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by 

Tatsuo Nom• and Masatoshi KuBo•• 

(Received June 30, 1980) 

Abstract 

We propose a new form of architecture, a parallel computer, especially for the simu
lation of physical phenomena. The computer is a hierarchy composed of a host computer 
and N slave processors, with their own memories. It has a two dimensional array of 
Nx N buffer memories being provided for transferring data among the slave processors. 
We give some theoretical estimates, which show a very high efficiency. 

§ 1 Introduction 

421 

Until now, many people proposed multi-processing computers in agreement with an 

idea that each processor deals with a point or a block of some neighbouring points on a 

lattice region for simulation. Among them two dimensional array computers of the 

SIMD type (for example, ILLIAC-IV) having processors which execute microprograms 

with the same number of steps synchronously in control of a host computer, have demon

strated their ability for fairly limited methods of computation. However, in general, 

they do not show a high efficiency because their configurations are inconvenient for 

transfering data between separate processors, and the control is complex. 

Some other computers have common memories and common buses for a direct trans

fer of data between any two processors. In these computers, problems of bus com

petition and memory competition are solved in the manner of time-shared buses, crossbar 

switches and multiport memories. However, such methods have defects of low efficien

cy, abundant hardware and expensive memories, respectively. 

Moreover, there are hybrid computers of the SIMD and MIMD types. In SMS 

201, for example, each processor has an exclusive part in its private memory instead of a 
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422 Tatsuo Nom and Masatoshi KUBO 

·corresponding part of common memory, renews contents of memories in the way of 

broadcasting and executes asynchronously. These kinds of computers are still limited 

for usage. 

In our computer ADINA, each processor of one (or two) dimensional array deals 

with two (or three) lines of lattice points. The assignment is based on the judgement 

that it is efficient for solving implicit schemes, matrix calculation and the FFT algorithm, 

etc.. On the other hand, the ADINA takes the form of an asynchronous MIMD type 

in order to cut down the amount of hardware as much as possible. Also, a two dimen

sional array of buffer memories (or a set of some. arrays) is provided so that data may be 

directly transfered between any two processors. 

§ 2 Architecture 

We state the fundamental architecture of the ADINA computer only in the case of 

a one dimensional array structure of processors. We shall state our computer of a two 

dimensional array structure (which we• call ADINA-II) in the next paper. 

This computer system is a hierarchy composed of a host computer and N slave 

processors with their own memories. It has a two dimensional array of Nx N processors 

being provided for transfering data among the slave processors during parallel process

ing. As buffer memories, either the RAM (Random Access Memory) or the FIFO 

(First-In-First-Out Memory) can be used. Usually, it is more efficient to use the RAM, 

but the address buses from the processors to the RAM increase the quantity of hardware. 

Therefore, the RAM is not advisable for a case where many processors formed in a one 

dimensional array. On the other hand, the use of the FIFO may lessen the efficiency a 

little, but it decreases the quantity of hardware. If we use D MA channels for connecting 

the processors and buffer memories, the loss of efficiency is not so serious, and it becomes 

easier to act asynchronously. Also, the same FIFO memories are available for the 

transfer of data between the host processor and slave processors. In this paper, we 

consider only the case of using FIFO memories. 

Now, we will explain the configuration of ADINA-I. In the following, the symbols 

MU, AUj(j=0,l, .. ·,N-1) and FIFO-(i,j) (i,j=0,1, ... ,N-1) denote the host proces

sor (the Master Unit), the slave processors (the Arithmetic Unit) and the buffer memories. 

The data bus from the MU is connected to all FIFO memories as seen in Fig. 1. 

Usually there is no necessity for its being connected to every FIFO. It is sufficient to 

be done only to the FIFO-(j,j) (j=l, 1, .. ,,N-1) on the diagonal of the array. However, 

we prefer connecting to every FIFO so that we may have a number of uniform boards 

on which some buffer memories being connected to the MU and some AU's are equipped. 

The AU:i is combined with the FIFO-(t~j)'s (i=0,1, ... ,N-1) on thej-th row of the 

array, and also with the FIFO-(}, k)'s (k=0, 1, ... , N-1) on the j-th column through 
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MU 

Fig. 1. Path-building of the ADINA Computer I. 

data buses. Each FIFO buffer memory has its own loop bus combining its exit to its 

entrance. Fig. 2 shows the form of a bus connection to a FIFO-(z~j). It is seen that 

there are four ways from the MU, the FIFO's exit, the AU-i and the AU-j, and also the 

same number of ways to the MU, the FIFO's entrance, the AU-i and the AU-j. The 

loop bus is used so as not to lose the contained data in the FIFO when transfered to the 

MU. If it is not necessary, the loop bus may be cut. 

