
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

ADINA Computer II : I. Architecture
and Theoretical estimates

NOGI, Tatsuo

NOGI, Tatsuo. ADINA Computer II : I. Architecture and Theoretical estimates. Memoirs of
the Faculty of Engineering, Kyoto University 1981, 43(1): 124-144

1981-03-25

http://hdl.handle.net/2433/281168

124

ADINA Computer II*

I. Architecture and Theoretical estimates

By

Tatsuo Nom**

(Received September 30, 1980)

Abstract

This paper gives a proposal about a new parallel computer of a MIMD array type,
being suitable especially for high speed computing in engineering and science. It has
a master unit, N submaster units and N2 slave units, having their own processors and
private memories respectively. Also, there are common memories between every sub
master and every corresponding slave and further buffer memories used for transferring
data between any allowed pair of slaves. In comparison with the ADINA Computer
I [l] proposed previously, the new computer (ADINA Computer II) is useful for not
only one and two dimensional problems, but also for three dimensional problems. Fur
thermore, it more easily allows an increase of the number of processors. Theoretical
estimates for some examples of computation show that the ADINA Computer II is also
very efficient.

I. Introduction

This paper is about a new parallel computer of a MIMD array type, suitable

for high speed computing in engineering and science. It is a multi-processor

system with several buffer memories provided for transferring data among slave

units.

Up to this time, several kinds of multi-processor systems of array types have

been developed especially for solving partial differential equations numerically.

Among them, ILLIAC-IV is a representative machine. It is literally a multi

processor system of a two dimensional array type, with a network of data buses

for providing a path only between every pair of adjacent processors. Hence it

has an essential defect that it is troublesome and takes a long time to transfer data

between any two separated processors.

Another mu1ti-processor system with a cross-bar switch permitting a direct

transfer of data between any two processors does not suffer a loss of throughput in

a data transfer. However, as it usually need3 a vast sum of hardware, it has been

* Alternating Direction Immediate Nexus Array Computer II
** Department of Applied Mathematics and Physics

ADINA Computer II 125

avoided for usage.

The most important problem how to exchange data among processors when

it is intended to design a parallel computer. The author previously proposed a

parallel computer (ADINA Computer I) with a two dimensional array of buffer

memories, which makes it possible to exchange data between any two processors,

but does not increase its quantity of hardware so much. (See [l]). Nevertheless,

it is again a difficult problem to increase the number of processors in the same

configuration.

The ADINA Computer II is intended to hold an advantage over the ADINA

Computer I, and yet not to increase the hardware so much. On the ADINA

Computer II, a direct exchange of data is not allowed for every pair of processors,

but an indirect exchange is always possible if another processor is used as a me

diator. Also, it is noticed that, if the number of slave processors is N 2
, the number

of buffer memory blocks in the ADINA Computer II is N 3 while that in the ADINA

Computer I is N 4
•

2. Architecture

The ADINA Computer II is a hierarchy composed of a master processor, N

submaster processors and N 2 slave processors. The master processor makes a

synchronization of the whole system and plays the role of an INPUT /OUTPUT

processor. The submastcrs are connected to it directly through channels. To

every submaster, corresponding N slaves are connected by each common memory

which comes from both sides of the submaster and the slaves. Every submaster

makes a synchronization among its slaves and plays the roles of a distributor of

programs and a mediator of data between the master and its slaves.

The ADINA Computer II is provided with a fairly vast buffer memory. A

capacity of memory is taken as a unit which is called a memory block. Another

unit is a buffer memory board which is composed of N 2 memory blocks. The

whole buffer memory consists of N boards with the number k= 1, 2, • • •, N. The

k-th board is for bufferring when transferring data bi-directionaly (alternatively in

a direction) between one slave on the k-th row and one on the k-th column of the

two dimensional array of slaves. As a component of the buffer memory, either a

RAM (Random Access Memory) or a FIFO (First-In-First-Out memory) may be

used. In either case, a hardware structure may be suited for either .bi-directional

or uni-directional read/write ability. In view of efficiency, the RAM is superior

to the FIFO and the bi-directional structure is superior to the uni-directional one.

On the other hand, in view of the quantity of hardware, it is less for the FIFO

126 Tatsuo Nom

than for the RAM, and it is less for the uni-directional structure than for the bi

directional one. In the case of using the FIFO, a transfer speed is, however, not

so slow in comparison with the case of the RAM, if a DMA channel is set between

every slave and every FIFO.

The only case considered in this paper is that the RAM is used for the buffer

memory, and it is accessed from both sides of the row and column positions of

slaves. Then, it is used not only as the buffer memory but also as a memory for

working.

Besides, all processors are pvrovided with private memories.

