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Catastrophe Analysis of Structures by
Discretization and Modal Transforms*

By
Yoshiji Niwa**, Eiichi WATANABE**, and Hidenori Isamr**

(Received September 29, 1980)

Abstruct

This paper is concerned with the catastrophe of static instability of multi-degree-of-
freedom systems representing typical civil engineering structures like beams, columns,
arches, plates and stiffened plates.

The proposed method makes use of discretization methods, such as a finite element
method and a simplified element method, and also some diffeomorphic transformations
similar to modal analysis.

The main interest of the study is the classification of the catastrophe of the structures
through the evaluation of certain derivatives of potential in the light of the Thom and
Thompsons’ theories.

Numerical illustrations were performed on the structures, including elastically
supported columns, plates, stiffened plates, lateral buckling of beams and shallow arches.
Among new findings, the unstable symmetric buckling for lateral buckling, and hyperbolic
umbilics for the simultaneous buckling of stiffened plates and of elastically supported colu-
mns are particularly noted.

Statement of the Problem

As the D.O.F. of structures increases, the possibility of various instability
phenomena increases. From the analysts’ view point, the instability can be
classified into global, partial and local ones, as shown in Table 1. At the same
time, engineering structures may be classified in terms of the types of catastrophe
or instability [1].

The present paper is particularly concerned with the lower half of this table.
The purpose of the study is to see if these marked items are correct, and to find
the most influential parameter in each of the items.

In order for the structures to be accounted for by means of discretization

methods, a question must be answered regarding whether or not the structure of

* This study has been orally presented at 15th International Congress of Theoretical and Ap-
plied Mechanics, Toronto, Canada in August 1980.
** Department of Civil Engineering, Kyoto University, JAPAN
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Table 1. Classification of Static Instability of Engineering Structures.

Classification Name of Structures a " 2 8l 3
Stand-Point Type S| &|< ﬁ :gﬁ & Fg =R
Global VERVARYS Viviv
View Point Partial VARVARY vViviviv
Local VivVIiViVIV
Types of Limit Point, Snap-through (FOLD) v Vv
Instability Asymmetric Buckling (FOLD) v Viviv Vv
(7%;07;341:152) Stable Symmetric (CUSP) VARV VARVERVE RV
| Unstable Symmetric (DUAL GUSP) VivVIiVIVIVIVIV

singularities can be realized numerically. To answer this question, either a ma-
thematical argument or an engineering computation will be necessary.

Fujii and Yamaguchi tried to answer the question within the framework of
a non-linear operator equation in a Hilbert space, V, by use of the shallow arch
and shell theory of von Karman, Donnell and Marguerre [2]. Then, a numerical
approximation of the problem was performed in a class of finite element schemes
with the approximate space, V,. As a concluding remark, it was made clear
that the numerical realization of the cusp bifurcation in the approximate space,
V,, reveals the imperfections resulting from the use of numerical schemes which
are very non-generic, and thus can be avoided.

In the engineering field, however, this question may be equally answered by
a comparison of the results such as eigen value, eigen mode, and load-deflection
curves from the discretization methods with those from the closed-form solutions,
or with those from the experiments concerned.

In the present analysis, either a finite element method with an ACM shape
function, or the Simplified Element Method, which one of the authors had deve-
loped, was used. The latter method is characterized by the use of linear shape
functions, and the use of equivalent elastic springs.

Several results on the normal and unstable behaviour of the engineering
structures show that, in general, legitimate use of the finite element method and
the simplified element method will surely realize the singularities and instability of
the prototype.

Thus, in this paper, discussions will be initiated from those on the elastic and
conservative discrete systems.

The analysis can be summarized in the following manner:
. -
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a. Potential, V
Consider a potential of a discretized model of D.O.F.=N:

V: R"XxR¥—> R,

where RY refers to a Euclidian behaviour space of dimension N, representing a

set of generalized coordinates, w; (i=1, -++, N); R¥ refers to a K-dimensional Eucli-

dian space, representing the loading and imperfection parameters, p;(i=1, -+, K).
The equilibrium space, My, of this system is given by:

My = {(w,p)|%(w,p) =0 (=1, NM}CR"XRE., = «en (1)

The catastrophe on this space My can be represented by the bifurcation set,
Bif xy, from a catastrophe map, xy:

Xy Mv"‘)RK.

b. Potential, D

Discussions on the catastrophe using potential ¥ are not realistic since a
large D.O.F. is involved. In this paper, the eigen matrix, corresponding to an
eigen equation: (See Eqs. (14) & (18))

det [Vi;] = det [a Fr ] —0 @

w,0w;
is used for an Affine transformation A,:

h: R"—>RY, or h:v=/ (v, ,0,) = w=(w, ,wy)
where

I=n&N.

