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Transient Stability Analysis of Multi-machine Power |
System with Automatic Voltage Regulators
via Lyapunov’s Direct Method
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Abstract

In this paper, Lyapunov’s direct method is applied to a multi-machine power system
where generators are installed with atuomatic voltage regulators. The automatic
voltage regulator and the thyrister exciter are represented by a third order transfer
function. The stability of the power system is checked according to a generalized Popov
criterion. ‘This criterion guarantees that the system is stable if the gains of the voltage
regulators are lower than the limit values. A Lur’e type Lyapunov function is con-
structed by the systematic method established by J.L. Willems. The obtained Lya-
punov function is used in a transient stability analysis of a 10-machine power system.
The direct method yields results which are very close to those obtained by simulations.
It is concluded that Lyapunov’s direct method is applicable with sufficient accuracy to
transient stability analyses of power systems, where automatic voltage regulators are
installed in generators on the condition that the gains of the automatic voltage regula-
tors must be enlarged to practically used values in the future.

1. Introduction

Lyapunov’s direct method is one of the promising methods of analyzing the
transient stability of power systems. This method enables us to determine the
stability or instability of power systems without simulating the entire transient.
It has already reached a practical level for a simple system model, where genera-
tors are represented by constant voltages behind transient reactances [1]-[8].
One aim of the research on this method is to improve the mathematical models
of power systems. There are several works along this direction. In particular,
the dynamics of automatic voltage regulators and exciters is one very important
item which should be incorporated in power system models, because such dyna-
mics are closely related to the transient stability of power systems, and they are

positively useful for improving the transient stability.

* Department of Electrical Engineering
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In order to apply Lyapunov’s direct method to power systems, it is necessary
to construct Lyapunov functions for these systems. There are several works on
Lyapunov’s direct method for systems where voltage regulators are installed in
generators. M.W. Siddiqee constructed a Lyapunov function for a one-machine
connected to an infinite bus system with a forced voltage regulator through trial
and error in 1968 [9]. Also, M.A. Pai and V. Rai derived the same function
with a method based on a generalized Popov criterion in 1974 [10]. However,
this type of voltage regulator is not one of feedbacking terminal voltages of genera-
tors. V.K. Verma et al. constructed a Lyapunov function with a variable gra-
dient method for a system using an automatic voltage regulator in 1975 [11],
and T. Taniguchi and H. Miyagi constructed a Lyapunov function with a method
based on a Lagrangean function in 1977 [12]. These two papers are original
works which incorporated automatic voltage regulatorsvin Systein models in Lya-
punov’s direct method. However, their systems are a one-machine connected to
infinite bus systems, and it is very difficult to appIy their construction methods to
multi-machine power systems. Besides, their modeling of automatic voltage
regulators and exciters are very simple, that i is, only automatic voltage regulators
are represented by zero or first order transfer functions. In order to con-
struct a Lyapunov function for a system in which generators are installed with
automatic voltage regulators and- thyristor exciters rrepresented by third order
transfer functions, we use a generalized Popov. eriterio'n derived from our pre-
vious paper [13]. Thyrist‘orA exciters are prevailingly applied to improve the
transient stability of power systems. Their time responses are so fast that the
excitation voltages of generators are rapidly increased with any occurrence of a
fault, and the electric power outputs of generators are kept at a high level. K Ac-
cordingly, investigations of their effects on transient stability are important.

In this paper, a Lyapunov function is constructed for a system in which au-
tomatic voltage regulators and thyristor exciters are installed in generators.  Fir-
stly, the system equations are derived, and the stablllty of the system is checked
with a generalized Popov criterion. After this manipulation, a Lur’e type Lyapu-
nov function is constructed with the systematic method established by J.L. Willems
and other researchers [2], [14], [15]. Lastly, a 10-machine power system s
analyzed as a numerical example, and features of the obtalned Lyapunov func-
tion are illustrated. R !

2. System equation

In this section, system equations are ‘described for a- multi-machine power

system in which automatic voltage regulators and thyristor exciters are installed in
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all generators. Motions of generators are expressed by

d! ds! > .
m‘ﬁ-*—did_t = P”"—jgl Y‘jE‘Ej sin (6‘J+0"i)

fori=1,2,:,n
Variations of voltages E; are expressed by

dE!; .
th = (I/Téai)[Efdi_E;i — (Xai— %45 )34]

fori=1,2,:n

(2)

Variations of variables in automatic voltage regulators and exciters are expressed by

dE,;
Tt“'— = — (I/Tai)Eai_(Kai/‘Ta,-)Ed,-"—(Kai/ Tai) (Vrefi'_ V;,‘)
dE,; _ (K| T)Eu— (T E,;
dt
‘d-‘—iE% = (KdiKci/ Tzi)Eai_(Kd,'/ Tei)E”'“‘(l/Tdi)Edi
for: = l’ 2, e
Vref
V——-—_‘_ Et 1+ Ko [Ea| Ke |E Ec1/—
b T s 1+Te5~$T:_/Ecz
Efa
Eq KdeS
1+Tds

Fig. 1. [Excitation system model

Efq

(3)

where a block diagram of the thyristor excitation system is shown in Fig. 1, but

the time constant 7 is assumed to be zero. The terminal voltages V,; can be

expressed by

where, for generator i,

P,; : mechanical power input

m; : angular momentum constant

(4)
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d; : damping power coefficient
Y,;;/¢;; » post-fault transfer admittance between the ith and jth generator
nodes (obtained after reduction of a network retaining only genera-

tor nodes)
9;; : complement of ¢;;, i.e., 8;;=xn[2—¢,;
E,/6; :internal voltage
8;; :0—90;

E/; /8! : voltage related to the internal voltage as in Fig. 2. 8/ indicates
a rotor angle relative to a reference frame rotating at a synchro-

nous speed.
E.,; : excitation voltage
4 : d-axis current

%4, ¥4+ d-axis synchronous, transient reactances, respectively.
Thoi : d-axis transient open-circuit time constant
d

In order to construct a Lyapunov function, three basic assumptions are ne-
cessary: ‘

Im
q- f:/xis
7
Eqdi_ -~
jxqiii
Eqi
\
\\\
\
. \\
iq 4 £l
1 i .,
] Xa1
$; W i
’)'/S.
A Re
0 \\ )
\\
\
rd Ii
///
igi \’
\,
d-axis

Fig. 2. Relations between generator variables



262 L Naoto Kaxmoro, Yasuharu Ousawa and Muneaki Havasut

(i) Each internal voltage lags behind the g-axis of each generator by a con-
stant angle ¢; all the time [17]. : :

(ii) The transfer conductances in the reduced admittance matrix are neghglble

(iii) The magnitude of the terminal voltage can be approximately expressed by

._E,-{-x,,;Z}YU Jcosv(-é,-j—{—ﬁ,-j‘). o R (5)

where (5) is derived from Appendix A.
‘Under these assumptlons, (1), (2) and (3) change to the followmg cquatlons

dza '] o 0
dt2 -t —EB:;(E E sm6 —EE; sin 6,-1.)
Fh
2 (VT s 005 ) B s~ Bju) = 1/ Vi) [1 = (xd.—xdaB,,](E E")
'—(I/Tdot)(xaﬁ"'xﬂl) Z BthJ (COS 6*1 cos 6:})
11:"
dEai, . . .. v" N v 0 : . o
77 = —(I/Tai)<Eai""EM')_(Kai/Tai)(Edi'—Edi)
— (Kl T,) ¢! +x§iBii) (E:—E3)
(Kl Tui)ebs 3 By (cos 82,—cos 3,5)
=1
i
d
= (K ,/ @) (Egi—Ea) — (1T u)(Eu—E2)
dE ; o
7’“ = (K;K ez’/Tei)(»Ea'i_E:i)—(Kdi/Tei)(Eei—'EZi)"(I/Tdi) (Esi—Ea:)

fori=1,2,n (6)

where the superscript “0” dénotes the stable equilibrium point in the post-fault
state, and accordingly, (6) applies to the poSf-fault state.