A method of bus connection embodied in the ADINA Computer II will be

cleared by referring to some accompanying figures as follows: MU denotes the

master processor, SU-((k)) (or simply ((k)); k=O, 1, •··, N-1) denotes the k-th

submaster processor and AU-((j,k)) (or simply ((j,k));J,k=O, 1, ... ,n-1) denotes

the slave master on the cross point of the k-th row and the j-th column in the two

dimensional array. Further, (i,jh (i,j, k=O, 1, ···, N-1) denotes the (i,j)-th

memory block on the k-th memory board.

Fig. 1 shows an outline of the bus connection between MU and every SU, and

Fig. 1. Bus connection of MU-SU and SU-AU

between every SU and the corresponding AU's. Here MM is the main memory

of MU, and CM is a common memory accessible from both sides of a SU and

ADINA Computer II 127

the corresponding AU. An access by an AU is allowed under control of its master

SU. Two other bauses from every AU, seen in Fig. 1, go to two corresponding

memory blocks respectively. The details are seen in Fig. 2.

Fig. 2. Bus connection between AU and the buffer memory

Fig. 2 shows a subsystem composed ofSU-((k)), AU-((j,k)) (j=O, 1, ··•,N-1),

AU-((k,i)) (i=O, 1, •··, N-1) and the k-th memory board. Each block (i,jh is ac

cessed only by two processors ((j, k)) and ((k, i)). Their competition of access is

helped by the control of ((k)).

Usually, the control is taken in the following way. At a time, every processor

((j,k)) (j=O, 1, ···,N-1) accesses corresponding buffer memory blocks (i,jh (i=O,

1, ···, N-1) together, and at another time every processor ((k, i)), (i=O, 1, ... , N-1)

accesses corresponding blocks (i,jh (j = 0, 1, · · ·, N -1) togeher. Besides, it is also

possible for a AU to write data in a whole buffer memory row or column in a

broadcasting manner.

Another bus from every AU, seen in Fig. 2, goes to another corresponding

buffer memory board.

By such a manner of bus connection, a direct transfer of data through the

k-th memory board is permissible only between one of ((j,k)) (j=O, 1, •··, N-1)

and one of ((k, i)) (i=O, 1, ···, N-1). Such a manner of connection is described

by the schema

((j, k))-(i,jh-((k, i)).

128 Tatsuo Nom

As a rule, it is expressed as follows:

i) A direct transfer of data through the k-th buffer memory board is possible

between two processors with the number k in the brackets ((,)) before and

after their commas respectively.

ii) It is, then, the buffer memory (i,}). that stands, for example, between

two processors ((j,k)) and ((k,i)). The name is indicated in the following

manner: to shift the pair of numbers in a processor's name in such a way

so as to put out the number k common to those processors from each double

bracket at once, to make the removed number k a suffix of a single bracket

with the number left like that (,j). or (i, h and to put the number i or j,

being a counterpart to the common number k, in the double bracket of the

partner processor into the blank of the single bracket.

It is, however, impossible to transfer data directly even between any two

processors on the same row or column, for example, between ((j,k)) and ((i-1,k)).

Nevertheless, an indirect transfer is always allowed between any two AU's,

only if another AU is used as a mediator. In fact, a transfer from ((j,k)) to ((l,m))

is done in the following way: ((j,k)) writes the data in the buffer memory block

(l,j)., then ((k,l)) reads them and writes again in (m,k),, and finally ((l,m)) reads

them. The procedure is described in such a shema as

Therefore it is found that such an indirect transfer needs only one more READ

and WRITE operation in comparison with a direct transfer. Moreover, it is done

uniformly for every pair of processors, and it takes a time not depending on their

distance (or exactly the distance of their numbers).

3. Methods of allotting AU's and buffer memory blocks

For a later purpose to estimate the efficiency of the bus connection mentioned

above, it is necessary to give methods of allottnig the AU's and buffer memory

blocks in applications for solving partial differential equations in a 3 or 2 dimensional

space.

In Fig. 3, V means a cube in a triple number space (i,j,k), corresponding to

a discrete coordinate (x;,Yi, zk) in a 3 dimensional space (x,y, z). When it is pro

jected to the square OABC being perpendicular to the i-direction, an array of the

number points (j,k) is produced on the square as a projection of all the integer

lattice points in V. Then, every AU-((j, k)) is first made to correspond to each

point (j, k) on the square. Such a processor is represented by P in Fig. 3. Pro

cessor P is first expected to play the role of computation on every lattice point

ADINA Computer II 129

which has been projected to the point of P. Such lattice points are represented

by a line aa' in Fig. 3.

0

8

A

Fig. 3. Correspondence of AU's and buffer memory blocks
to a cube of lattice points

Further, the square OABC of the AU's is assumed to stand at two more positions

where the projections of V to the j- and k-directions are produced respectively, as

shown by the squares with broken sides in Fig. 3. Every AU is also assumed to

take the role of computation on the two lines /3/3' and rr' of the lattice points.