With respect to the control space, a similar transformation to &, can be used
for the imperfection parameters, and a translation may be used for the loading
parameter:

hy: R*— RE, or hy: €= (¢, ) =P = (P bx)
where

1=<kKK.

Consider a potential of a discretized model, D, such that

D: R"XR*—- R.
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Let the equilibrium space be designated by M. Then, the catastrophe map,

Xp, can be taken so that
Xp: MD —-> Rk .

c. Potential, A

Suppose that the corank of Hessian matrix, of potential, D, i.e.,

2
corank [D;;] = corank [ "D ] —=m e (3)
aviavj

Since D;; is diagonal, it can be shown after reordering,
Dy =0 (=1, -, m) (i: not summed)

Dya+0 (a=m+-1, +++,n) (@: not summed)

(n—m) equations of equilibrium, D=0, will yield the following diffeomor-

phisms through the theorem of implicit function:

va:gm(v‘., c) (i:l, e, m; a:m+l, ...,n) ...... (5)
Furthermore, consider a map ¢ such that

()b: U= (vl: ) I)”) —> X = (1)1, s Uy U1 Em+15 °° " vn—gn) """" (6)

Then, it can be easily shown that the potential function can be written as: [3]
”n

D(UQ 0) = (D'()b—l)(x’ c) = A(xl, s Kms 0) +%w2 lexi """" (7)

This relationship is known as the Splitting Lemma. Potential 4 can be interpreted

as:
4: R"XR*—~ R,

and A(x, **-, %,,, €) respresents terms higher than the third order. Variables x;=
v; (i=1, <, m) are called essential variables, and variables x4 (@==m+-1, -+, n) are
called unessential variables.

Let the equilibrium space be designated by M,. Then, the catastrophe map
may be given by x,4:

ZA: MA -—> Rk .

d. Thom’s Potential, F
When 1 =m=2, 1 k=4, diffeomorphisms g, and g,:
2 R"—> R"; g, R*—> R}

will lead to the well-known seven elementary catastrophes by Thom.
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The aforementioned discussions may be graphically summarized as follows:

(h;,h,) (g, .9,)
M, — 2 My 4 My —92)
Xy xo[ "Al xr‘
BIf X, Bif X;——>Bif X,—>BIf X;

Fig. 1. Relationship among the Four Catastrophe Maps.

In the following sections, detailed discussions on the articles a~c will be pro-
vided.

Formulation by Discretization

According to Fujii, the stability problems in non-linear elasticity may be
formulated by means of the following non-linear operator equation in a Hibert
space, V: [2]

U—Lywt+T(w) = a-fren e ®)

where, w refers to the deflections of an arch or shell; L, refers to a linear, compact
operator, and 7" a non-linear, continuous compact operator; & refers to the loading
parameter of an assigned lateral load f; while g, refers to a given function of 2,
which corresponds to the in-plane force applied to the edge. This equation can
be derived from the theory of von Kdrman, Donnell and Marguerre.

In the proposed analysis, a discretized model is treated by the displacement
method and the so-called Lagrangian formulation.

