ 

b; = ~ (b;, 'Pk)¢k, and 
l=l 

T( )b ~ -n2'1t2t .,_ ,,_ )"' t i = "-' e (o;, '1-'k '1-'k 
l=l 

Note that the controllability condition 

X =Xe= LJ T(t) Range B 
1;;;;0 
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implies that for each k, (u;, </Jk) =1=0 for one i at least, since 

fori=l=j, t>0. 

m 

Thus, there exist numbers a 1, ···, am such that ~ a;(b;, ¢k) =1=0 for all k. This 
m i=l 

implies b=~a;b; is a cyclic vector for T(t) and [A,B] is controllable. The 
i=l 

above theorem guarantees that we can replace a multi-input controllable system 

by a single-input controllable system with no loss of generality. Thus, in our case, 

we can replace (3) by the system: 

(3') 
d -u(t) = Au(t)+J(t)b, 
dt 

b EX. 

wheref(t) is a scalar valued function. For a state feedback: 

f (t) = (u(t), c) +g(t) , 

(u(t), c) = J: u(x)c(x)dx. 

where cEX and 

The state feedback system will be 

where 

!!_u(t) = (A+b©c)u(t)+g(u)b. 
dt 

(b©c)u = (u, c)b = b(x) !: u(y)c(y) dy. 

We call the operator (b©c) by the rank one operator since its range is one dimen­

sional subspace. 

We conclude this section by stating some properties for the rank one operator. 

1. b©c: rank one operator, i.e., the dimension of 

Range b@c = 1 . 

2. b©c: is compact, and then, from the Fredholm alternative [6]: 

u(b©c) = {O} U up(b©c) 

where u(b©c) denotes the spectrum of (b©c), while up(b©c) is its point spectrum. 

Both can be easily computed as: 

u(b©c) = {O, (b, c)} 

3. bis an eigenvector corresponding to the eigenvalue (b, c). 

4. Span {b} is (b@c)-invariant. 

5. Ker b©c= {xEX; (x, c)=0} =e 
6. Every x which is orthogonal to c is an eigenvector corresponding to the 

eigenvalue zero. 
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04 span b. 

4. Pole Assignment 

The following theorem allows us to shift all the eigenvalues of operator A by 

the state feedback. 

Theorem 2. Suppose that [A, B] is controllable, then 

if, and only if 

Furthermore, 

a(A+b©c) n a(A) = ¢ 

(c, r/Jk) =1=0, for all k = 1, 2, ••• 

a(A+b©c) = ap(A+b©c) 

= {µEe I (R,,.b, c) = l} 

Proof: We note that the controllability of [A, B] is equivalent to 

(b, r/Jk)=l=0, for all k = 1, 2, ··· 

Suppose that -n2n-2u=(A+b©c)u, or 

( 4) -n2n-2u = Au+(u, c)b 

for some n= 1, 2, • • ·. Substituting the representations 

into (4), we get 

-n2n2 (u, r/Jk) = -k2n2(u, r/Jk) + (u, c) (b, r/Jk) , or 

(k2-n2)n2(u, r/Jk) = (u, c)(b, r/Jk), 

Since, k2-n2=0 for k=n, we have 

Then, 

(u, c) = 0 

(u, r/Jk) = 0 

if (b, r/Jk) =1=0. 

for k=l=n, and Un = 0, 

if (c, r/Jn) =1=0. This implies u=0, and -n2n2 Ep(A+b©c) (the resolvent set of the 

operator (A+b©c). Supposing (c, r/Jk) =0 for some k, then 

-k2n2 Ea(A) n a(A+b©c), 

since (A+b©c)r/Jk = -k2n2¢k+(¢k, c)b = -k2n2¢k. 

This proves the main part of the theorem. The remaining part 1s feasible in 

proving. 

Corollary 1. Suppose that the system [ A, B] is controllable, then 
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The proof ois obvious. 

Thus, for the last step, we have the following theorem. 

Theorem 3. Suppose [A, B] is controllable. Let {µkh=i ... N for any finite 

number N. Then, there exists a vector cEX such that 

{µkH-1Ea(A+b@c), and; 

{-n2;r2}n=i,2, •. Ea(A+b@c), 

except N number of eigenvalues, say, -k2;r2, k = ic1>, ic2>, ···, icN>• That is, by 

cEX, any finite number of eigenvalues of A can be shifted. 

Proof: Let C= "iJ ck¢k, Ck= (c, ¢k) = v2 f1 c(x) cos k;rxdx, and h(J.) = (R~, b, c). 
k=O Jo 

Then, by simple computation, we have 

N-1 b C 
h(J.) = (R~b, c) = ~ k k 

k-1 J.+k2;r2 

For the proof, it is enough to show that we can evaluate ck such that h(µ.) = 1 by 

theorem (2). Note that h(J.) is a rational function with numerators being a 

polynomial of degree N -1 and the denominator a polynomial of degree N. By 

the classical interpolation techniques we can calculate ck such that h(µk) = 1, 

since k2;r2 "4=-/,2;r2 for k-:t=-l. This completes the proof. 

5. Stabilizability Problem of the Pair [A, B] 

Find, if possible, a bounded linear operator F: X-U, such that the strongly 

continuous semigroup of bounded operators S(t), t?:. 0 in X, generated by 

A+BF: X::JD..2>(A) =..2>(A+BF)-X [3, p. 630], satisfies 

IIS(t)x0II - 0 as t- oo, for all x0 EX. 

The pair [ A, B] is then called stabilizable. 

If, in particular, the above is specialized as 

(Mxi constant depending on x0), or as 

(with M independet on x0 and t), we can talk about the exponential stabilizability 

and the proper exponential stabilizabilty of the pair [A, B], respectively. For the pair 

[A, bi, b2, ···, bm)] referring to .lm, the operator C in the above conditions is re­

placed by them-tuple (ci, •··, cm), c;EX. 



326 Teruo HAMATSUKA, Abdul-Aziz Mo'oMEN and Hajime AKASHI 

The main result of this section is the following: 

Theorem 4. Suppose [A, B] is controllable. Then, there eists a cEX such 

that the feedback system (3) is exponentially stable and the solution converges to 

zero in any desirable order, i.e., 

for any L>O, 

where M is a con"stant which may depend on u. 

Proof: Suppose that (n-1)2n2::;;L<n2n2
• By theorem 3, we can select c, such 

that the eignevalues {k2n2
} k=o 1 ... n-I are replaced by 

Since a(A+b@c) = {µ 1, ···, µn-i, n2n2
, -(n+l)2n2, ···}, '(A +b@c) generates a 

compact semigroup S(t) and has eigenfunctions {,Jrk} k=o,I,··· which may not be 

orthonormal. (Note that ,Jrk=¢k=V2 cos knx for k?_n.) Therefore, 

This completes the proof. 

::,;; e-Ltl ll:uk,J,kl I 

= Mue-LI. 

6. Conclusion 

The present article provides an effective approach for the formulation and 

solution of the pole assignment, and also the stabilization by the state feedback 

problem. By rather simple but powerful tools, we prescribed the method of solu­

tion by clarifying the conditions under which the state feedback exists to shift the 

poles of the closed loop system. Although we applied it specifically to the one 

dimensional heat equation, this method can treat more genearl cases e.g., when 

the operator A is an elleptic partial differential operator, and also the wave equa­

tion, without any additional flexibilty. 
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