Eq. (6) can be rewritten in a form of state equation, that is,

% = Ax—BF (o)
0 7

= C'x ‘\ S (7)
where ‘ 7 ‘ - ‘
0 Kiau-y 0 0 0 0
0 —M™D,, O 0 0 0
0 0 _H 0 H, 0
0 0 —H, —H, 0 —H,
0 0 0 H, —H, 0
0 0 0 Hy  +—Hy —Hy ) (8)
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0
0
B =
0
0
0
in which
Ky =

Lita-n

L~ L1 (a-1)

Ciu-vm = [Lin-1tn-1

T,

and

_ | law-n LT }
LTt L= m-n+0)

Tul = Ku(a—l)G(n-l)m

via Lyapunov’s Direct Method
(G 0Y
0

S o o0 o o
o O O N~

]

— T (m-n+1 ]
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(9)

(10)

The row vector 1,(,_,y and Oy, _,+p has all its elements equai to unity a'\.ndv'zer(.),
respectively. The number m is defined by m=n(n—1)/2. H; (i=1, 2,++,10) is

an nXn matrix of a diagonal form, and its elements are defined as fgllows:
by = (1 Tgoi)[1 — (x4y—2:)By] :
hy; = ll(Td,os' cos ¢;)
hy; = (Kai/Tai)(l-l-&’iiBn)

Chy =1 Tai

by =Kol Tu
hei = Kl T
by = I/Tzi
hy; = KyK | T
_]Isi = 'Ka{/ Tu .
boi = 1Ty |

@; = (x4i—%4i)| Tdoi. . -

Bi = Koxai| Ty;

by

fort =1,2,,n,

x = [8], o', AE’, AE}, 4E!, 4E]]’
where elements of 6,, @, 4E, 4E,, 4E, and 4E, are defined by

(11

The state vector x is a (6n—1) dimensional vector consisting of six vectors defined

(12)
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0, = 61(i+1)—3f(.'+;) for i = 1,2, -, n—1
;= 0; fori=1,2,,n
4E, = E,—E? fori=1,2, n
; (13)
4E,; = E,;—E3; fori=1,2,-,n
4E, = E,,—E3, fori=1,2,n
4E;; = E;—Ey; fori=1,2,,n

The non-linearity F (o) consists of two vectors, i.e.,
F(o) = [£i(0)", o(0) T’ (14)

where fi(o) and f,(¢) are m and n dimensional vectors defined by

Ju(o) = B;[E,E; sin (0,+087;) —E}Ej} sin 0%,] (15)
for i=1,2, e,n—1, j=i41,e,n k=1,2,-,m
Sai(o) = 2 B,;E;(cos 07 ;—cos ;) fori=1,2,,n (16)
i=1
e
In (15), £ is related to i and j by
k= (i—1)n—i(i+1)/2+5 (17)

The output ¢ is an (m-+n) dimensional vector defined by

o = 0;;—0%; fork=1,2,:,m

(18)
o,=E,—E} for k = m+1, «--,m+n

where £ is related to i and j by (17) for k=1, 2, --«,m. Eq.(7) describes the multi-
machine power system as a multivariable dynamical system with linear elements
in the forward path, and multiple, memory-less and coupled non-linear elements
in the feedback path, that is, a system in a form as shown in Fig. C. (Appendix B)

3. Stability Check of System

In this section, it is investigated with a generalized Popov criterion whether
the system described by (7) is stable or not stable (Appendix B). The transfer

matrix W(s) for the linear part of the system is written as follows:
W(s) = C’'(sI—4)™'B
[ T's(sI+M™' D)7 M T 0
- 0 A7YPe, +sPe,+se5t-¢,)

=|:W1(5) Y } (19)
0 Wys)
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where 4(s) is an nXn matrix defined by

A(s) = s 1+5r+s'rptsratr (20)

n=H,+H+H;+H),

72 = H\(H,+H;+H,o)+H,(H;+H\,) +H;H\+H;Hg

s = Hy(HH+H;H\+H\H,+HH,) +H H,H o+ H,HHg

1y = (HHH;+HH;He)H,, @1
and ¢,, ¢&,, &; and ¢, are n X n matrices defined by

H=a

& = a(H+H;+Hy)

&3 = a(HH;+HH\g+H\H,+H;Hg)— SH,H

&= (eH,H;,—SH,H)H,, (22)
For the system to be stable, there must exist matrices N and @ such that

Z(s) = (N+Qs)W(s) (23)

is positive real (Appendix B).
In this problem, N is chosen as follows:

The inequality in (B2) with this N is equivalent to the following inequalities:
Ju(0)o, =0 for all 6, &R and k=1,2, .-, m (25)

However, the above inequalities are satisfied not for all ¢,ER, but for ranges
of g,, i.e.,

Omin<0,<0(or g,), and o,(or0)<o,< omaxl (26)
where k

Omin = —7—(07;+08{;), 0,=107;—0};, Omax = z—(07;46%;)
and

0f; = sin"Y(E{E} sin 8¢;/E,E;)

As observed from (B10), F(o)’'No has an influence on V(x), so it is desirable

to make its influence zero by letting g—>oco. However, this selection of ¢ causes

a pole-zero cancellation between (N-+Qs) and W(s), because Wi(s) has a pole
at s=0. In order to avoid the pole-zero cancellation, we give ¢ a finite value
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in constructing a Lyapunov function, and once it is obtained, we let g—>oo.
. The function V(o) in (B4) is chosen as follows:

ACED | WACA

= 8 31 B cos 31, —cos 8,)—(0,—O1)ErE3simat] (@)

From (27), it is clear that V,(s) is positive not for all o, but for a range of o
about 6=0. Accordingly, the global stability of the system can not be guaran-
teed with this ¥;(s). However, it is possible to estimate the domain of attraction
by using the Lyapunov function obtained with this V,(c). One more thing
to be noted is that V,(c) can have negative values about ¢=0 if E;=E{ is not
satisfied for all E;, where i=1,2, --,n. This fact may have significant influence
on the stability of the system, but its influence is assumed to be negligible in
this paper. The partial derivatives of V(o) are given-as follows:

% — B,[EE, sin (0,40%,)—E3E’sin 8%, fork = 1,2, -, m
o7 | (28)
6_01 —-EB,, E;(cos 6¢;—cos ;) fork =m-+1, -, m+n
k J:Fl
that is,
VVI(O) = 'I.(m+vn)(m+l)F(.a) . oo o . (29)
Accprdingly, Q is given by
Q= Tstmrw ~ : (30)
Substltutmg (19), (24) and (30) into (23) gives the expression of Z(s) as follows:
Z(s) [(1/q+s) T'[s(sI+MD)]"M'T - 0 ] :
5) =
0 sd7Y (%, +s%e,+se5+€4)
Zy(s 5 - : - -
0 z (s) .