Let u;, w;, P{, and P! denote the nodal in-plane and out-of-plane displace-
ments and the equivalent nodal in-plane and out-of-plane forces, respectively.
Moreover, let Q%, QF, and G} refer to the quadratic pseudo forces in the in-plane
and out-of-plane directions, and the cubic pseudo force in the out-of-plane direc-
tion, respectively. Then from the principle of virtual work, a set of basic equations
of equilibrium can be derived considering the potential, U, in a form similar to
the aforementioned non-linear operator equation (g,=0) [4]:

2% |
ou; K’::‘,,;K';:f {u£}+1 Q?}+ ] {0} JP?} {0} o
oU\  |km kullwg) 2 gyl Gler) lepl Lo
awj :
where

ww ___ B BB I I S I S I
an —an anqswqws+ankwk+Knikwk
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and
Qt = Kfjwiwr; QF = Q4*+Q7”
1]{“‘ = 2K5flu£wl > ww - SK;nqswgwfwf‘*‘(KJnk n;k)wk wn
C! = 3K nswrwiwe. (dummy sum used)

Here, the superscripts E, I, P and B refer to the elastic, initial deformations and to
the in-plane and out-of-plane stiffnesses, respectively. The superscript § refers
to the asymmetric stiffnesses of eccentric stiffeners. Moreover, K{;, K 2, K&,
K74, Kffi and K}, are constants determined in terms of the geometry of the
structure and the mechanical properties. The symmetric stiffnesses of the stiffeners
are included in these stiffnesses with the superscripts P and B.

Whether or not the discretization method is legitimate will depend on how and

20 c
Nca N.: Compressive
202 Force o
TCER a: Width of Platd
h * Thickness of °
Plate R
[ ]
1.5 .
[+
1.0
MESH:
05 o o 3x3
o 2 A 4x4
e 5x5
Without Initial o 6x6
Deflections o 7x7
o 8x8 +
YAMAKI
00 1.0 20 w 30

h

Fig. 2. Load-Deflection Curves at the Central Point of Compressed Square
Plates without Initial Deflection. (Under Edge Shortening) v= 1/3
Analyzed by SEM.

t Yamaki, N. : Postbuckling Behaviour of Rectangular Plates with Small Initial Curvature Loaded
in Edge Compression, J. Applied Mechanics, Vol. 26, 1959, pp. 407~414.
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to what extent the singularities can be realized. Thus, the critical loads, the
buckling modes and the load-displacement relationships will serve as a good mea-
sure in this respect.

As an example of a legitimate discretization, a flat square plate subjected to
in-plane compression is analized by the Simplified Element Method [5]. The
load-displacement curves are shown in Fig. 2 for initially flat square plates. Here,
the effect of the size of mesh is indicated.

Square plates with initial curvatures are also shown in Fig. 3. It may be
seen that the results indicate a good numerical realization of the buckling behaviour
of plates.

It must be added that the large displacement analyses were performed by a
self-correcting perturbation method.

20
Nea
s N.: Compressive
JC°Eh Force °©
a: Width of Plate ®
h: Thickness of o
Plate
]
1.5
]
(/]
1.0
MESH:
o 3x3
05 X > a3
With Initial °© 5x5
Deflecfio?) O 6x6
Wo/h =0.1 o X7
o 8x8
— YAMAKIT
004 0 20 w 30

h

Fig. 3. Load-Deflection Curves at the Central Point of Compressed Square
Plates with Initial Deflection. (Under Edge Shortening) v=1/3.
Analyzed by SEM.
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Static Condensation

In the derivation of Eq. (9), the non-linearity due to the in-plane displacement
was neglected. Thus, the in-plane displacement components can be expressed in

terms of the out-of-plane displacement components, namely,
Uy = A,‘(K’:;)‘IP:,‘,-—(K?:‘,,)“K’;‘,’:’wf—%(K'};)“Q’;-H,,;(K':;)“l """ (10)

in a case where the in-plane nodal forces are prescribed. Here,
PY=24+AP%, (11)

and (K%,) ! refers to the inverse matrix of the in-plane stiffness matrix K{». More-

over, Pj; refers to the mode of the in-plane forces prescribed, and 4,; refers to the

magnitude of the nodal forces due to the constraint on the displacement component
E

Uug.

Let the out-of-plane forces P} be rewritten as
PY = APY e (12)

where P;; refers to the mode of the out-of-plane forces.