In such path-building it is possible to transfer data directly among the MU and 

every AU, so that the ADINA computer becomes very useful for a wide range of pro

blems. Moreover, it can exchange data mutually at any time between any two AU's. 

In fact, when the AU-i and AU-j must exchange data mutually, both actions that the 

AU-i sends to the FIFO-(i,j), and then receives from the FIFO-(j, i), and that the 

Fig. 2. Data buses to and from the FIFO-(i,j). 



424 Tatsuo Nom and Masatoshi Kuao 

A U-j sends to the FIFO-(j, i), and then receives from the FIFO-(z~j) are taken parallel. 

It should be also mentioned that, since FIFO memories are used, an AU engaged in a 

data exchange need not catch its partner's state directly, but only catch a signal of the 

input ready, or the output ready, from the FIFO memory standing between them. 

Then, they can continue other computations until transfered data is needed. This is 

because the DMA controllers themselves play the role of receiving the signals. 

As the ADINA computer is free from unified control and runs asynchronously, it 

needs only a small number of signal lines. On the other hand, though its path-building 

is of the crossbar type, the number of kinds of the data buses connected to a FIFO 

memory from the exterior is only 3 (or essentially 2 if it had other channels between the 

MU and each AU). Since the quantity of its hardware is not so much, we can therefore 

hope that the AD IN A computer will open a way of increasing the number of processors. 

§ 3 An example of trial maunfacture 

For a trial manufacture of ADINA-I, we have selected the F8 microprocessor as 

each unit module among the inexpensive processors on the market. We consider a con

figuration as seen in Fig. 3. It consists of a host processor MU, 16 slave processors 

AU-j (j=0,l, .. ·,F) and a 16Xl6 two dimensional array of FIFO memories. The 

MU consists of a CPU (3850), a DMI (3852), two DMA's (3854), a PIO (3861), 4 K 

byte ROM's (2716) and 8 K byte RAM's (4027). One of the DMA's controls the 

sending and receiving data to and from the slave processors, while another controls those 

to and from an 1/0 processor. The PIO is provided for direct input and output by the 

MU itself, and for receiving interrupt requests from the AU's. 

All the AU's have the same organization, and each of them has a CPU, a DMI, 

a DMA, 2 K byte ROM's and 4 K byte RAM's. 

Each FIFO memory is composed of two chips of a 4 X 64 bit FIFO (2841). The 

signals of SHIFT-IN-REQUEST (SI REQ) and SHIFT-OUT-REQUEST (SO 

REQ), coming to the entrance and the exit of FIFO respectively, are accepted indepen

dently. On each side, when a processor is engaged to the FIFO, another processor is 

not accepted and must wait. The SI REQ and SO REQ are made from data latched on 

PORT 1 (Pl) of each CPU, the ENABLE and DIRECTION from each DMA. When 

the MU is made to be engaged to the FIFO-(i,j), two digits of a hexadecimal number 

'ij' are put on the Pl. When the AU-jis made to be engaged to the FIFO-(t~j), one bit 

and a hexadecimal digit 'Oi' are put on the (Plh-o (the bit 4,_,bit 0 of Pl). When the 

AU-iis made to be engaged to the FIFO-(t',;), 'Ii' is put on the (Pl)4-o, These data must 

be latched before the DMA controller is made to start. 

Between the MU and each AU, some signals are sent through their PORT O's 

(P0's). When the MU is made to exchange data with the AU-j, the same hexadecimal 
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l/0 PROCESSOR/ CHANNEL 

(AU-F) 

(AU-1) 

Fig. 3. Configuration of the trial manufacture. 

number 'j' must be latched on the (PO)a-o of the MU. In addition, the 'l' of the (PO)e 

of MU means an instruction for the AUjto start calculation, the 'l' of the (PQ)4 means 

an instruction to return to the state of receiving other programs. The '1' of the (PO)s 

means broadcasting the same instruction by the (PO)e or (P0)4 to every AU. On the 

other hand, the MU's receiving '1' on the (P0)7 is taken as the end of a calculation 

shared by the AU j when the (PQ)a_o has 'j'. 
The AUj's putting 'l' on its (PO)? means the end of a calculation, and putting 'l' 

on its (P0)5 means an interrupt request to the MU. On the other hand, the AU-j's 

receiving on its (PO)e is taken as an instruction of starting and receiving 'l' on the (P0)4 
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as an instuiction of stopping the calculation and returning to the state of receiving other 

programs from the MU. 

The ROM of each AU contains some simple utility programs and subroutines of 

floating point operations. 

Usually, it takes the following pattern to use the ADINA computer. The MU 

first gets a source program from the I/O processor, stores it in its RAM, next broadcasts 

a part of it to each AU, and then commands them to start. When some results appear 

in the FIFO's ,the MU receives them and sends them to the I/O processor. 