Thus, all the lattice points of V are covered threefold by AU's.

Such a configuration is very favorable especially for the ADI method to solve

partial differential equations. It reduces a fundamental cycle of solution to three

fractional steps, in each of which a revised difference equation being implicit only

in a direction is solved respectively. In order to solve the equation on the con

cerning fractional step, some results of former fractional steps are usually necessary.

Therefore, those results must be transferred from processor to processor.

An aim of setting the special buffer memory is just for such transfers. Fig.

4-a, b, c shows how to correspond the buffer memory to the lattice points in V,

and how to connect the buses from the AU's to the buffer memory. The square

OABC has the same meaning as in Fig. 3. In Fig. 4-a, the square OLMN is a

buffer memory board. Let it be the k-th board from the bottom. Then, as men

tioned in the last section, every row of buffer memory blocks, (i,j)k (i=O, 1, ... ,

N-1), is connected to a corresponding processor ((j, k)) on the row ab of the square

OABC. Also, every column of buffer memory blocks (i,j)k(j=O, 1, ... , N-1) on

the same board is connected to a corresponding processor ((k, i)) on the column

a'b'. Let every memory block allot to each node of a net produced by the lines

drawn from all the processors on ab and a'b' to the i-direction and the j-direction,

respectively.

130 Tatsuo Nom

M

a

b

8 ·-I,
I •
I N
I
I
I
I
I

c"'
C C

0

Fig. 4-a a-position of the AU plane and a buffer memory board
Fig. 4-b b-position
Fig. 4-c c-position

Then, the number of processors being related to each buffer memory block 1s

only two. If RAM is used for the buffer memory, two concerning processors are

allowed to access a corresponding block directly. On the other hand, if FIFO is

used, two DMA channels from two concerning processors are connected to a cor

responding block.

As a whole, N buffer memory boards are set up for k=O, 1, •··, N- l.

As regards the application of the ADI method, after every processor writes

some results computed on a corresponding row of lattice points into a correspond

ing row of buffer memory blocks. It reads other results in the form of a data

column from a corresponding column of buffer memory blocks at the position in

dicated by the square with broken side lines in Fig. 4-a. Then, it goes to the

ADINA Computer II 131

next step to solve difference equations being implicit with respect to the }-direction.

Fig. 4-b shows the second position of a buffer memory board and the array of

processors in the fixed space. Let the board be the k-th one from the left and

correspond to the k-th vertical plane of lattice points in V. Fig. 4-b shows also

that, once rows of data in the }-direction are written in corresponding rows of

buffer memory blocks, the data can be read from columns of buffer memory blocks

in the form of data columns in the k-direction.

Fig. 4-c shows the third position of the k-th buffer memory board and the

array of processors. Again, it shows that, once rows of data in the k-direction are

written in respective rows of buffer memory blocks, the data can be read from

columns of buffer memory blocks in the form of data columns in the i-direction.

It must be noted that, though Fig. 4-a, b, c shows different cases of position,

the relative relations among the AU's and the buffer memory boards are the

same for all cases. Therefore, only one complex of a two dimensional array of

AU's and a set of buffer memory boards are sufficient, and they are used in three

ways.

By such a consideration, it follows that this computer may reduce the com

putation time of the ADI method by l/N2 times exactly.

This computer is not restricted only to the application of the ADI method.

Later examples of computation will show that it is also efficient for other methods

of solution.

Moreover, it is desirable to have an ability to treat difference equations on a

two or one dimensional lattice and to get universality. For this purpose, it is

preferable that this computer be regarded as another complex of a one dimensional

array of processors, and a two dimensional array of buffer memory blocks just

like the ADINA Computer I. However, since the ADINA Computer II has not

so many buffer memory blocks as to allow a direct transfer of data between any

two processors, some proper ideas must be brought in use.

An effective way is brought from the consideration mentioned already, that

an indirect transfer is always possible by the help of another processor. In fact,

the AU's are all arranged in two ways to the j- and i-directions respectively, with

a different ordering as seen in the left and bottom sides of Fig. 5. Then, the given

buffer memory blocks are, of course, not sufficient to be allotted to all nodes of a

net produced by direct lines drawn from all the AU's in both directions. The

nodes to which blocks are really allotted are only what, in Fig. 5, are found in

the squares with thick side lines lying diagonal, from right-tiop to left-bottom of

the figure. Among those processors being connected to diagonal squares, a direct

transfer is always permissible, but it is impossible in general. It is, however,

132

«N-l,N-I))
«N-2,N-ID

(0, N-2)

«N-I,0))
((N-2 ,OD

j •

L~·O))

Tatsuo Nom

~N-I,0l

(N-2
()~

«O,O))

....
0~ C\J -

I I
0 .. z~z~
'='