The conditions for Z(s) to be positive real are
1) Z(s) has elements which are analytic for Re y>0
%) Z*(s)=Z[s*) for Re 5>0,
3) Z'(s*)++Z(s) is positive semi-definite for Re s>0
Since Z(s) is'a direct sum’ of Zy(s) and Z,(s), they are investigated independently
of each other. - The first two .conditions elearly hold for both Z;(s) and Z,(s).
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For condition 3) to be satisfied, it is sufficient in this case to show that Z;(jw)4
Z{(— jw) is positive semi-definite for each scalor w, where i=1, 2. After some
manipulation, they are realized as follows:

Z,(jo)+Z{(—jo) = 2T’diag(m>7~

miw? 4 d?
£, 08+ + g0+ € o
o)+ ZH(~jo) = 2ot (LS
where
51 =&
Eo= —&rteri—e
§3 = sri—erstera—emn
= —&7 6T )

Both right hands in (32) are positive semi-definite if the following conditions are
satisfied : ' ‘ ‘

g>m;ld; fori=1,2,:,n" . (34)
and
5]:'203 52.‘20, 53,-20, 54,'20 for l = 1, 2, e n (35)

Under these conditions, Z,(s), Z,(s), and accordingly, Z(s) are positive real. Ac-
cording to the theorem in Appendix B, the system proves to be stable.

4. Solution of Matrix Equations

Since the system described by (7) is stable, there exists a Lyapﬁnov function

V(x) = x'Px+2V,(a) ' ©(36)
where P is a (6n—1) X (6n—1) positive definite symmetric matrix satisfying the
following matrix equations:

PA+A'P = —LL’ »

PB = CN'+A'CQ'—LW, ’ . (3

WiWw, = QC'B+4-B'CQ’ ‘ ‘
where L and W, are (6n—1)X (m+h) and (m-+n) X (m+n) matrices. Since
Z(s) is a direct sum of Z,(s) and Z,(s), P can be expressed as follows:

I ’ - C 38
‘[0 P«J | %)
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where P, and P, are (2n—1)x (2n—1) and 4nx4n matrices corresponding to
Z,(s) and Z,(s), respectively.
The transfer matrix W,(s) is rewritten as follows:
Wils) = Ci(sI—4,)7'B, : (39)

where

o o] #=lae] =13}
A1= Bl= Cl= (40)
0 —M™D MT 0

Since the relation C{B;=0 holds, (37) reduces to

P A+ AP, = —LL} (an
P.B, = G,N{+4/C,0}

P, and L, are partitioned as follows:

P, P L
P = [ n 1z:| L= { 1j (42)
Py Py L,

where Py, Py, Py, Py, L, and L, are (n—1)X{(n—1), (n—1)xn, nX (n—1),
nxn, (n—1)Xm and nXm matrices, respectively. Substituting (40) and (42)
into (41) gives

0= —L,L} (43)
P K'—P,M™D =0 (44)
PyK'+KP,—P,MD—DM"P,, = —L,L}, (45)
P,M™T = (1/9)G (46)
P,M'T=T (47)

Egs. (43)-(47) are solved after some manipulation [14].

KPK' = (1/9)D+pDUD
KPy, = (1)q)M+pDUM (48)
Py = M+uMUM

where p is a non-negative scalar, and U is an n Xz matrix with all elements equal
to 1. Substituting (48) into (45) gives

2(D—M]|q) +(u—0) (DUM-+MUD) >0 (49)

This inequality is satisfied if the following condition is satisfied:

22 & & (dym;—d;m;)* xS i'_"i__—l<0 50
@) Z"'l'j=.~+14(d,-—~m,-/q)(dj——m,-/q) g 'Z‘-"di—mi/q B &
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that is, #* must lie between the two roots of the quadratic equation, where u#*=
#—p. If the damping torques of generators are uniform, then u#* reduces to
©¥, where

by = —1/[‘2;..:. {m.d;|(d;—mi/g)}] (51)
The transfer matrix W,(s) is rewritten as follows: N _
Wy(s) = Cz(sI—4,)7'B, (52)
where
—H, 0 H, 0 a I
—H, —H, 0 —H, ‘ — 0
4,= ? ! ’ B,= 4 G=]_ (53)
0 H;, —-H, 0 0 0
0 Hy —H, —H, 0 0

Since Z,(s) is positive real, Z,(s)-+Z%(—s) is factorized as follows:

Zy(s)+25(—s) = Y3(—5)¥,(s) (54)
where '

Yy(s) = diag(\/ff_,;s(s—l—(t;)ig)—l— {a) (s—}—(;,,-)) (55)
and {;, {5; and {;; are determined by the following equations:

0%+ €507 6 = én'(")z-l- ¢ (@ 4-C3) (@0 4-¢3) (36)
Y,(s) can be represented as follows [18]:

Y,(s) = L,(sI—A4,)'B, (57)
Solving this equation with 4, and B, in (53) gives a 4n Xn matrix L,,

L, = (L, Liz, Lis, Li,)' (58)
where L,, L,,, L,; and L,, are nXn diagonal matrices:

L, = diag(l,;) Ly, = diag(ly,) (59)

Lyy = diag(ls,) Ly = diag(l,)
Elements l;;, ;, l;; and I; are determined by solving the following equation:
A"l" =T; for i = 1, 2, e, (60)

where 4, [; and 7; are 4x4 matrix and 4 dimensional vectors, respectively,
defined by
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g = a;
dip= —8
A3 = 0
iy = 0

Aim = @;(hythyi+hyg;)

Aim = —ahy;—Bi(hyit+hy+hyoi)

Aiyy = — Bikg;

Aiw = — Bihg;

Ay = ai(hu"fn+h7ihloi‘_|‘hmihu+h5ihsi)fﬂihzihsi
Ligp = — @i (hyithuo) — Bilhyhai+ hyshygi+hugchy,)
Aigg = ~—hyihg;— Bihe; (i)

Aize = —(hy;+Bibi) b

A = (aihyihy; — Biboihei) o

Aip = —(@ihy;+ Bihyi) hyihagi

Ay = —(aihs;+ Bihyi)hsityoi

A4 =0 fori =1,2,--,n

Ty = \/271.-((1;‘*'(%‘*'(3.'_7’1.')

Ty = \/ﬁ(cliczi‘i'czi(ai‘*"(aicu“Tz.')

Ty = \/Qf_“((uczu(si—rai)

Ty = V26,(—714) . fori =1,2, e

li = (llb lzi: lsi, lﬁ) for: = l: 2: PR

Since L, is related with P, as follows:

Pyd,+A3P, = —L,L5

P, can be obtained by solving (64) with L, in (58) as follows:

P33 P34 P35 P36

P,=

where Pj;(i, j=3, 4, 5, 6) is an nXn diagonal matrix defined by

P,; = diag(p;;) fori,j=3,4,56, k=1,2, «,n

Elements p;;, are determined by solving the following equation:

(61)

(62)

(63)

(64)

(65)

(66)
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Fipy =, fori=1,2,n (67)

where I';, p; and v; are 10X 10 matrix and 10 dimensional vectors, respectively,
‘defined by '

2h, 20, O 0 0 0 0 o0 0 0
0 h+hy —hs —hy by O 0 "0: 0 0
—h O hth, hy O kO 0 0 0
0 “h' O hthy, OF'Q  h .0 O O
P o 0 O 0‘( 2k, f2h6 f2ﬁs 0: T,O 0
0 —h O 0O O hth, hy —h —hg O
0 0. 0 0 h 0 kthg O —hy —h
0 0 =2, 0 0 0 0 2k 2k 0
0. 0 0 . —h 0 K 0. 0 Mdhy h
\ 0 0 0 0 0. 0 2 O 0 2k )¢
fori=1,2, -, n (68)
= (P3sis Dsai> D3si> D3si> Pasis Pasis Pasis Pssis Dssis I’w) -
, . fori=1,2,- (69)
and; .
y; = (lull"i: lliléi; lh'lsb llilu: lzilzi; lzilai: lzilm lsil.'h': Iailw lu’u) "
fori=1,2,-+,n (70)

Thus P, and .P;, and accordingly, P are obtained.