Here we give some comments about fundamental cycle times and computation 

times. Since the F8 CPU has a maximum clock cycle of 2 MHz, at the clock the cycle 

time is 500 ns. Also, it has two kinds of machine cycles: 2 µs ( 4 clock cycles) and 3 µs 

(6 clock cycles). The range of the instruction cycle is 2 µs......,13 µs. The rest time of 

each machine cycle in which the CPU is not accessing the RAM is used for refreshing 

the RAM or accessing by the DMA. The speed of transfer by the DMA is about 2 µs"" 

5 µs per a byte. 

The floating point numbers are all expressed in 4 byte length (one byte for exponent 

and three bytes for mantisa). In our subroutines of floating point arithmetic operations 

the computation times are as follows: the addition and subtraction takes the range of 

26 µs--1600 µs. We take 1 ms as a typical value for a later evaluation. Multiplication 

by Booth's method takes about 3.5 ms and division by the non-restoring method takes 

about 4 ms. The transfer of 4 bytes between two registers takes about 20 µs and that 

between a register and a memory takes 32 µs. The transfer of 4 tybes through a FIFO 

memory takes 20 µs in a standard case, when data go through without staying. How

ever, when many words are transfered continuously, the transfer time per one word is, 

of course, shorter. For example, when 16 words are transfered continuously, it is about 

( y) 

····· i-1 J j+I · ···· EF 

Fig. 4. Exclusive memories in the MU. 
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2OF0~ 21Fo ~ .. 2FF0,.., 

20E0~ 2JE0 ~ .. 2FE0~ 

... . 

2010 211 O .. 2F1o 

2000 2100 .. 2F00 

Fig. 5. Address allocation of the MU's exclusive memories. 

2.5 µ,s. Such transfer operations take more time in addition for setting some data 

before the jump to subroutines. Their times are 17 µ,s, 25 µ,s and 53 µ,s before a transfer 

between two registers, between a register and a memory and a transfer through a FIFO 

respectively. The time for transferring through a FIFO also contains the setting time. 

Finally, we provide some memory areas of exclusive use in the RAM for the con

venience of making programs for a transfer through buffer memories. In the MU's 

RAM ,we take a two dimensional array of memories with a 16 x 16 size corresponding 

to the FIFO's array, and let each memory have a capacity of 4 words (16 bytes). We 

call it a memory block with 4 words depth, and give the words the numbers of m=0,-,3. 

(See Fig. 4). For the total memories of 4096 bytes we allot the part of the RAM with 

addresses from 2000 to 2FFF. The memory block with addresses 2ij0,-,2ijF corres

ponds to the node of a two dimensional array (i,j) (i,j=O, 1, ···, F). (See Fig. 5). 

On the other hand, in the AU-j's RAM, we take two one-dimensional arrays of 

memory blocks which correspond to the FIFO's ,directly connected with the AU-j by 

Fig. 6. Exclusive memories in the AU's. 
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IFEO ~ 
IFCO ~ 

: 

!1coo ~ !1c20 ~ I··· IC00+20•1~ ···l10Eo ~ I IE00+20ck-

: 

IE20 ~ 

IEOO ~ 
Fig. 7. Address allocation of the A U's exclusive memories. 

buses. Each block has a capacity of 8 words. We number the words from m=O to 

m=7 (Fig. 6). For these memories, we allot the part of the RAM with addresses from 

lC00,....,lFFF. One half of them, with addresses lC00,....,lDFF, correspond to the 

row of FIFO-(i, j) (i=0, 1, ···, F). The other half, with addresses lE00---lFFF, 

correspond to the column of FIFO-(j, k) (k=0, 1, •··, F). The memory block having 

addresses lC00+2oxi,..._,lClF+20xi corresponds to the node (i,j), and that having 

addresses rnoo+20 xk.....,lFlF +20 xk corresponds to the node (j, k) (Fig. 7). 

In the following, we denote sliced memories with the same level of depth by the 

symbol ((m=·)). For the AU's, we call the row part of the cross type array 'the memory 

row', and the other part 'the memory column'. 

§ 4 Evaluation of efficiency in various computations 

In this section, we evaluate the efficiency of the ADINA computer by various 

typical examples of computation. We will compare the time between a serial compu

tation by the MU alone and a corresponding parallel computation by the AU's for the 

same problem. The comparison is fair since the LSI chips suitable for the AU's are the 

same as in the MU. The computation time is evaluated by following a program written 

in a machine language. Even though we use some subroutines which we can not 

evaluate exactly (for example, floating point operations), we believe that an evalaution 

using suitable mean times leads to a result close to the realized result. As indexes of 

comparison we use 

Ratio of times r= Uni-processing time/Parallel processing time 

and, considering the number of processors, 

Efficiency R=r/N. 