00

~N-I,
N..:2l

«N-1,
N-ID

~2.
N-2}

«N-2,
N-ID

«o, ((0,
N-21 N-I»

.... :::=::s==::t=t =-0 C\J T 0 C\1-
'z I I

C'i·· ~N°"__: .. zz
:,:-

I I I I I z zzz zz
Fig. 5. Two positions of one dimensional array of processors and mediators

allowed to transfer data indirectly between any two processors through another

mediating processor indicated in a corresponding square on the off-diagonal. Yet,

processors are indicated in the diagonal squares and they also are, if necessary,

((N-I,N-ID ➔ (l,N-1!,,-,l
: : -«N-I,.e))

((0 ,N-ID ~(.e ,O)N-l ,j,
(O,N-1)£ · · (m,N-1)1 · · (N-l,N-1)1

,I, ,I, ,I,

«N-I,k » ~to,tll•i •(t,N-1), l •INi,N-llt l
«i,k» ~ (O,j)k ... ➔ (.Q,j)k ~-(k,t)) ... ➔ (N-1,j)k

(O;k» ➔ (o;oik
: t

➔(N-1,0)k ➔ (Q,O)k

(O,kl.e · ·(m,kl.2· · (N-I,kl.e
,J,, .j, ,l,

«N-I,0D ➔(,,N-1), l
: : -«o,.e»

«O,O)) ➔(Q,O)o i
(O,Ol.e·· (m,O)r (N-I,0),e

.j, -1, + + -l, -l, -t
«O,O)) · ·· (O,N-I) ... U .o>.- · U,m».- · «.e ,N-1» «N-I OD ·· ·

«N-1,N-ID

Fig. 6. Data flow through buffer memories and mediators

ADINA Computer II 133

used to that all transfers among the AU's may be done in a uniform way.

Fig. 6 shows a case of data flow where, it is assumed, every processor has

data on each dimensional lattice in the i-direction and then receives data on each

dimensional lattice in the j-direction in a fully parallel way. The details are as

follows:

i) Every processor ((j,k)) decomposes N 2 data on each row of lattice points

into N sets of N-tuple data, and writes them in Nbuffer memory blocks (0,j),.,

(l,j),., ···, (N-1,j),. respectively.

ii) The following procedure is repeated for m=O, 1, · • •, N-1 successively;

every processor ((k, /)) reads the m-th data from all N buffer memory blocks

(l, 0),., ···, (l,j),., ···, (l, N-1),. respectively, considers them as a N-tuple data,

and writes in the buffer memory block (m,k) 1•

iii) Every processor ((l,m)) reads N sets of N-tuple data from the buffer

memory blocks (m,0),, ···, (m,k)r, ··•,(m,N-1) 1 respectively.

It is seen above that, in comparison with a machine having so many buffer

memory blocks as to be alloted to all nodes of N 2 x N 2
, the second step ii) to me

diate data is excessive. However, it does not take so much time. It is hence

found that the ADINA Computer II also solves problems on a two or one dimen

sional lattice with a high efficiency, and has an ability for a wide range of ap

plications.

4. An example of trial manufacture

In this section, a design of manufacturing is exposed in order to give theoretical

estimates of efficiency concretely in a later section. Though the aim of developing

the ADINA Computer II is clearly an achievement of ultimate high speed by

the parallel architecture in addition to the use of ultimate high speed elements,

only a trial composed of inexpensive micro-processors on the market is considered,

and its efficiency is estimated.

Every processor adopted is a super minicomputer or a LSI minicomputer of

TOSBAC series 7, with an ability of 16 bit parallel operations and some macro

commands of floating-point number operations.

Provided processors are a MU, 16 SU's and 256 AU's. As the MU, TOSBAC

7/40 is used and, as the SU or AU, TOSBAC 7/10 (micro 7) is used. Some data

of those minicomputers are given as follows:

MU has a main memory of NMOS, and its cycle time is 0.36 µs per half word

(two bytes), and its maximum capacity is 512 K bytes. Between MU and every

SU, a DMA bus is provided, and its transfer speed is 1 M bytes/sec. Every SU

134

also has a main memory of 48 K bytes (CMOS) and 16 K types (EPROM) with

cycle times 1.4 µsand I.I µs per halfword respectively. A portion of the CMOS

memory (16 K bytes) is used as a common memory accessed from both sides of a

SU and its corresponding AU. Also, every AU has a main memory of 16 K

bytes (CMOS) and 16 K bytes (EPROM). The remainder of the AU's address

space is still 32 K tbyes, half of which is used for accessing a common memory,

and the other half is used for accessing the buffer memory.

AU's machine times in floating-point operations are listed in Table I.