Then, the potential function mentioned earlier and denoted as ¥, can be defined
after the elimination of the in-plane displacements, uy, in Eq. (10) through Eq. (9)
so that

V,(wk, 4,, 4,) = ou_ (13)

E
aw,-

Here, the suffix j on V(w?, 4,, 4,) indicates a differentiation with respect to w?.
Thus,

. E 1 E_E_E
V;= L;,wn +— Q_,,,qw,, wy + C,,,qsw,, Wy ws

— APy +Kim(Kim lAu(P,,-—{—X,,i) =0 e (14)

where

Liwr = (K8 —2,K5i — A, K — K5 YwE

Qmwrw; = Q7" 4-2K 5 Kijwsw — K jm(K'm) Q%
C jngstn g w5 = C}"— BKmin(Kt) Qi
Again, the form of these equations is similar to that in Eq. (8). In Eq. (14),

K?ni = —'Kifn K:tui)_l; K;Gn = K;qm'PZx'

K = KiK' KSw e (15)
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In Eq. (14), ,; vanishes in a case when the in-plane forces are all prescribed.
However, it remains unknown otherwise. 2,; can be determined in either of
the following cases (It is positive for tensile.):

When uy =0 This situation can be generally found in the case of arches or
shells subjected to a lateral loading. The result shows that

Ay = (i) Py [K it +%Q_:‘,.]—Aupzp e (16)
where

ka = (K:luk)_l (m=l, ety My, k=l: "ty n,)

F;l; = Fy, (k=1, e, n,; p=1, =+, n,)

in which n, and n, refer to the in-plane D.O.F. and the number of the constrained
in-plane displacements, respectively.

When uy =f,u,(p=1, +++,n.;q%p) This situation is generally found in post-
buckling analysis of plates and shells when the in-plane displacements are specified
along certain edges. Here f,, refers to a prescribed mode of the in-plane displace-
ments along the edges, while ¢ indicates the point free from the constraint. The
result will be summarized as follows:

Ry = (HEy) ™ H [ K St + éQZ]—Au(Hi‘p "1, PY— AP,

{mzl, sty My, k=1’ *tt nc}
l:"la Sty Ny, (l:#p)

where
Hlem = ka_fleIm {m:l, PR k=1> PR (> (l¢k)}
H,?,‘j, =_Hkp {k=1, v my pe=1, eee, "c} ...... (17)

Modal Transforms

From the foregoing discussions, it was found that the equilibrium space, My,
as defined by Eq. (1), can be explicitly given by Eq. (14). Moreover, the in-plane
constraining nodal forces, ,,, were found to be expressed in general by Eq. (17).

Here, however, the considerations will be limited to the cases of 2,,=0,
merely for the sake of simplicity. Later on, in a shallow arch problem, this re-
striction will be removed.

Now, consider a linear portion of Eq. (14) [6]:

(K& —Ko—AKSwf =0 e (18)

Let @,; refer to the eigen matrix':

t Bathe, K. ].: Numerical Methods in Finite Element Analysis, Prentice-Hall, 1976. ... Subspace Iteration
Method.
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t=1, «««, N(N=D.O.F. for w); j=1,+-,n (1=n<N).
Then, it can be shown whether the following transform:

. {i:l, N}

J=l,+n

is diffeomorphic. In order to show this, let us consider a map, 4: R"—R¥;
w;ERY, v;ER" such that

w; (2]

: 0

w” —_— D, T e v” cccccc
o[ = 125170 10 (20)
wy | 0 1) lo

where @;; is orthonormalized so that

1 for j=k
O iKGu @y = 83 = {O for j'zl:k ...... @1
(i: m:l, "ty N; j:kzl, ty n)

Next, consider another map, 7';: RY— R¥ such that

v, w,

: [D:;1[K

vﬂ [ T P U wﬂ =] eee AY  eesnsse
Werr[ 10 Wy (i=1, -, N) (22)
: o i . :

Wy . 0 ]. wN

Then, in view of Eq. (21), T,=T,+k, becomes:

1 1 0 ®i1K?-ﬂ+1= Yy @il,KiG.N
0 1 1 G G
To= | i L Piines, = Qi (23)
(Dn+11 "mn+ln: 1 0
Dy yoeeeee o, ., 0 1

It is obvious that det T, is unity whenever n=2N.

Now, provided that

det T, = det T+det by = det (@;;K%@,)+F0, eeeee (24)

<,':1’ w, N )
j:k: l:19 AR

then,
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det /=0 and det T,0.

In this case, mapping 4, is shown to be one-to-one correspondent and diffeomorphic.