Example 1 (Product of two matrices) 

We suppose that the elements of two matrices A and B, with a size of 16 x 16, are 
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given in ((m=0)) and ((m=l)) of the MU's RAM respectively, and that the product 

C=AB is asked in ((m=0)). 

In a case of computation by the AU's ,the MU first sends each row vector -;;i= 

(aio, ai1, •··, aiF) of A to each memory row ((m=0)) of the AU-j through the FIFO

(j, j) for j=0, 1, •··, F, and then each column vector tb•=(bok, bu, ···, bn)1 to each 

FIFO-(k, i) (i=0, 1, ···, F) for k=0, 1, ···, F. Then every FIFO is filled up. Now, 

the AU-j (j=0, 1, •··, F) receives data from the FIFO-(k,j)(J=0, 1, •··, F) respectively, 
.... F 

computes ai·lbk=~ ai;b;k and stores the results in the memory row ((m=l)) 
j=O 

successively for k=0, 1, ... , F. These computations are executed in a fully parallel way. 

Finally, each AU sends the data of the memory row ((m=l)) to the MU's ((m=0)). 

The total time needed for the above computation is evaluated as 1.27 sec., and its 

essential part (computation of scalar product) is 1.20 sec. 

On the other hand, we can evaluate the time needed in a case of uni-processing by 

the MU alone as 19.4 sec. 

Therefore we get 

1'=15.3 and R=0.95. 

Example 2 (The Gauss elimination method for solving a linear equation) 

We solve a linear equation of 16 unknown numbers {x;}, i=0, 1, ···, F, by the 

Gauss elimination method : 

F 

~ ai;X;=bi 
i=o 

(j=0, 1, ···, F). 

We suppose that the row vectors 7,,i=(aio, aj1, •··, aiF) (j=O, 1, ···, F) of the coefficient 

matrix A={a,i) are given in the memory row ((m=0)) of the MU. The right hand 

side {bi) is also given somewhere in the RAM of the MU, and suppose that it is asked to 

obtain the solution {x;} in the same memories as {bj) is stored. 

First, the MU sends bi to the AU-j for J=0, 1, ... , F, successively. After that, 

the AU's proceed to solve the problem. In the following, we consider only a case where 

it is not necessary to make a special pivoting. 

For eliminating xo the AU-0 first determines the coefficient 

( 
ao1 ao2 aoF bo ) _____ ., ___ _ 
aoo ' aoo ' ' aoo ' aoo 

and sends it to each AU:i (j=l, 2, ···, F) through the FIFO-(j, 0) (j=l, 2, •··, F) respec

tively. After receiving the coefficient, every AU, except the AU-0, eliminates xo in 

parallel. At the next step, for eliminating x1, the AU-1 determines the corresponding 

coefficient and sends it to each AU-j (j=2, 3, •··, F), which then eliminates in parallel. 

Continuing the same procedure we finally arrive at a stage where the AU-Fhas an equa-
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tion involving only one unknown XF. After finding XF, it is then substituted in all the 

equations that had successive elimination. Here, XF is first sent to each AU-j (J=E, 

D, ···, 0) in the decreasing order ofj successively. It is substituted on the corresponging 

processors. Next, XE is found by AU-E, and it is sent to each AU-j (J=D, C, ···, O) 

and then substituted. By continuing in this way we can find every x;. Here we note 

that, while AU-j sent the found x; to every AU-i (i=j-l,j-2, •··, 0), each AU-i can 

substitute x; immediately after receiving it, without waiting for the completion of the 

AU's sending. In particular, the AU-(j-1) can find x;-1 at once. Moreover each 

AU-j may send the found x; to the MU immediately. 

The total time for the above computation is evaluated as 887 ms. On the other 

hand, the time for uniprocessing by the MU alone is evaluated as 7277 ms. Therefore, 

we have 

r=B.2 and R=0.51. 

In this case, the fall to 0.51 of efficiency is because of an essentially serial property of the 

Gauss algorithm itself. 

Example 3 (The FFT algorithm) 

First, we briefly explain the FFT algorithm in order to show its relation to the 

ADINA-I. Now we define the discrete Fourier transformation by the formula 

N 
X(n)=~ xo(k)Wk•, 

k=o 

Here we take N=27 (y is a natural number) for simplicity. In the FFT algorithm we 

perform the sequence of computation 

{xo(k)}-+ {x1(k)}-+ ... -+ {x1(k)}-+ ... -+ {xr(k)}. 

Finally, X(n) is set to be equal to x 7(fJ), fJ means the binary number produced from the 

binary number n through reversing the order of digits. In order to get x,(k) from x1-1 

(k), we use the following formulae; 

x,(k) =X1-1(k) + WPx1-1(k') 

and } (1) 

where p is the binary number produced from the index k by expressing it in the form of 

y digits, then shifting it to the right by (y-l) digits, putting zero's on the upper (y-l) digits 

and finally reversing the order of the digits. 