5. Lyapunov Function

Since P is obtained, we can get an expression of the Lyapunov function as

follows: ‘ :
V(%) = [0}, @', AE', AE}, AE., 4Ej)(Py P, 0 0. 0 0) o,
Py, P, 0 0 0 O @
0 0 Py Py Py Pyl 4E
0 0 Py Py Py Pg||4E,
|0 0 Py Py Py Pyl 4E,
0 0 Py Py Ps Pg\4E,

+2¥,(0) .
= 8P ;0,4+28/P;0+@'Pyro+2V,(0) +AE'P33AE+AE’P“AE

+AE!PGAE,+ AEPGAE ;+2(4E'P . AE ,+4E'PyAE,

+AE'PydE,+AE'P sAE,+ AE,P 4AE ;+ AE,PAE,)

(71)
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Now that the Lyapunov function is obtained, we let g—co because ¢ is introduced
only in order not to cause a pole-zero cancellation between (N+4-Qs) and W(s),
as mentioned before. Substituting (27) into (71), and expanding and rearranging
terms in (71), we obtain the following expression:

V() = (112 Fm) 3} 3 mim(w,—0,)?
+(u*—u,) (‘z:; mw;):4p{ 'z:; [4:(8,—8?) +miwi]}2
+2 Z:E Bj;[E;E;(cos 87;—cos 8;;) — (8,;;—0%,) E{E? sin 87;] -

+33 Uil Bi— B2+ pu(Ear— B+ s B— E2)?

+pesi(Eai—Eai)*+2p34(Ei—E?) (Eqi— Ez:)

+2p35i (Bi— B (B oi— E%) +2p36:(Es — E?) (E i — Edi)

+2pi5i(Eoi—Eei)(Ei—EL) +206i(Esi—Ei ) (B —Ed:)

255 (Ei—E6) (Egi—Edi)] (72)
where g, is equal to (—1/3Ym;). The first and the second terms in {72) represent
kinetic energy. If the damping torques are uniform, #* equals #,, and the kinetic
energy depends only on relative angular velocities. o in the third term is an
arbitrary non-negative scalar, but it is chosen as zero because the term narrows
and complicates any estimations of the transient stability regions. The fourth
term is potential energy which is stored in the system owing to some deviations of
the rotor angles from those at the stable equilibrium point. The potential energy
plays an important role in deﬁnihg the transient stability region of the system

[6], [13]. The fifth term is a new term which is related to field flux linkages
and excitation system variables.

If the damping torques are uniform or zero, (72) reduces to
V(x) =(1/2 ,Z; m;) ,‘?;‘ Z_} mm;(@;—w;)?

+37 Y B, [E,E, (cos 82;—cos 8,;) — (8;;—8%,) E2E? sin 8%,

+3 s (Ei—ED*+pus( Eai— B’
+b55i(Eoi—E2i)*+pesi(Egi— Edi)*?
+ 200 (B — E?) (Egi— Egi) +2p55: (E; —E3) (Ey— E2:)
+2p36i(Ei—E3)(E yi— Edi) 2045 (B oi— Eai ) (E s —ES:)
+2pu6i(Eoi—E2:)(Egsi—Edi) +2ps5i(Ei— E2i) (Egy—E3:)]

= Vi(@)+V, (9, E)+V/(E, E,, E,, E,) (73)
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where p is chosen as zero. V, and V, are kinetic energy and potential energy,

respectively. The time derivatives of Vi, V, and V, are written as follows:

% = —(l/g1 d;) 'g ,i:; didj(@;—w;)?

+3) 3Y Bij(BIE; sin 04— E,E sin ;) (,—@,) (74)
d—df—” = —31 3V By (B3] sin 03— E.E sin 8,7) (0,—0,)

+2 33 (dE;{d) 3} ByyE{cos 83—cos 0,,) (75)
‘% = —233 (E,jd) ,ZE B,E,(cos 8%—cos 8,)

_'.5;1 [lli(E-‘—E?) —I—lz;(E,,-—EZ,-) +l3i(Egi_E:i)
+Hi(Eyi—Edi) —/ 28 (o)) (76)

The first term of (74) is due to the damping torques of generators, and it is non-
positive. A part of the kinetic energy is dissipated by the damping torques. The
second term of (74) and the first term of (75) are of the same magnitude, and are
opposite signs of each other, which imply that there is an exchange of energy between
the kinetic and the potential energy. Hence, these terms do not contribute to
the damping rate of V. Similarly, the second term of (75) and the first term of
(76) are of the same magnitude, and are opposite signs of each other. There is
an exchange of energy between V, and ¥V, too. The second term of (76) is due
to field flux linkages and excitation system variables, and it is non-positive. As
a whole, ¥ dampens according to

Vo R d (0, —w;)?
W— (l/gdt)z_l:gl}dtdl( s 1)

— 2 (B —ED) oy (i B2+l (B —E2)
Hy(Eyi—Eg) —/ 28 fu(0)T? (77)

while ¥, and V,, V, and V; are interacting respectively.

6. Numerical Example

The transient stability of a 10-machine 39-bus system is investigafed. A
line diagram and generator parameters are provided in Fig. 3 and Table 1. As
is observed from Table 1, all generators are installed with automatic voltage re-
gulators and thyristor exciters, and their parameters are the same for all genera-
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Fig. 3. Configuration of a 10-machine system
‘ Table 1. Generator parameters
Unit H Xy l % ‘ g 4+ | Exciter & AVR

1 500.0 0.0200 0.0060 0.0190 7.00 K,=1.000
2 345 0.2106 0.0570 - 0.2050 4.79 K,=1.000
3 24.3 0.2900 0.0570 0.2800 6.70 K;=0.004
4 26.4 0.2950 0.0490 0.2920 5.66 T,=0.020
5 - 348 0.2540 0.0500 0.2410 7.30 T.=0.040
6 26.0 0.6700 0.1320 0.6200 5.40 T4=0.500
7 28.6 0.2620 0.0436 0.2580 5.69 T:=0.0

8 35.8 0.2495 0.0531 0.2370 5.70 E =70
9 30.3 0.2950 0.0697 0.2820 6.56 E_=0.0
10 42.0 0.1000 0.0310 0.0690 | 10.20

tors. The system is assumed to be disturbed by a 3-phase short-circuit, which
occurs at a terminal x of a transmission line x—y. The fault is cleared by opening

the line at both terminals after a certain lapse of time.