Let 2} designate the generalized initial displacements transformed through
Eq. (19) from w}. Then, the following transformation can be made with respect
to the control space: ‘

hy: ¢ = (61, ey, c,,) > p= (Pu ""PK)
where

6= A5 =101, 0=y

hh=AdA; pp=wl, -, pr=wk e (25)
and

k=n+l1; K= N+1

Now, let us define a new potential D so that
DehO =Vehp) e @)
Through Eq. (19), the first partial differentiation of D with respect to »f yields:

_ 8D
D, = ﬁ = Vj@ji =ot . 27)
The explicit form of D; is given by the product of the right hand side of Eq. (14)

and @;;, where w has been expressed in terms of v, by Eq. (19).

Potential in Terms of Essential Variables

Let the corank of the Hessian matrix D;; be m. In other words, let us assume
an m-fold coincident buckling.! Then, from Eq. (3) and the implicit function
theorem, it has been shown that the unessential modes, v, (@=m-1, +++, n), can be
expressed in terms of the control parameters and the essential modes, v;(i=1, -+, m),
in the form of Eq. (4), after some reordering.

Upon substitution of these expressions into Eq. (27), a new potential, 4, can be

defined through the implicit function theorem by the following equation.
A(v;, €) = Dlv;, vp(vy,€),¢] e (28)

where the Roman and Greek subscripts on » refer to the active and passive modes,
or in other words, the essential and unessential modes, respectively.
The substitution of Eq. (28) into the equilibrium equations, Dy=0, will yield

t This is equivalent to obtaining the orthogonal projection in Euclid space R*.
Yt In other words, dim ker (I—Lx)=m in Eq. (8).
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the identities:
Dyfv;, vg(v;,¢),¢] =0 seeeee(29)

The left-hand side now represents a function of totally (m-+k) independent varia-
bles. Thus, it can be differentiated as many times as desired. Thus,

Zi' = Da;-+Daprp; = 0
V;
7))
aA: = D“Bv,ﬁ—}—D; — O ...... (30)
where  ug,;= %Zf A Eaﬁzi
i %
Since Dy =0 for a$p

=Dya0 for a=4,

the following important relationships can be easily obtained:

Vai = —Dai/|Dgg = 0 (@: not summed)

¥, = —D)|Duy (@: not summed)

Vai; = —Dui;|Daa (@: not summed)

A; = 04 =
av,'

A,’j = D,’j

Aijk = Dijk

i = Diju— 23 (DijaDua+DiraDjia+DiaDjia) [ Da

AI f— DI

A” —_ D//

A=A _po L (31)
94,00y;

Numerical Illustrations

Several numerical illustrations were performed to find the catastrophe charac-
teristics by use of Eq. (31).
Elastically Supported Column Fig. 4 shows a column simply supported at one end
and elastically supported at the other end. The analysis was performed using
both FEM (ACM shape function) and the Simplified Element Method (abbreviated
as SEM). The results are shown in Table 2. The catastrophe is seen depending
on the value of £ =#?EI/(KL?):

i.e. when £ > 0.5 -« fold
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&£ = 0.5 -+ hyperbolic umbilic

£ < 0.5 +- dual cusp

79

The FEM analysis using an ACM shape function was found to overestimate

the postbuckling strength of the columns, and the values of Dy, and A4;yy.

Table 2. Stability of Asymmetric Buckling Model of Columns.

16 Elements 32 Elements
SEM FEM SEM FEM
A, L2 | st 0.9978 1.0010 1.0002 1.0010
n2El 2nd 2.0010 2.0010 2.0010 2.0010
3 1 .
S st a a a a
3 Mode |, 4 b b b b
)
Q | Duzc** —0.005 —0.005 —0.005 —0.005
5 | Doz, —0.002 —0.002 —0.002 —0.002
7'5 Dz X 108 0.5150 0.5132 0.5112 0.5112
¥
Dy 0.0747 0.6537 0.0749 0.6419
Ane —0.074 0.503 —0.0676 0.491
A L2 | st 1.0003 0.9973 1.0003 0.9997
< | #*El | 2nd 1.0005 1.0003 1.0005 1.0003
=y
~y
= Ist b a b a
[<o]
§ Mode 2nd a b a b
g 10X Dyyy, 0.7697 0.0 0.7697 0.0
S | 102X Duz, 0.0 0.2537 0.0 0.2533
& | 102X Dyyy, 0.2535 0.0 0.2535 0.0
‘%‘ 10% X Dasa, 0.0 0.7697 0.0 0.7697
3 | 24u; _ A P 0.1016 - 0.1016 —
S [ A ‘ ‘
»
245, _ A, — 0.1019 — 0.1017
A;lc Azllc : :
A, L2 | lst 0.6668 0.6668 0.6668 0.6668
8| #E | 2nd 0.9971 1.0004 0.9995 1.0004
3 ,
= Mod 1st b b b b
g ode 2nd a a a a
U1 108 x Dy # %% 0.5134 0.5134 0.5134 0.5134
102X Dig, 0.1685 0.1691 0.1689 0.1691
* Mode a: &N by ==