We write the formula (1) in the following convenient form: 
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ARC=27Tp/N, 

C=COS (ARC), 

S=SIN (ARC), 

k'=k+N/21, 

T R=Re X1-1(k') X C + Im x1-1(k') XS, 

TI =Im x1-1(k') X C-Re X1-1(k') XS, 

Re xr(k')7 Re x1-1(k)-TR, 

Im x,(k')=Im x1-1(k)-TI, 

Re x,(k)=Re x1-1(k)+TR, 

Im x1(k)=Im x1-1(k)+TI. 

431 

(2) 

In the above algorithm x,(k) and x,(k') are computed in pairs. Therefore, when we 

follow the algorithm by the MU alone for k=O, 1, •··, successively, we arrive at just one 

already computed. Then we, of course, may . skip it. For example, in the case of 

N=16, (y=4), {x1(k)} are all found by executing the algorithm (2) only for k=0, 1, ... , 7. 

Now we state how to realize the algorithm by the AU's in as much parallel as 

possible. First, we consider the case in which a table of values being used for COS 

and SIN are given beforehand. Corresponding to a pair of numbers k and k', the 

AU-k and AU-k' execute (2) in parallel. First the AU-k' sends X1-1(k') to the AU-k 

through the FIFO-(k, k') and the AU-k sends x1-1(k) to the AU-k' through the FIFO

(k', k). Here both actions are taken simultaneously. Next, the AU-k' finds TR and 

sends it to the AU-k through the FIFO-(k, k'), and the AU-k finds TI and sends it to 

the AU-k' through the FIFO-(k', k). These actions are also taken simult!l,neously. 

Finally, the AU-k' finds x1(k') and the AU-k finds x,(k) at the same time. Therefore, 

we find that the computations also proceed in a fully parallel manner for all pairs of 

(k, k'). Such computations are executed for l=l, 2, ... , y. 

We consider also the case in which the values of COS and SIN are computed just 

when they are asked. In this case it is convenient to use the CORDIC method for the 

evaluation of COS and SIN, because it is well realized again by each pair of the AU-k 

and AU-k' (See the next example for the CORDIC method itself.) 

In a case where the 16 AU's are used for the data of N=16, the total time is evalu

ated as follows : 

i) (The case of having a table of COS and SIN's) 

The serial computation by the MU alone takes 690 ms. On the other hand it takes 

60 ms that the MU first gives data to the AU's and then they run and send results to 

the MU. Therefore we get 

r=ll.5 and R=0.72. 
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ii) (The case of using the CORD IC method) 

The serial computation by the MU alone takes 2600 ms, while the parallel compu

tation by the AU's takes 244 ms. Therefore, 

r=l0.66 and R=0.67. 

The fall to 0.72 of efficiency in case (i) is because the computation by the AU's 

proceeds so well in paris, but it takes time for transfering data, while the computation by 

the MU can skip one half of the set of numbers {k}. In case (ii), the efficiency further 

falls because the CORD IC method is not reduced to a fully parallel computation. 

Example 4 (Evaluation of COS and SIN by the CORD IC method) 

In Example 3, it was necessary to have the values of COS(jm/8) and SIN(p,rr/8) 

(0-;;i,p-;;i,7). Here we consider the CORDIC method for evaluating them by using a 

pair of processors AU-k and AU-k'. We note that we have to evaluate them only for 

0-;;i,p-;;i,3 since COS(jm/8)=-COS((8-p)1r/8) and SIN(jm/8)=SIN((8-p)1r/8). Then 

for 0-;;i,p~3, the method is as follows; 

We take 

Xo=0.60725293051 •", yo=0 and vo=far/8 

as the initial values, and use the following formula for n=O, 1, ···, 16 iteratively: 

i) if v.;;;;o, Xn+1=x.-2-•y., Yn+1=y.+2-•x., Vn+1=v.-y,. 

ii) if vn<O, x,.+1=x.+2-•y,.,y.+1=y.-2-•x., vn+1=v•+Y• 

where y.=arctan 2-• (n=0, 1, ... , 16) are given veforehand. The result x11 and y11 

are approximate values of COS(p1r/8) and SIN(jm/8), respectively, with an accuracy at 

least by five digits of decimal numbers. 

Let each AU-k and AU-k' have the initial values and {y.} and evaluate doubly 

the same {vn}. Then, let the AU-k find {xn} and the AU-k' find {y.}. 

For computing with ap it takes 47.7 ms. On the other hand, in the case of serial 

computation by the MU alone it is 60 ms. Therefore 

r=l.2 and R=0.6. 

Since the part of computing {v.} is not executed in parallel by both processors, the fall 

of efficiency is inevitable. 

Example 5 (Application of the AD I method for solving the Na vier-Stokes equation) 

The two-dimensional flow of non-compressible viscous fluid is described by the 

following Na vier-Stokes equation 
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where { represents the vorticity and if, is the stream function. 