6.1 Time variations of generator variables

Fig. 4 shows time variations of generator variables for a case where a fault
11-12 is cleared at +=0.26 sec. Fig. 4(a) represents swing curves of generators,
which indicate that the system is stable for this fault. In this case, the No. 2
generator suffers large disturbances because the fault bus is near this generator.
Fig. 4(b) shows the time variations of terminal voltages. The terminal voltage of
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Fig. 4. Time variations of generator variables

the No. 2 generator falls to values smaller than 0.20 p.u. during the fault period.
After the clearance of the fault, the terminal voltage recovers its magnitude to
values of about 1.0 p.u., but a large voltage dip appears again because of an ex-
cursion of the rotor angle of the generator. Fig. 4(c) shows the variations of
excitation voltages. The excitation voltages vary rapidly according to the
variations of the terminal voltages. However, their values do not reach their
ceiling voltages because of the low gains of automatic voltage regulators. Fig. 4
(d) shows the variations of internal voltages. They decreases during the first
swing of generators. However, their extent is relatively small, compared with

cases, where automatic voltage regulators are not installed.

6.2 Stable equilibrium point

In order to apply Lyapunov’s direct method, a stable equilibrium point
must be calculated for a post-fault condition. If the damping torques of genera-
tors are zero, then the stable equilibrium point can be obtained by solving the

following equations:
(Pm—Pa)[my—(Ppi—P ) [m; =0
Eyyi—Eqi—(%4i—%3i)ig; = 0
Eai+KaiEdi_Kai(Vreﬁ_Vﬁ) =0
K,E;,—E,; =0
(KaiK oi| To) Egi— (Kgi| Ti) Ey— (1 T) Eg; = 0 fori=1,2,,n (78)

The above equations are solved by the Newton-Raphson method iteratively in
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Table 2. Equilibrium point (fault 11-12)

| ot | Pt contiton | ot contion
0 (rad) E (p.u) 0 (rad) E (p.u) d (rad) E (p.u)
1 0.0 1.014 0.0 1.014 0.0 1.010
2 0.387 0.983 0.514 0.968 0.571 0.925
3 0.258 0.991 0.263 0.989 0.282 0.979
4 0.276 1.064 0.280 1.063 0.302 1.054
5 0.273 1.079 0.278 1.076 0.299 1.069
6 0.396 1.149 0.401 1.146 0.425 1.140
7 0.249 0.997 0.254 0.996 0.276 0.987
8 0.277 1.004 0.280 1.003 0.297 0.996
9 0.280 1.016 0.283 1.016 0.299 1.009
10 0.093 1.057 0.104 1.056 0.110 1.049

this paper, and its details are provided in Appendix C.

Table 2 shows the equilibrium points for a fault 11-12. There are three cases,

i.e., a case of pre-fault condition, a case of post-fault condition where automatic

voltage regulators are installed in generators and a case of post-fault condition

where automatic voltage regulators are not installed. From this table, we can
extract the following features:

(a) Under post-fault conditions, the rotor angles are larger than those under
pre-fault conditions. Jts extent is large for generators around the fault,
i.e., the No. 2 generator in this case. Its rotor angle changes from 0.387 rad
to 0.514 rad, or from 0.387 rad to 0.571 rad.

(b) Under post-fault conditions, the magnitudes of internal voltages are smaller
than those under pre-fault condition. Its extent is large for generators
around the fault, i.e., the No. 2 generator in this case. Its internal voltage
changes from 0.983 p.u. to 0.968 p.u., or from 0.983 p.u. to 0.925 p.u.

(c) If automatic voltage regulators are installed, then an increase in rotor angles
and a decrease in magnitudes of internal voltages are suppressed when the
system state changes from a pre-fault condition to a post-fault condition.

The feature (c) is characteristic to systems where automatic voltage regulators

are installed. Tt is clear that this feature leads to an improvement of the transient

stability of systems.

6.3 Stability condition

What values of the automatic voltage regulator gain may be allowed? This
section is addressed to this problem. According to a generalized Popov criterion,
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(34) and (35) must be satisfied for the system to be stable. The inequalities in

(35) are equivalent to the following inequalities:

$i=a;20
Eoi = 1Ky +7,, 20
Eai = 13, K2+ 74K iy + 95,20
£ = 16:K3i + 70K 5i+76;=>0
where
Ty = Bihyhe;—20;hihy,
7y = a;(hl; -3 +Rio:)
N3 = (;h5shg;— Bihoihe;)hi;hg;
N4 = ;[2Rsihg;(hyihyi+hoihigit+hagihas) — hoihi3ihe; (hait+hai)]
+ Bt (Blos — hyihyy—hashy; — hyihy ) by
s = a; (iR +hEihSoi +hioihds)
Nes = —(@;hh; + B by hgihaiPog:
7 = —[@;i(hythy)Bas + B (hyihi ki i) Vogiheihos
Na; = &;(hyhyihig)? fori=1,2,-n
and
R = hylKg; = (1] Thoi) (1 —4: By;)
g = hsil Koi = 'l/T,,-
Bl = BilK, = xa:|T,;  fori=1,2,-,n

The inequalities (79-a) and (79-b) hold for the usual generator parameters.

(79-c), K,; has to stay in the following interval:

€31 min < K; < &3 max
where
Coimin == — (0ai T3~ 55 Tog Thoi) Toit (045 Tai+55: Thot) Thi
. x3: K ;K ; T4 TS
(v —%5:) (Tai+ T2+ T3) Thoi cos ¢,
K[54 T3 —55: Tp; Thoi) Tyt (345 Ty 4 %5: Thoi) T

631' max —

From (79-d), K,; has to stay in the following interval, too;

641' min S K,;< 64{ max

ai —
where

g, o FailatXai Tooit 24T
Himin %4 K 4Ky Ty

(79-a)
(79-b)
(79-c)
(79-d)

(80-2)

(80-b)

From

(81)

(82-a)

(82-b)

(83)

(84-a)
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E o == (%ai—%2i) Tdoi cos ¢; (84-b)
K,i(%gi Toi-+-x0: Thoi +x4T ;)

It is clear from (82-a) and (84-a) that &y i, and &4 py, are both negative, and
accordingly, that the left hand inequalities in (81) and (83) are satisfied if K,;
has a positive value. On the other hand, &; ., and &,..x are both positive.
They are proportional to cos ¢;, and are inversely proportional to K,;. Fig.5 shows

B

— %4

e N L g

,/(4) (1) ¢;=0.0 rad

S (2) ¢;=04 rad
S (3) $; =08 rad
£ (4) &= 1.2 rad
ol

a

a

D

toea Lol [ SR
(22 | 0 | 2

Iog|°Tui

Fig. 5. Variations of £si max and £4i max

variations of &3;max and &, .., with T, It is observed from the figure that
€3imax is greater than &, ... so the maximum value of K,; is determined by
€iimaxs Eimax bDecomes larger as T,; approaches zero. In order to simplify
the expression of &, we let T,;, T,,—0, then (84-b) reduces to

Eiimax = Kyimax COS &; (85) Table 3. Value of K,imax
where K,; n.x is defined by Unit Kimax
1 2.333
Xgi—xhs

Koimax = =2 (86) 2 2,605

“ 3 4.088

and K,; is assumed to be 1.0. K, .. is the 4 5.020
maximum value of K,; which is allowed for the ; o
system to be stable. It is determined only by 7 5.009
x5; and x};. Table 3 shows the values of 8 3.699
K,; max for all generators in the system. They 9 3.232
are in a range of 2.0~6.0. These values are 10 2.226
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somewhat smaller than the practically used values.