** Suffix ¢ refers to the evaluation at the lowest critical load.

*onk

For single-degree-of-freedom system, this is 0.5140. Dy, D13y, Dyyyy are non-
dimensionalized by L|EA, L*|EA, L3|EA, respectively and so on.
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f—L—— A

~—
T ELA
L k

Fig. 4. Asymmetric Buckling Model of Columns.

Compressed Square Plates The square plates are subjected to uniformly distributed
axial compressive stress. The unloaded edges are free from in-plane constraints.
Moreover, the plates are all simply supported, and the Poisson’s ratio is 1/3. The
results are given in Table 3.

Table 3. Stability of Compressed Simply Supported Square Plates.
v=1/8. Analvzed by SEM.

3x3 4x4 5%x5 6x6 7x7 8x8
k¥ (1st) 3.830 3.901 3.936 3.955 3.967 3.975
k2 (2nd) 4.742 5.326 5.635 5.814 5.926 6.000
K BBxx 197.1 77.3 127.8 90.5 114.6 95.6
K BEBkx 162.9 66.6 111.7 79.6 101.2 84.7
Ay ** 34.2 10.7 16.1 10.9 13.3 10.9

* ky and ks refer to the buckling coefficients.
** All non-dimensionalized by the factor of b%|Eh. b,k refers to the width & thickness of the square
plates, respectively. (Fig. 5)
The result shows that the catastrophe is a cusp. When the in-plane displace-

ments are constrained, the stability is generally improved.

Square Stiffened Plates The stiffened square plates are subjected to uniformly dis-
tributed axial compressive stress. The support condition is all simply supported,
and is eccentrically spliced to the plate.

T : EIs | Ecc.
bF : Stiffn.
L As 1
p—b—+ h =i

Fig. 5. Compressed Stiffened Square Plates.

In this model, the stiffnesses such as K§;, and K§; in Eq. (9) play an important
role.

The results are shown in Table 4 for different combinations of the following
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typical parameters of stiffened plates.

oD ° bk

Table 4. Stability of Stiffened Square Plates.

Case-1 Case-2 Case-3 Case-4

r=EIL[bD 5.0 14.75 14.80 20.0
0=A,[bh 0.1 0.1 0.1 0.1
ky (1st) 4.314 14.295 14.295 14.295
k2 (2nd) 10.455 14.295 14.296 14.300
Ay c* 12.44 356.22 260.30 521.63
Azzzac* 87.78 396.96 253.40 504.20
Ay F* 0.1252 —0.012 —0.003 —0.124x10°%
Ayzpc** —0.022 —0.2328 —0.0012 —0.662x 1078
Agoac** —0.0161 0.942x 1072 0.0047 0.0016
Ayoc** 0.0687 0.405x 1073 0.0016 0.372x 108
244, A, — —1.323 —’0 478 —
Aéz: AlZZc ’ )
2452 _ Agaa, — —0.236 —0.959 -
A, A ) )
Auu' Amzc el Positive Positive —_
Azzzc* Aryze — Positive Positive —

i - - TABLE
Type of Buckling ASYMM. ]&3}33[‘ éﬁ?fgg[‘ gYZﬁI M.
Catastroph FOLD HYTERD. HIPERE. CUSP

* Non-dimensionalized by b?/Eh.

The analysis was performed by SEM.

** Non-dimensionalized by b/Eh.

Lateral Buckling Fig. 6 shows plates subjected to.a concentrated in-plane load.

a

kad ©

Model |

b heib

4

b

!