Now we consider a flow in the quadratic hollow region 0<x,y<l with only one 
opened side y=l contacting with a uniform flow. Then we have the following natural 

boundary conditions : 

if,(0,y, t)=if,(1,y, t)=if,(x, 0, t)=if,(x, 1, t)=0, 

aif, aif, aif, 
a,x(0,y, t)=a,x(l,y, t)=a_y(x, 0, t)=0 

and 

a¢, 
ay (x; 1, t)=U ( U is the constant velocity of the uniform flow.) 

The initial conditions are 

if,(x,y, 0)=0 and {(x,y, 0)=0 

corresponding to the stationary state. 

We take the most useful ADI method from many difference schemes for solving 

the above problem. We divide each side of the hollow region into 15 equal parts, and 

cover the region by the net of mesh points with the mesh width h=l/15. We use an 

expression like {;,J showing the value of the unknown { at the mesh point (x;, y;)= 
(ih, jh). Taking the time step -r, we develope it like {7,, which means the value at 

t=n-r. For finite differences, we use the following notations; 

In the following algorithm, we take ]=15; 

(t",j=0, 1, ···,J), 

A':,;={':,;+ 2;h2 As{;,;+ 8~ 2 8.1if,':,182{':,, (1) 

(i=l, 2, ···,J-1), 

,..,,+i/1 - 2 ., .• 
'oo,J - -7i2'1'1,J, 

r•+i.12_ 2 .t.• 
'oJ,J --7i2'f'J-1,J 

(j=l, 2, ···,J-1) 

(k=l, 2, ···,J-1), 
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(J=l, 2, ···,J-1) 

./.(0)_.,.• 
'ri,;-'fli,i (i,j=O, 1, ···,J), 

./.(r+l/S) _,/,(r+l/8) _Q 
'f'o,; -.,,1,; -

./.(r+l) _,/.(r+ll -0 
'f'i,O -'f'i,l -

(i=l, 2, ···,J-1), 

(j=l, 2, ... ,J-1) 

(k=l, 2, ···,J-1), 

(J=l, 2, ···,J-1) 

(i,j=O, 1, ···,J) 

j 

(3) 

(n=O, 1, 2, ···) 

The above formulae give the algorithm for proceeding from the n-th time step to the 

(n+l)-th step. The upper suffix (r) of ,f, means the number of the internal iteration, 

Pn+i is the total number of the iteration at the (n+l)-th step and a is an iteration 

parameter. 

A realization of the above algorithm by the 14 AU's is as follows: 

The first half of the ,-equation (1) is composed of the 14 equations which are 

linear in the unknown vectors r•+112=(r•+112 r•+.112 •·· r•+11.2) (;·=1 2 ... , J-1). ':,J <:,1,J , <:,a,, , , <:,1-1,1 , , 

Let each AU-j solve the j-th equation. The second half of the ,-equation (2) is also 

composed of the 14 equations in the unknown vectors nj+1 =(,j11, ,j~1, ···, ,j;j~1)'. 

Let each AU-j also solve itsj-th equation. Then both (1) and (2) are solved in fully 

parallel. We take also a similar way for solving the linear equations (3) and ( 4) of 

,f,<r+lla> and ,f,<r+ii, respectively. · 

Now, we suppose that every AU-j (J=l, 2, •··,J-1) has the data tj=(,~,;, ,;,;, ... , 

ti-1,;), i'j=(,j,1, ,j,2, ···, ,j,1_ 1)' and i,f,j=(,f,j,1, ,f,j,2 , ···, ,f,j,1_ 1)' in their own memo

ries. Further, we suppose that every AU-t' (z"=l, 2, ···,J-1) has Ll2i'1'=(Ll2,;,i, Ll2,:,2 , 

···, Ll2{:,1_1)
1

, 321';1 =(82,:, 1, 32,:,2, ···, 32,7,1~ 1) 1 and 3ai,f,7=(32,f,:,u -~2,f,'i,2, ···, Sr,1- 1)
1 

in their memor column. It should be here mentioned that the A U-t' cannot find 

Ll1,7,1 or 81,7,1 etc. ifit has only column vectors 1'7 etc., while it can find Ll2i,'i and 

3al,r easily. 