Tablle I. Machine times in floating-point operations by a AU

Operation

LE: Register +- (Memory)

STE: Memory+- (Register)

AE: Register +-(Register)+ (Memory)

SE: Rdegister +-(Register)+ (Memory)

ME: Register +-(Register)* (Memory)

DE: Register +- (Register) / (Memory)

Machine time

15~38.3µs

11.25 µs

38.3~58.1 /IS

40.13~60 µs

13.1~85.9 µs

15.4--·80.6 µs

As the buffer memory, 4096 buffer memory blocks rae prepared, and every

block is composed of two chips of MOS static RAM F3539. Its access time is

650 ns and its capacity is 256 X 8 bits.) Hence, it has a capacity of 256 halfwords.

On manufacturing the buffer memory, 16 memory blocks are set up on a

real board in a matrix form of 4 X 4. Moreover, 16 boards are put together in

a 'grand board' which we call a buffer memory board. 16 grand boards complete

the buffer memory.

It is seen in Fig. 7 which signals and buses are connected to a real board. In

fact, it shows such control signal lines and such address and data buses that come

in the buffer moemry block (0, F)k, which is located at the extreme left and upper

position on the extreme left and upper board of the k-th grand board.

It is assumed that at any time, either set of lines from the left or that from

the bottom of Fig. 7 is selected. The control signals coming to every memory

block are CS(Chip Select), OD (Output Disable) and R/W (Read/Write selec

tion). (Pl) 4 means the fourth bit of the port Pl of AU,. and it is an output for

selecting all the buffer memory blocks forming a full row on a buffer memory

board. (PI) 0 also means the 0-th bit of Pl and is an output for selecting all the

blocks forming a full column on another buffer memory board.

Fig. 8 shows the logic for cutting a competition of signals and buses, and also

gives a method to access the common memory in a SU. Especially, it gives the

logic and the connection among SU-((k)), AU-((j,k)) (j=0, I, •·•,F) and AU-

«E,k»(

(D,kD {

(C,k) {

-
·--

A.DINA Computer!!

S A

~i~ Y4~
154~

!l! •• ~.J
OUCD
I 11
1111

,---L)

-0
~ -

I -

;JJ
00 CSt
A7~0
(O,F)k
3539X2
D1&-0
~

..__.,__, -...: -
Fig. 7. Signals and data buses coming to a memory board

((k,i)) (i=O, 1, ··•,F).

135

As an illustration of the control, a typical example of application is given as

follows:

i) Every ((j,k)) (j=O, 1, •··,F) writes some data in all the buffer memory

blocks (i,jh (i=O, 1, •··, F), then issues an end signal through (Pl) 6, and

closes the horizontal lines of Fig. 7. When they all complete writing, ((k))

receives a total end signl through (Plh.

ii) ((k)) clears its (Pl) 6 and issues a singla of having received it through

(Plh. The signal comestoevery(Plhof((j,k)) (j=O,l,··•,F). Afterre

ceiving it, ((j,k)) clears its own (Plh. The same signal also comes to every

(Pl)1 of ((k, i)) (i=O, 1, •··, F). Aftre receiving it, ((k, i)) opens vertical lines

by making (Pl) 2 low.

iii) Every ((k,i)) (i=O,l,·•·,F) writes some results inallthebuffermemory

136 Tatsuo Nom

Fig. 8. Logic for help from memory access competition

blocks (i,jh (j=O, l, •··, F), then issues another end signal through (Pl) 2, and

closes the vertical lines. When they all complete writing, ((k)) receives

another total end signal through (Pl) 3•

iv) ((k)) clears (Pl)a and issue a singla of having received it through (Pl)3•

The signal comes to every (Pl)a of ((k,i)) (i=O, 1, ···, F). After receiving it,

((k,i)) clears (Pl)a. The same signal also comes to every (Pl) 5 of ((j,k))

(j=O, l, •··, F). After receiving it, ((j,k)) opens horizontal lines by making

(Pl) 6 low, and returns to i).

When some results have to be transferred to ((k)),

v) ((k)) puts a number 'lj' on (P0) 4_ 0• Then, the lines from ((j,k)) are

opened also to the common memory of ((k)). After receiving a singla of

their having been opened through (POh, ((j, k)) starts to transfer data.

ADINA Computer ll 137

When it is completed, ((j,k)) issues an end signal through (POh, and ((k))

receives it through (PO)r.

5. Evaluation of efficiency in reference examples

of computation

In this section, it is shown by estimating computation time for some examples

that the ADINA Computer II has a very high efficiency.

Here two kinds of computation time are compared: a time lost by a parallel

processing of the AU's, and that by a uni-processing of a single AU for a com

putation problem. The former is called the parallel processing time P 1, and the

latter is called the uni-processing time S 1• A computation time means here a

theoretical value evaluated by following a program written 'in machine language.

In such an evaluation, the times of the floating-point operations are represented

by their middle values, since they are not estimated exactly for all cases before

hand. On uni-processing by an AU, it is assumed for a fair comparison that its

main memory is enough to keep all the data.