03

3

Fig. 6. Lateral Buckling Model.

a a
e b/2 =+b/2 ~

AN\NANNNA\Y

Model 2
y=0.3.

The analysis was made by FEM with an ACM shape function.
analysis is shown in Table 5.

t D=ER|{12(1 —v?)] (v: poisson’s ratio)

The result of the
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Table 5. Stability of Lateral Buckling.

bla DOF Mode i=1 Mode i=2
P.b
8 80 Lt 0.0687 —0.0793
~ ”ZATh —3.013 —3.294
§ P.b
4 40 b 0.1361 —0.1787
B4 _ _
- 2.395 3.198
~ | g 70 Perb 0.6292 12759
_§ b4 D
S b24;:4 B _
p o 4.016 2.479

Thus, the catastrophe is estimated to be a dual cusp.

Stability of Shallow Arch

Fig. 7 shows an example of the shallow arches for analysis.

q
I EEEEEEER YN EEEENY!
A
El a B
e —
7

Fig. 7. Two-Hinged Arch.

The arch is assumed to be subjected to a uniform lateral load. This structure
is also assumed to be as a beam-column with an initial curvature.

From Egs. (9), (14)~(16), the equations of equilibrium can be written as
= [KB (ankl ]Bn};elB) iw{_lpK;Gn]wf

2 (K,m Kfn’;l?) (BwrwEw] —wiwiwf)

L ,nwn seeeee(32)
The horizontal thrust, ,, acting at ends 4 and B in Fig. 7, can be given by:
= —(F#) 7 'F suK e (Wi 5007 )0y ceree(33)
where
K3A? = KK ) Kok ceeees(34)

In Eq. (33), the suffix p refers to the ends of the arch, i.e., either point 4 or B.
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In order to make a catastrophe analysis, Eq. (32) must be condensed in some
appropriate manner. Let us again make use of an Affine transform as given by
Eq. (19). However, this time, the modal matrix [®;;] will be obtained from

the eigen value problem of the corresponding column:
(KH—2,K)w; =0 e (35)
Then, the condensed equations of equilibrium can be written in the form:
D;=0,V;= [K?,,.—}—K,-,,,,,v,’.vf—lpK?,,,]vﬁ
+% Kipin(Bvmvkvi—vmokvR) — APl —2,K$more e (36)
where

K?,,, = wjinnwmn; Kf;m = ¢jt’KJ(';ﬂ¢nm
Kimku == (Kflfl' —ijﬁ’l;f)ajiwpm¢qk¢m

By =0,y e (37)
and.
Zp = —U”(U{"'-é‘vf)vf
Lij = (F;ki’)_lemK;fr(D"i¢rj veeee-(38)

Since the terms involving K;,;, are very small in the case of columns, the
following simplified equations are derived. Let 7, and », designate the generalized
displacement corresponding to the mode of snap-through and bifurcation buckling,

respectively. Then',
2 1 E I\2 1 E 1 I
4= ?&"H(v; +o1)*+ *2—?"22022'—??"11”12 """ (39)

The equations of equilibrium are given by

Dy = Kfof — 2R\ (o1 +of) —4,P51 = 0
D,= K} —2,R505 =0 e (40)

Furthermore, the 2nd derivatives of D are
1
-Du = Kfl — —5'11”112 + é‘ 711(v{+le)2+ “1*522”2132
2 2 2
1
Dy, = K3, — —2~c,lc{z+%ru(v{+vf)2+%vncf? ------ (41)

The postbuckling path can be obtained from Eq. (40);

d A ;) .= ~ - -
t Ku_—‘Kzz‘—‘l, K12=0~ T12==0, T1y=C2p=7
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(K% —K3)of —K ot = 4,P} ceeeee(32)
Furthermore, it can be shown that

Di{ = 8D,/04, = —P§,+0
Dy, =3y, (vl +of) 0 s (43)
at the load corresponding to D;;=0. Thus, the point D;;=0 will be found to be

a Limit Point, or a Fold Catastrophe.