Why is K,; suppressed to such low values by the stability criterion? It will be
useful to answer this question. First of all, let T,;, T, and T, be zero, then
the variations of the terminal voltages are directly transmitted to the excitation

voltages, and the internal voltages vary according to the following equations:

% — —a*(E,—E2)—p* § By, (cos 83;—cos 3,;) (87)
ik fori=1,2,--,n

where

af = (1) Thoi)[1 — (x4i—24:) Bii+ (1 +x4:B;; ) K K ;[ cos ;]
B = (1 Thoi) (%45—xki —x5: KoiK yfc0s 8,) (88)

Eq. (87) is formally equivalent to that of a system where automatic voltage re-
gulators are not installed. (See eq. (10) in [13].) From the result of [13], g¥
must be non-negative for the system to be stable. If K,; is 0, then g¥ equals §;
in [13], and it is positive. According to an increase in the magnitude of K,
B¥ takes smaller values, and at last, it comes to take negative values. The value
B¥ is zero when K, is K¥;, where

K¥% = 'f‘ii;i—x‘;i cos ¢, (89)
This equation is equivalent to (85), that is, (85) shows the value where §¥ becomes
zero. In other words, the system is stable if K,; is zero, but its stability margin
decreases with an increase in the magnitude of K,;, and the margin becomes zero
when K,; reaches K¥,. In any event, the above limitation of K,; is not desirable
from the viewpoint of applying Lyapunov’s direct method to practical power
system transient stability analyses, so it should be removed. This problem is

still open.

6.4 Calculation of P, matrix

Matrix P,, a part of the P matrix, is obtained by solving (67). Table 4 shows
P, matrices for all generators in the system for a fault 11-12. It can be observed
from the table that the element Py, takes greater values than the other elements
by multipliers 102~~10%. Since the deviations of E,, E,; and E,; are the same
degree, and since the deviation of E,; is much smaller than the other variables,
V,, a component of V, is determined mainly by the deviation of E;. The above
facts are due to the same reason as given in the previous section. When T,; and

T,; are small, variations of internal voltages can be approximately expressed by



Transient Stability Analysis of Multimachine Power System with Automatic Voltage Regulators ~ 281
via Lyapunov’s Divect Method
Table 4. Ps-matrix
Unit P, Matrix
268.90 0.1679 0.4214 —0.4994
1 0.1679 0.0224 0.0448 —0.0788
04214 0.0448 0.1238 —0.1258
—0.4994 —0.0788 —0.1258 2.0020
32.020 0.0319 0.0798 —0.0989
2 0.0319 0.0043 0.0087 —0.0155
0.0798 0.0087 0.0238 ~0.0248
—0.0989 —0.0155 —0.0248 0.3928
23.520 0.0099 0.0253 —0.0240
3 0.0099 0.0019 0.0037 —0.0060
0.0253 0.0037 0.0106 —0.0093
—0.0240 —0.0060 —0.0093 0.1509
21.020 0.0086 0.0221 —0.0229
4 0.0086 0.0018 0.0037 —0.0057
0.0221 0.0037 . 0.0106 —0.0086
—0.0229 —0.0057 —0.0086 0.1417
25.340 0.0082 0.0211 —0.0211
5 0.0082 0.0016 0.0032 —0.0051
0.0211 0.0032 0.0092 —0.0078
—0.0211 —0.0051 —0.0078 0.1270
11.170 0.0048 0.0124 —0.0131
6 0. 0.0009 0.0019 —0.0030
0.0124 0.0019 0.0053 —0.0046
—0.0131 —0.0030 —0.0046 0.0742
25.300 0.0104 0.0269 —0.0247
7 0.0104 0.0022 0.0044 —0.0068
0.0269 0.0044 0.0127 —0.0105
—0.0247 ~0.0068 —0.0105 0.1716
26.600 0.0126 0.0322 —0.0324
8 0.0126 0.0023 0.0046 —0.0074
0.0322 0.0046 0.0130 —0.0116
—0.0324 —0.0074 —0.0116 0.1868
23.520 0.0104 0.0264 —0.0285
9 0.0104 0.0017 0.0035 —0.0057
0.0264 0.0035 0.0098 —0.0090
—0.0285 —0.0057 —0.0090 0.1448
67.860 0.0250 0.0625 —0.0773
10 0.0250 0.0032 0.0063 —0.0113
0.0625 0.0063 0.0174 —0.0180
—0.0773 —0.0113 —0.0180 0.2871
(87), and V, is approximated as follows:
”
v, =31 (@}/p) E—E)? (90)

where a¥ and B¥ are defined by (88). Table 5 shows the values of Py and
(a¥/B¥). It is observed from the table that there is a good agreement between

them for all generators.
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Table 5. Py and (af[8F)

Unit Pyy; (a¥[B¥)
1 268.80 267.41
2 32.02 31.74
3 23.52 23.46
4 21.02 20.98
5 25.34 25.29
6 11.17 11.35
7 25.30 25.24
8 26.61 26.51
9 23.52 23.45

10 67.86 67.63

6.5 Time variations of Lyapunov function

Fig. 6 shows the time variations of ¥ and its components for a sustained fault
11-12. Three cases are shown: one where the field flux linkages of genarators
are constant, one where the variations of the field flux linkages are taken into
account, but automatic voltage regulators are not installed in generators, and
one where the variations of the field flux linkages are taken into account, and

automatic voltage regulators are installed in generators. The kinetic energy V,

constant flux

—--— aqutomatic voltage regulator
—-— variable flux
40
30
S
8
>
20
10
0

0.5
Time (sec)

Fig. 6. Time variations of V and its components: sustained fault
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increases monotonously, and it takes almost the same values each time in all these
cases. These facts imply that all generators receive similar accelerations in all cases.
On the other hand, the potential energy takes different values each time for these
cases. The values of ¥, become smaller in the case where the field flux linkages
are constant, in the case where automatic voltage regulators are installed and in
the case where only the variations of the field flux linkages are taken into account.
Since the new term takes small values in all cases, the differences of ¥V among
these cases are mainly due to those of V,. In the figure, the critical values of V
are also shown. The method of determining them is described in [6] and [13]
in detail. The critical value becomes smaller in the same order of cases as for
V,. The time when V reaches the critical value is adopted as an estimation value
of the critical fault clearing time. In these cases, the estimation values are 0.30,
0.26 and 0.25 sec. These values are very close to the results by simulations.
Fig. 7 shows the time variations of ¥ and its components for a fault 11-12
which is cleared at (=0.26 sec. After the fault clearance, the kinetic energy

V (p.u)

10

o

Time (sec)

Fig. 7. Time variations of V and its components: critical fault

decreases and the potential energy increases, and they reach their minimum and
maximum values at almost the same times. Afterwards, they oscillate with their
amplitudes decreasing with time, The new term V, remains at a low level. Its
variation corresponds to that of the internal voltage of the No. 2 generator. The
Lyapunov function is nearly constant during the first swing of generators, and
it begins to decrease with the backswing of the No. 2 generator. Afterwards, it
decreases monotonously. In the figure, transfer conductances are counted in by
appropriately modifying the Lyapunov function, the details of which are provided
in [7], {13].
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6.6 Estimation results

In order to evaluate Lyapunov’s direct method, a reasonably comprehensive
series of stability analyses are performed by simulations, and the results are com-
pared with those obtained by Lyapunov’s direct method. Critical fault clearing
times are used as a measure of the transient stability.

Table 6 shows critical fault clearing times estimated by Lyapunov’s direct
method along with those obtained by simulations. A range of faults which occurs
at various buses in the system are tested. As is observed from the table, there
is a good agreement between the results obtained by the direct method and the
simulations for all faults. Differences between them are within 0.02 sec. for all
faults. It is concluded from these results that the direct method yields results of
practical significance.