As an index of comparison,

an efficiency R, defined by R=r/N2,

is used when a parallel computation is done by N 2 AU's, where

r = S1/P 1

is another index meaning that the parallel processing gets a speed-up by r times

in comparison with the uni-processing. The most ideal case is when r=N2, but

an ordinary case is when r<N2•

For the convenience of illustrating some methods of application, it is necessary

to introduce some symbols and words beforehand.

First, (m= •) indicates a location in a memory block occupied by a con

cerning data word. It was already mentioned that there are three ways to cor

respond the buffer memory to a cube in a lattice space as seen in Fig. 4-a, -b, -c.

Those positions of the processors and the buffer memory are called a-position,

b-position and c-position respectively. In any position, a one dimensional array

of N buffer memory blocks projected to a point on the plane of processors in the

direction parallel to the side OL, or alternatively to the side ON, is called a me

mory row or a memory column.

Exampie I (ADI method for a 3-dimensional heat conduction)

A difference method is considered here. It is applied for solving the problem

of finding a function u=u(x,y, z, t) satisfying the equations

138 Tatsuo Nom

Bu=Llu (LI=~+~+~) t>O, (x,y,z)EG,
8t 8x2 a/ 8z2 '

u(x,y, z, t) = g(x,y, z, t), t>O, (x,y, z)EI',

u(x,y, z, 0) =f(x,y, z), (x,y, z) EG,

in the domain G= {O<x,y, z<l}. Here, I' is the boundary of G, and g and f

are the given functions.

G is covered by a net of lattice points produced as cross points of the planes

with a parameter h (mesh width)

x = X; = ih, y =Yi= jh, z = zk = kh

i,j,k = 0, 1, ···, N+l, (N+l)h = 1.

U=Ui,i,k=U(x;,Yj, zk) denotes an approximate function for u defined on the

lattice. Also, un denotes a value of the function U at a time t=n, (n=O, 1, 2, ··•),

, being a time step.

The heat equation is replaced by the well-known Douglas-Rachford implicit

scheme.

(l -JL/1) unw = [l +l(Ll2+Ll3)] un,

(l -ALl2) un+I** = un+I* -ALl2Un,

(I-ALl2) un+I = un+I•• -ALl3Un,

where A=,/h2 and Ll;(i= 1, 2, 3) is the difference operator defined as

Ll1Ui,i,k = ui+1,i,k-2ui,j,k+ui-1J,k,

.L12Ui,i,k = uiJ+1,k-2ui,i,k+ui,j-1,k
and

(1)

(2)
(3)

respectively. The above scheme determines un+i from un, and it is used repeatedly

for n=O, 1, 2, ··•. It is seen in the scheme that two functions, un+i• and un+i••,

stand as auxiliary functions. Therefore, three fractional steps of finding un+i•,

un+i•• and un+i complete one step from n to n+ I. An important characteristic

of the scheme is that every equation of (1), (2) and (3) has a fully blocked coef

ficient matrix. In fact, (1) may be decomposed in N 2 subsets corresponding to all

(j, k)'s respectively, each of which has only N unknows U7,j'.Z(i= 1, 2, ···, N). There

fore, they are solved independently of one another. (2) and (3) may also be de

composed in a similar way. Also, every coefficient matrix is tri-diagonal. Hence,

every equation is easily solved by the so-called double sweep method, in which the

number of arithmetic operations amounts to O(N) in general.

The ADINA Computer II is very suitable for such a problem. In fact, if the

ADINA Computer II 139

number N of lattice points standing on a line parallel to each coordinate axis is

assumed to be equal to the number of processors on each row or column of the

AU's plane for simplicity, every subsystem of (1) is solved by a corresponding

processor respectively. Further the (j, k)-th equation is simultaneously solved by

((j-1, k-1)). Then, the N 2 subsystems are all solved in a fully parallel way.

Equations (2) and (3) are also solved in a similar manner.

Details of the procedure are as follows:

i) First, it is assumed that the buffer memory in the c-position has Un(m=O),

J.J2Un(m = 1) and J.J3Un(m = 2), and that in the b-position it also has

J.J3Un(m=3).

ii) Every processor gets un, J.J2Un and J.J3Un from each of the memory

rows (m=O, 1, 2), and then gets each component of the right hand vector of

(I). Every processor solves each equation, and un+i• is then found. Fur

ther, un+i• and J.J2Un are stored in the memory rows (m=4, 5) of the

a-position.

iii) Every processor gets un+i• and J.J2Un from the memory columns of the

a-position, solves each equation of (2), and writes its solution un+i•• in the

memory row (m=6) of the b-position.

iv) Every processor gets un+i•• and J.J3Un from the memory columns (m=

6, 3) of the b-position, solves each equation of (3). It then stores its solution

un+I in the memory column (m=6) of the b-position, and also in the memory

row (m=O) of the c-position.

v) Every processor gets un+i from the memory column (m=6) of the b

position, finds J.J2un+1, and stores it in the memory row (m=3) of the

b-position. Moreover, every processor gets un+1 and J.J2Un+1 from the

memory columns (m=6, 3) of the b-position, and stores them in the memory

rows (m=O, 1) of the c-position. Finally, every processor gets un+1 from the

memory row (m=O) of the c-position, computes J.J3un+1, and stores it in the

memory row (m=2).