On the other hand, at point D,,=0, 25 is likewise zero, and

K3, —K%
i+ Ki—3K3,

Agsy = Diypy—3D3 Dy, = — tn<<O e (44)
Thus, the point Dy,=0 will be found to be an Unstable Symmetric Buckling Point, or
a Dual Cusp Catastrophe.

The snap-through load, (4,)sy7, can be obtained as

— B \ 3/2
—(Ay)swr Pf1=3f/“?(v{2 qu) < S (45)
11

or written in Timoshenko’s form?:
2 = 144/ L —mpy
27
where

2 = —(A,)snrPol [ (KTo)Y
m = 21@15‘1/(‘711’1112)TTT

The stability of the arch treated herein may thus be classified in terms of the

rise of the arch, »{, in the manner shown in Fig. 8:

STABLE |{|{SNAP-THROUGH|UNSTABLE
ZONE ZONE {BUCKLING ZONE
B
1

[2K [3Kos Ky vi
3 T

Fig. 8. Stability of Shallow Arch.

The curves of the snap-through and the bifurcation buckling are given in
Fig. 9. Here, the solid and broken lines indicate the stable and unstable paths,

1 Timoshenko & Gere: Theory of Elastic Stability, McGraw-Hill, 2nd ed., 1961,
1t Very close to 5ql4{(384Elq).
Y Very close to 41/(Aa?).
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respectively.

SNAP-THROUGH
A /X CURVE: D=0
w( /o

Fig. 9. Equilibrium Paths of a Shallow Arch.
01>V (3RE—KB)ft-

Convergence of Derivatives

The classification of the stability depends on the evaluation of the potential
derivatives, such as 4;; and 4;;,,. The results of the numerical analysis showed
that the 3rd order derivatives, 4;;, converge very rapidly with respect to the
number of meshes.

On the other hand, the computation of the 4th order derivatives, 4, is an
extremely time-consuming process. Particularly, the evaluation of the condensed
KPP (See Eq. (34)) needs much computation time. As a matter of fact, this is
why SEM should be conveniently used rather than FEM: The evaluation of
K747 by FEM would be astonishingly costly. Therefore, most of the convergence
checks were performed by SEM.

Fig. 10 shows the convergence of K#, and K57 :

BB BE

Kuu = Kijkl¢il¢jl¢klwll
BPB BPB

K = K23l 0,0,0,0,

for simply supported columns with respect to the number of elements employed
in the SEM analysis. From Fig. 10, these coefficients will be seen to have converged
well.

Fig. 11 shows simply supported square plates subjected to uniformly distributed
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Fig. 10. Convergence of K75, and K552 for Clumns.
Analyzed by SEM and FEM.
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Fig. 11. Convergence of 4th Derivatives for Simply Supported
Square Plates under Uniformly Distributed Axial
Compression. v=1/3. Analyzed by SEM.

axial compressive stress, where the unloaded edges are free from in-plane constraints.

The results will again show a good convergence. (Analysis made by SEM.)

Conclusions
The main conclusions include the following:
1. The lateral buckling of beams is controlled by an unstable symmetric buckling, or

a dual cusp.
2. The compressed stiffened plates with an eccentric stiffner are subjected to a
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hyperbolic umbilic catastrophe, or a monoclinal buckling when the simultaneous buckling
occurs. This will strengthen Thompson and Hunts’ results on infinitely wide
stiffened plates [7].
3. The columns supported with an inclined spring at one end and simply sup-
ported at the other end will be subjected to an asymmetric buckling, or a fold catastrophe
when the spring constant is relatively small, to an unstable symmeiric buckling, or a
dual cusp catastrophe when the constant is sufficiently large and a fyperbolic umbilic
catastrophe, or a homeoclinal buckling when the constant takes a particular value.
4. The stability of plates subjected to the in-plane loading depends largely on
whether they are subjected to a forced in-plane displacement along a boundary,
or to the loading prescribed along the boundary. The results show that the former
case is more stable.
5. The physical interpretations of the discretization methods and modal trans-
forms were provided.
6. A shallow arch was analyzed by assuming that it can be represented as a beam-
column with an initial curvature. Here again, the catastrophe was found to be
either a fold or a dual cusp according to the magnitude of the rise of the arch.
This study accepted a Grant-in-Aid for Scientific Research from the Ministry
of Education in the years of 1978 and 1979.
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