Table 7 shows critical fault clearing times for three cases, i.e., one where the

field flux linkages of generators are constant, one where the variations of the field

Table 6. Estimation results of critical clearing time

Fault Ver Tes T.,
11-12 9.12 0.26 0.26
15-14 31.37 0.37 0.38
17-18 32.57 0.44 0.43
18-17 39.23 0.47 0.47
24-16 42.66 0.39 0.39
30-27 32.60 0.46 0.45
34-29 35.93 0.45 0.45
38-15 38.56 0.51 0.49

T,s: results by direct method
T,,: results by simulations
Ver: critical value of V

Table 7. Ciritical clearing times for three cases

Fault Variable flux rzglljz%gr Constant flux
11-12 0.25 0.26 0.30
15-14 0.38 0.38 0.41
17-18 0.42 0.43 0.47
18-17 0.46 0.47 0.50
24-16 0.37 0.39 ) 0.45
30-27 0.44 0.45 0.47
34-29 0.44 0.45 0.46
38-15 0.44 0.49 0.65
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flux linkages are taken into account, but automatic voltage regulators are not
installed in generators, and one where the variations of the field flux linkages are
taken into account, and automatic voltage regulators installed in generators.
Comparing the critical clearing times, we can extract the following features:
(a) Critical clearing times take the smallest values for all faults when only the
variations of field flux linkages are taken into account.
(b) Ciritical clearing times take the largest values for all faults when the field flux
linkages of generators are constant,
(¢) Ciritical clearing times take values between those of the foregoing two cases.
From these results, two conclusions are drawn. One conclusion is that the tran-
sient stability of the system is improved by using automatic voltage regulators.
The other is that the improvement of the transient stability is not so large that the
stability surpasses that of the system where the field flux linkages are constant.
This is due to the fact that high automatic voltage regulator gains are not allowed
according to the Popov criterion. Table 8 shows the critical values of the Lya-
punov functions for the three cases. From this table, we can also extract the above

mentioned two conclusions.

Table 8. Ciritical values of V for three cases

Fault Variable flux rzglll}‘;%gr Constant flux
11-12 7.23 9.12 14.75
15-14 28.85 31.37 47.11
17-18 28.77 32.57 50.17
18-17 36.17 39.23 58.61
24-16 39.71 42.66 66.41
30-27 29.49 32.60 45.89
34-29 33.00 35.93 49.17
38-15 33.14 38.56 53.06

7. Conclusions

In this paper, a Lur’e type Lyapunov function is constructed in a systematic
way for a system where automatic voltage regulators are installed in generators.
The main features of the Lyapunov function are as follows:

(a) It consists of three terms: potential energy V,, kientic energy V, and a new
term V, which is related to internal voltages, automatic voltage regulator
and exciter variables.

(b) The potential energy includes internal voltages as its variable, so it varies not

_ only with rotor angles but also with internal voltages.
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(c) The new term is in a quadratic form of internal voltages and other variables.
Its coefficient matrix is calculated separately for each generator. This
feature is desirable from a viewpoint of calculation for systems which consist
of many generators.

(d) When excitation systems have fast time responses, ¥, can be represented by
that for a system where only field flux linkages variations are taken into
account with changes of coefficients.

In order to investigate the applicability of Lyapunov’s direct method to power

system stability analyses, a 10-machine power system was studied. From the

results, we can extract the following features:

(e) The critical fault clearing times estimated by Lyapunov’s direct method
are very close to those obtained by simulations.

(f) The transient stability of the system is improved by using automatic voltage
regulators.

(g) However, the improvement in the transient stability is small because the
automatic voltage regulator gains must be low according to the generalized
Popov stability criterion.

The main contribution of this paper is a systematic construction of a Lyapunov
function for a multi-machine power system where automatic voltage regulators
and thyristor exciters represented by third order transfer functions are installed
in generators. However, the gains of the automatic voltage regulators must be
low compared with the practically used values according to the Popov criterion.
Enlargement of the gains are indispensable for Lyapunov’s direct method to be
applied to practical systems. This problem is difficult, but it must be resolved.
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A.  Approximation of Terminal Voltage

In this section, an approximate expression of a terminal voltage is derived.
The terminal voltage of the ith generator is given as follows:

Vu = Ei_jxn;iii .
= B—jxly N YE;,  fori=1,2, -, (A1)
J=1

.

From (Al), we can extract the feature that ¥}, is in a circle with its center at E;
and with a radius r; as is shown in Fig. A, where

re = x4, 21; Y,E; fori=1,2,-,n ‘ (A2)
p-

If the radius 7; is small, then the magnitude of the terminal voltage V,; can be

approximately expressed by projecting V,; onto E,- as follows:

V== Eitxli 3 YiE cos (0;+6,;) (43)
= ‘
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Fig. A. Approximation of terminal voltages
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Fig. B. Variation of terminal voltage with ¥;

Fig. B shows variations of V,; and its approximation by (A3) with ;, where E;
is assumed to be 1.0 p.u. and r; is 0.2 p.u. The maximum approximation error
is (r}/2). In the case where 7; equals 0.2 p.u., the maximum error is 0.02, and
its ratio to r; is 0.10. 'These values are adequately small. However, the maximum

error is 0.125 when r; equals 0.5 p.u., and its ratio to 7; is 0.25. In this case, the
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accuracy of the approximation is somewhat low. From the above considerations,
it is concluded that V; is approximated by using (A3) with adequate accuracy
when 7; is small. However, its approximation accuracy becomes lower with an

increase of r;.

B. Stability Criterion

The non-linear system considered here is that whose form is shown in Fig. C.
The Lyapunov stability is considered, so the inputs are not indicated. The system
is assumed to satisfy the following conditions:

—_—_> W (s) —

Flo) K——— |

Fig. C. Non-linear system model

1) The matrix W(s) is an mXm matrix of stable rational transfer functions,

assumed to be such that
W (o) =0 (BI)

2) The non-linearity F (o) satisfies the following conditions:
(i) F(o) is continuous and maps R” into R™,

(i) For a constant real matrix N,

F(6)'Ne>0 for all s R™ , (B2)
and

F()=0 ' (B3)
(iii) There is a function V,&C{ mapping R™ into R such that

Vi(c) >0 for all s R™ : (B4)
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and
7,(0) =0 (B5)

and for a constant real matrix Q

PVi(0) = Q'F(s)  for all sER" (B6)
The stability criterion for this system is given as follows:
[Theorem]
If there exist real matrices N and Q such that
Z(s) = (N+Qs)W(s) (B7)

is positive real, then the system shown in Fig. C is stable, where (N-+-Qs) does not
cause pole-zero cancellations with W (s).
If a system proves to be stable according to the theorem, then there exists a
Lyapunov function as follows:
V(x) = x’Px+2V,(0) (B8)
where x is the state vector of the system, and P is a positive definite and symmetric

matrix which satisfies the following equations:
PA+A'P = —LL'
PB = CN'+A4'CQ'—LW, (B9)
WiWw, = QC'B+B'CQ’

where (4, B, C) is regarded as the minimal realization of W (s). The time deriva-

tive of V is given as follows:
V(x) = —[x'L—F(o)'W}] [L'x— W,F(0)]—2F(0)'No (B10)

As is observed from (B10), V() is non-positive.