Then, the procedure returns to i) of the next step.

In this case, it is found, without summing up the computation times, that the

parallel processing time P 1 is just l/N2 times of the uni-processing time S1, that is,

the efficiency is 100%. It is because all the work of the AU's is done in a fully

parallel way, and without any special additional transferring.

Exam.pie 2 (A simple difference scheme for the problem of Example I)
A simple explicit shceme

un+i = un+J.(J1Un+J2Un+J2Un)

140 Tatsuo NooI

is considered. A realization of this scheme on the ADINA Computer II is as

follows:

i) First, it is assumed that U" is stored in the buffer memory (m=O) of the

a-position.

ii) Every processor gets U" from the memory row (m=O) of the a-position,

computes t11U", and stores it in the memory row (m= 1) of the same posi

tion.

iii) Every processor gets U" from the memory column (m=O) of the a-posi

tion, computes t12U", and stores it in the memory column (m=2).

iv) Every processor gets U" from the memory row (m=O) of the a-position,

and stores it in the memory column (m=3) of the c-position.

v) Every processor gets U" from the memory row of the c-position, computes

t13U", and stores it in the memory row (m=4) of the c-position.

vi) Every processor gets t13U" from the memory column (m=4) of the c

position, and gets U", t11U" and t12U" from the memory rows (m=O, 1, 2) of

the a-position,. It then finds U"+1, and stores it in the memory row (m=O)

of the a-position.

Then, the procedure returns to i) of the next step.

In this case, it is found that

R = (i + LE+STE)-
1

7LE+4ME+6AE+3SE+ 7STE

= 0.96.

Here, LE, AE and etc. represent computation times of the floating-point opera

tions, to which some middle values of those mentioned in the beginning of the

last section are given.

The above two examples treat the problem on a 3-dimensional lattice in such

a way that every lattice point corresponds to each buffer memory block. Such a

problem is directly fitted for this machine, and is consequently solved with a very

high efficiency.

There are, of course, some problems for which it is desirable that the AU's be

arranged in a one-dimensional array. In such cases, the array is usually assumed

to take two positions of the left vertical side and the bottom horizontal side, as

seen in Fig. 5. These positions are called A-position and B-position respectively.

Since the buffer memory blocks are not enough to correspond to all nodes of the

net by the lines drawn from all places of the processors on the vertical and hori

zontal sides, it is better to provide a portion of the buffer memory and private

memories for exclusive use.

ADINA Computer II 141

It is assumed that every processor is provided with two one-dimensional arrays

for exclusive use, which correspond to the i-th and j-th direction, and have N

memory blocks, respectively. Those arrays are again called the memory row and

the memory column. Notice that 'block', 'memory row' and 'memory column'

are different from the former ones. Every memory block has a capacity of words.

A location in every memory block is specified by (m= •).

Example 3 (ADI method for a two-dimensional heat conduction)

The problem is to find u=u(x,y, t), such that

au =Liu (LI=~+~), t>O, (x,y)EG,
8t ax2 8v2

u(x,y, t) = g(x,y, t), (.t,y) EI',

u(x,y, 0) =f(x,y), (x,y)EG,

where G = { 0 <x, y < 1}, I' is its boundary, and /, g are the given functions.

A net of computation points is produced by the vertical and horizontal lines

X = X; = ih' y = Y; = jh'

i,j = 0, 1, ···, N 2+1, (N2+l)h = 1.

Other symbols appearing in the following are assumed to have the same meanings

as in the former examples.

The heat equation is replaced by the following ADI scheme:

where A=-r/2h2
•

(l-..lLl1)Un+i• = (I+..lLl2)Un,

(l-AL12)Un+1 = 2Un+l*_(l+..lLl2)Un,
(1)

(2)

It is here clear that one step from n to n+ 1 takes two fractional steps to find

un+I• from (1) and un+i from (2). These computations are allotted to all AU's in

the following way: theJ-th processor from the bottom of the A-position plays the role

of computation on the lattice points on the horizontal line Y--Y ;, and the i-th pro

cessor from the left in the B-position plays the role of computation on the lattice

points on the line x=x;. Therefore, every processor bears the computation on

two one-dimensional arrays of lattice ponits.