Now the procedure is as follows : 

i) First the AU-j receives Ll2{7,;, 32{'i,1 and 32,f,:,; from each AU-t' (t'=l, 2, 
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./-1) throughth FIFO-(i,j)'s respectively. It then has the equation (1) in °{j+1
"

2 with 

the unknown coefficients, and on the right handAj=(A~.,, A;,1, •··, Aj_1,;). Since A1 
is again used later for solving (2), it is held in the memory. Morevoer, at this stage, 

the AU-j finds 8~ 2 81~? and stores it. . 

ii) The AU-j then solves the equation in {1j1
"

2 by the so-called double sweep 

method. In the process of m~1
"

2
} 's being successively determined in the inverse 

sweep order, the AU-j sends the triple <t:j1"8
, 

8
~

2 
81if,:,,, A:,,J one by one to the cor

responding FIFO-(i,j), without waiting until ?j+ua is fully found. 

iii) Next, the AU-j receives all the triples {'j~1
"

1
, 

8
~

8 
81if,j,A, Aj,1} through the 

FIFO-(}, k) (k= 1, 2, • • ·, ./-1) respectively. Then, the A U-j knows all the coefficients 

and the right hand of the equation (2) in {j+1
, solves the equation and sends the pairs 

{'j~1, .::laif,j,1} to the FIFO-(}, k) (k=l, 2, ···,./-1) respectively. (Here we suppose, 
of course, that {.::laif,j,1} has been already found.) 

iv) The AU-j receives the pairs m,11, .::lsif,~,;} from the FIFO-(i,j) (i=l, 2, ···, 
.f-1) respectively. Combining them with ~J being stored, the AU-j has the equation 

(3) with the known right hand iJ~0>, then solves it and sends the pairs {Bf~J, if,j:f 2>} 

to the FIFO-(i,j) (i=l, 2, •··,./-1) respectively. 

v) The AU-j receives the pairs {B~~l, if,~!(1>) from the FIFO-(J, k) (k=l, 2, ···, 
.f-1) respectively. It then finds lit,?> from the equation (4) and sends the pairs 

{.12if,~!l. if,}!~} to the FIFO-(j, k) (k=l, 2, ···, ./-1) respectively. 
vi) The Au -j receives the pairs {.1 aif,eJ' it,l!}} and finds jj~l). 

AU-j gets °{,J8"8> and again sends the pairs {Be), if,f:f8>J to the 

···,./-1) respectively. 

By solving (3) the 

FIFO-(i,j) (i=l, 2, 

vii) Repeating the procedure for r=O, 1, ···, P.+1-l like v)-vi)-+ v)-+ •··-+ 

vi)-+v) finally produces {it,t:+1>=y,~~t1>} (j, k=l, 2, ···, ./-1). Only in the last 

procedure of v), the AU-j sends m~1, .1a,j~1, 82,j~1, 8aif,j~1, if,j~1} to the FIFO-(}, k) 

(k=l, 2, •··, ./-1) respectively. Then, the computation of the next time step starts 

again from i). 

As seen above, several sets of data must be sent or held. For that, we use the 

exclusive memories in the AU's. (See Fig. 6-7.) It is shown in Fig. 8 how data are 

shared in the memories, and which data are sent to and received from the FIFO's. The 

row with the heading H-R contains data that the AU-j receives and stores in the mem

ory row. The row with 'H-S' contains data which the AU-j sends from its mem

ory row to the FIFO's. Similarly, the row with 'V-R' contains data which the AU-j 

reseives and stores in its memory column, and that with 'V-S' forms that which it sends 

from its memory column. It completes the one time step from then-th to the (n+l)-th 

to take the stages 'H-R, H-S' - 'V-R, V-S'-+ 'H-R, H-S'-+ ···-+ 'V-R, V-S' from top 

to bottom. Here it is shown that the values not shadqwed in the sending states (S)and 

the receiving states (R) must be held for a while, and are already held respectively. 
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m 0 2 3 4 

H-R~~~~~ 
H~s~~-w~ 
V-R fil~½J];-fi~~ '. 
~-s !@);]a £12 ~nt a2~n-,~ja 

H-R~~ ~ ¥101 

H-sl I ~~½Ja 
V-RI I ~/~~ADl 
V - S I I I £12 fl (I) I 7f (I) 

Fig. 8. Data allocation in a memory block in Example 5. 

The computation time for proceeding by one time step is estimated as 3875 ms in 

the case of P.+1=5. On the other hand, when the MU alone executes the same 

procedure, it is 54156 ms. Therefore 

r=13.8 and R=13.8/14 =0.99. 

The result shows a very high efficiency. It is because the rate of transferring data 

through a FIFO memory is about 18 µ,s/word. The summing up transferring times 

in above computation accounts for only 0.5 percent of the total time, and the essential 

part of computation is almost parallel. 

Here we note that we used only 14 AU's, but we can use, of course, all 16 AU's 

if we expand the exclusive memories beforehand. 

We can generalize the above result and give an estimate in the case of using Q AU's. 

Denoting the number of internal iteration by P, we have 

(74.1+40.3P)Q+l.0P+15.0 ms 

(275.6Q+20.0 ms 

For a case by the MU alone, it is 

when P=5). 
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(73.1 +39.9P)Q1 +(16.2+0.2P)Q ms 

(272.6Q2+17.2Q ms when P=5). 