Details of solving (1) and (2) are as follows:

i) First, it is assumed that (I +iLl2) un is stored m the whole memory co

lumns (m=O).

ii) It is transferred to the whole memory rows (m=O) in a direction contrary

to that shown in Fig. 6. The processor ((l,m)), for example, divides the

data of its own memory column into N parts, and writes them into N buffer

142 Tatsuo NooI

memory blocks (in the former meaning) (m,O)r, ... ,(m,k) 1,··•,(m,N-I)1

respectively. The processor ((k, l)) then reads the data in (0, k) 1, ···, (m, k) r,

···, (N-I,k) 1, edits them in the form corresponding to the memory row,

and writes in (l, Oh, · ··, (l, N-1 h- Further the processor ((j, k)) collects

data blocks from (O,jh, ···, (N-1,jh, and writes them in its own memory

row.

iii) Every processor finds un+i• from (1), and writes it in its memory row

(m= I). These data in the memory rows (m= 1) are then transferred to

the whole memory columns (m=l) in the manner shown in Fig. 6.

iv) Every processor reads these data from its own memory columns (m=O,

1), solves (2), and writes its solution un+i in its memory column (m=2).

Further, every processor computes (1 +,L:12) un+i, and stores it in its me

mory column (m=O).

Then, the procedure returns to i).

In this case, it is found that

R -(l 6(LE+STE))-
1

- + lOLE+8ME+8AE+4DE+SE+lOSTE

= 0.86.

The numerator 6(LE+STE) is the exess time for transferring data. It causes a

fall in efficiency, but still, 0.86 means a high efficiency.

Example 4 (A simple explicit difference scheme for the problem of Example 3)

Here, a simple explicit scheme

is considered. A procedure of using it is given as follows:

i) First, it is assumed that un is stored in the whole memory rows (m=O).

ii) un in the memory rows (m=O) is transferred to the whole memory col

umns (m=O) in the manner shown in Fig. 6.

iii) Every processor reads Un from its own memory column (m=O), computes

'12Un, and sends it to the memory row (m= 1) in the inverse manner of Fig.

6.

iv) Every processor reads data from its own memory rows (m=O, 1), finds

un+i, and stores it in the memory row (m=O).

Then, the procedure returns to i).

In this case,

ADINA Computer II 143

R _ (i + 6(LE+STE))-1

4LE+3ME+4AE+2SE+4STE

= 0.72.

Exam.pie 5 (Product of two matrices A and B with the order of N 2
)

It is assumed that every row vector a <Pl of A is stored in a memory row of

each correspondnig processor in the A-position, and that every column vector ib(q)

of B is stored in a memory column of each corresponding processor in the B-posi

tion.

The multiplication is done in the following manner. First, ib<0l is transferred

to all processors. After receiving it, every processor computes a corresponding

scalar product a<Pl. ib<0J. Such computation is repeated successively for every

ib<1l, •··, ib<N2
l. It must be here noted that every buffer memory block may con

tain only N 2/2 words at most, while every row and column vector has N 2 words

(N2=256). Therefore, every computation of a<Pl • ib<qJ must be divided in to two

parts of a~)•iW) and alfl-ib<fl, and then be completed by summing them up,

where the suffixes F and L mean the former and latter half of every vector, respec

tively.

Details of the above procedure are given as follows;

The following procedure is repeated for l, m=0, 1, •··, N-1 successively:

i) A processor ((l, m)) writes its own vector ibF on all buffer memory blocks

(m,k) 1 (k=0, 1, ···, N-1).

ii) Every processor ((k,l)) (k=0, 1, •··, N-1) reads it from (m,k) 1, and writes

it in all (l,j)k (j=0, 1, ···, N-1).

iii) Every processor ((j, k)) reads it from each corresponding block (l,jh, and

computes each aF• ibF.
iv) In a similar manner, aL • ib L is also computed, and is added to the former

part of the products.

In this case,

R -(I 2(LE+STE))-
1

- + LE+ME+AE+STE)

= 0.64.

Therefore, the speed of parallel processing is only 0.64N2 times that of uni-process

ing. It is because an essential part of parallel computation (which is described

by the denominator of the expression) is so simple and short that the time used

for transferring (which is described by the numerator of the same expression) is

relatively large.

The cases of Examples 3, 4 and 5 can be treated more efficiently by the ADINA

144 Tatsuo Nom

Computer I, but its hardware becomes very bulky. Therefore, in the case of a

large number of processors, the ADINA Computer II seems to be ~uperior to the

ADINA Computer I for practical use.

Reference

1) Nogi, T. and Kubo, M.: ADINA Computer I (Alternating Direction Immediate Nexus
Array Computer I) I. Architecture and Theoretical estimates, Memoirs of the Faculty of Engi
neering, Kyoto University, Vol. XLII, Part 4, Oct. 1980.