Here we consider that the problem to be solved has Q X Q internal mesh points. There

fore we get for the large Q 

(74.1+40.3P)Q ms by the AU's 

and 

(73.1+39.9P)Q2 ms by the MU alone. 

Thus 

r=0.988Q and R=0.988 when P=l, 

r=0.99Q and R=0.99 when P is also large. 

Glancing at the result, it seems that the high efficiency is due to such a complexity in 

the essential part of the computation for solving the nonlinear partial equation, that 

the time of transferring data is comparatively small. However, such efficiency is also 

produced in a case where the equations to be solved are themselves as simple as seen 

in the case of the Poisson equation, which is considered in the next example. 

Example 6 (Application of the ADI method for solving the Poisson equation) 

The second half of the Navier-Stokes equation in Example LJif,=-, is nothing but 

the Poisson equation. Therefore in order to estimate, we have only to consider. the part 

of internal iteration for finding if,. 

In the computation by the AU's it is 2822 ms when the number of iteration is 5, 

while in the computation by the MU alone it is 39095 ms. Therefore 

r=13.85 and R=0.99. 

Example 7 (A simple Iteration method for solving the Poisson equation) 

Here we consider again the Poisson equation LJif,= -,, and solve its difference 

analogue by the following simple iteration method: 

ifs'i;/=ifs'i,;+ ; 2 (ifs'i+1,;+ifs'i-1,J+ifs'i,;+1 +ifs'i,;-1-4ifs'i)+u,;,; 

(r=O, 1, 2, .. ,). 

In order to realize the method we repeat the following procedures : 

i) The AU-j receives the sums {i/s:,,+1 +ifs,,,_1} from the FIFO-(i,j) (i=l, 2, ... , 
J-1) respectively. Finding {if,'ij1

} by the above formula, the AU-j sends them to 
the FIFO-(i,j) (i=l, 2, ... , J-1) respectively. 

ii) The AU-j receives {if,1~1
} through the FIFO-(j, k) (k=l, 2, ···, J-1) 

respectively, finds {if,1~t1 +ifs,~~1} and sends them to the FIFO-(j, k) (k=l, 2, 
J-1) respectively. 
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It takes 992 ms for a 5 time iteration, while it taker 13469 ms for a computation by 

the MU alone. Therefore 

r=13.58 and R=0.97. 

In general, when the number of AU's is Q and the number of iterations is Pit is 

14.1 QPms, while in a case by the MU alone, it is 13.7 Q2Pms. Therefore 

r=0.97 Q and P=0.97. 

This also shows a very high efficiency. 

Example 8 (The Gauss-Seidel method for solving the Poisson equation) 

We consider the standard Gauss-Seidel method for solving the same problem as 

in Examples 6 and 7, which is described as 

,/,r+l_ 1 (,/.r+l +•1,r +·'·'+1 +·1,r )+ha, .. 
'l'i,j -4 'l'i-1,j 'f'i+l,j 'f'i,j-1 'f'l,J+t 1,1 

(r=O, 1, 2, .. ,). 

In order to realize this method, we have the AU -j play the role of finding J1+1
• Here 

we notice that when the AU-2 asks, for example, ifs~;/ it must also know if,;;/ 
which is to be found by the AU-1. Therefore, when the AU-1 finds if,;~1, it is better 

to send it to the AU-2 through the FIFO-(2, 1), and then continue to find if,;;./, 
Thus, {if,[j1

} is successively determined as a wave in the order of the number i+J's 
increasing. 

The AU-j's action is as follows: the A U-j receives ifsr,;+i from the FIFO-(}, J+ 1), 

if,f,1_1 from the FIFO-(j,j-1), then finds if,[j1, which it sends to the FIFO-(j-1, j) 

and FIFO-(J+l,j) for each i. After the completion of such computations, it con

tinues to find ~'/2
• Here it is noticed that only the FIFO's on the tri-diagonal are 

used. 

When the number of AU's is Q and that of iterations is P, it takes 8.6 (P+l) Q ms, 

while in a case by the MU alone it is (7.8 Q2+0.05 Q)P ms. Therefore, 

( 
1 )-1 r=(0.907 Q+0.0058) 1+ .E' • 

When Q and P are large, 

1'=0.907Q and R=0.907. 

the result shows a slight fall of efficiency in comparison with that of the ADI method. 

The reason is that the Gauss-Seidel method is primarily a serial method, and is not realiz

ed in fully parallel. 

As seen in Examples 5, 6, 7 and 8, the ADINA computer shows a very high efficiency 
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of 0.9--0.99, when it solves the partial difference schemes by some iteration methods. 

Especially, by the ADI method, the computation speed is almost Q (Q is the number 

of AU's.) times that of the corresponding serial computation. 
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