C. Calculation of Equilibrium Point

In applying Lyapunov’s direct method to transient stability analyses, it is
necessary to calculate the stable equilibrium point of the system in a post-fault

operating state. The equilibrium point is obtained by solving the following

equations:
&1i = (Pm—Pa) M — (Putiap—Peutizn) [misp = 0
fori=1,2,,n—1 (Cl-a)
8o = Efdi_Ec;i»_(xdi_‘xéi)idi =0 (C1-b)

85 = Eyi+ KB yi—Koyi(Vypsi—Vi) = 0 (Clc)
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&= K,E;;—E,; =0 (C1-d)
8si = (KaiKal TW)Eyi— (Kuys| Ti)Ei— (1 Ty ) Eg; = 0 ,
fori=1,2,,n (Cl-e)

where the damping torques of the generators are neglected. From (Cl-c), (Cl-d)
and (Cl-e), we get the following equations:

E, = Kai(Vufi— Vi) (Cl-c)’

E,; = KuK,(Vyesi— Vi) (C1-d)’

E;=0 (Cl-e)’
and accordingly,

&2 = [E}dl"*‘KaiKei(ani— Vi)l —Egi — (x4i—%4i)ig = 0 (Cl-b)’

Consequently, the stable equilibrium point can be obtained if (Cl-a) and (Cl-b)’

are solved. In the following part, we derive the necessary relations to solve these
equations.

Voltages and currents of generators are related by
I = 3 YiEu;  fori=1,2,n (C2)

where ¥’ is the admittance matrix which relates I with l'i‘q,, behind the g-axis

reactance ¥,. Since E,; is parallel with the q-axis of the ith machine, I{ in the
ith machine frame is given by

It = Lei2-8)

= ,2'=1 Y{;Eqij/m—(0:;+0;;) (C3)
Accordingly, the d- and g-axis components of the ith machine are given as follows:
lgi = — ?;1 Y{;E aicos (8;;+0;;) (Cd-a)

iqi = g Y,’iEqdeOS (6ij+0lj) (C4'b)

Since E 4, is defined as
Eyi = Efi+ (% —x0:)ig (C5)
we obtain the following equations by substituting (C5) into (C4):

diy = f, (C6-a)
iy = BistH, (C6-b)

where 4, B are nXn matrices, and f;, f, are n dimensional vectors defined by
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Aij = Yij(xgj—xi;)cos(8;;+0;;)  (j=i) (C7-a)
A“ = Y,,, (xq,-—xé,-) COSs 0“‘{—1 (C7'b)
B;j= Y{;(x,;—%a;)sin (8;;4-6,) (C7-c)
Ju=— P YEiE};cos(0,+6,) (C7-d)
Jo= 2 Y{;E{;sin (8;;+6,;) (C7-e)

Currents i; and i, are obtained by solving (C6). The terminal voltage of the ith
generator is given by

Vi = Eqdi_jxqif i (C8)
and the d- and the g-axis components of the voltage are given by

Vg = Xyt (C8-a)

qitqi

vy = Efi—x}iiy (C8-b)
Hence the magnitude of the terminal voltage is given by
Vi = (05 +07:)"* (C9)
The active power of the ith generator is given by
P, = E i,
= [Ef +(xqi"x5i)idi]iqi (C10)

Now all necessary equations are obtained, so we linearize them in the follow-
ing part.
Eq.(C6) is linearized as follows:

(dd)iy+A(4is) = 4, (Cl1-a)
— (4B)i,+B(4i))+4f, (C11-b)

where
(d4)i; = §,46, (Cl12-a)
(4B)iy = S,408, (C12-b)
A f; = 8;46,— T 4E} (Cl2-c)
4f, = 8,48,— T,AF; (Cl12-d)

and 8y, S,, S; and S, are nX (n—1) matrices, and T;, T, are # X n matrices defined
as follows:
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Si-n = — ?_,:1 Yie(xge—xar)sin (8;404)i4 (J=1)
hi
Suti-p = Yi;(#e;—4;)sin (8:;4045)ia; (1)
Saitj-p = :.2=1 Yie(xp—xir) cos (0s+0)ias (j=1)
wEi
Spitjn = — Yl ;—xb;)cos (8;;4+6,))is;  (i=i)
S3i(j-p = .2=1 YiEQesin (8;,+0) (j=1)
bk
Sagj-p = —Yi;Eq;sin(8;;+6;;) (F=19)
Seitj-p = ,,2:1 Y{Ejycos (8;,+0.) (=19
ki
S4i(j—1) = —Y/[;E{;cos (6,~j+0,.j) (1)
for : = l, 2, ."’n? j=2, 3’ CLLNS )
and
Ty;; = Yijcos(8;;+6,))
Ty; = Yijsin (8;;+6;))
for: = l, 2, oo, n, J [ 2, 3’ e n

By substituting (C12) into (C11), we get

i, = U,48,—U,AE]
4i, = Ud8,— U AE}

where
Uy = 47(8—5)
U, = 47T,
U = §;+S,+BU,
U,=T,—BU,

Eq. (C9) is linearized as follows:
Aoy, = x4y
dv,; = AE; —xj:diy;
4V,= (Udidvdi'l"vqidvqi) Vii
By substituting (C14) and (Cl6-a,b) into (Cl6-c), we get
4V, = Ugdé,+ U AE}

where

(C13-a)

(C13-b)
(C13-c)

(C13-d)
(C13-¢)

(C13-f)
(C13-g)

(C13-h)

(C13-i)
(C134)

(Cl4-a)
(C14-b)

(Cl5-a)
(C15-b)
(Cl15-c)
(C15-d)

(Cl6-a)
(C16-b)
(C16-c)

(C17)
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Us = diag (x,,04;/V;;) Us—diag (x4:0,:/ Vi) U, . (Cl8-a)
Us = diag (x,;0,/Vyi) U +-diag (x3:0,:/ Vi) Up+-diag (v, Vi) (C18-b)
Eq.(C10) is linearized as follows: ‘
AP, = [AE}; +(x ;i —x0:) dig)i i+ [Efs + (x4 —%4:)14:] 41y (C19)
fori =1,2,+,n
From this equation, we get
AP, = U,48,+UGdE! (C20)
where :
U, = diag[(x,;i—x2:)i,1U,+diag [Ef; + (%, —%4:)i4] U3 ‘ (C21-a)
Us = diag (i,;) —diag [(x,; —4:)i,;,1U,+diag [Ef; 4+ (x4 —x4i)14:) U, (C21-b)

Eq. (Cl) is linearized as follows:

4g, = (9¢,/99,)46,+(9g,/0E]) 4E; (C22-a)

Ag, = (8g,/05,)48,+(8g,|0E7)4E; (C22-b)
where

9g,/08, = —K'M U, (C23-a)

8g,/0E} = —K'M U, (C23-b)

0g,/00, = —diag (x;—x5;)U,—diag (K,;K.;) Us (C23-c)

0g,/0E; = —I+diag (x;;—x};)U,—diag (K,;K,;) Us (C23-d)

Now that (C22) is obtained, it is easy to solve (Cl) iteratively by the well-known
Newton-Raphson method.

The value of 8, and E at the stable equilibrium point can be obtained by
iterating the following equation:

I:ar] — [@J _[agl/aar agl/aE;:’_lligl:l (024)
Eilesn  LEilw 10800, 08g,[0E] |l g lw

where the subscript ““(i)” denotes the iteration number. The initial values of

0, and E} are chosen as follows:

Br = 0(»—1)1

C25
E; = lnl ( )

where 0(,_p; and 1,, are (n—1) and n dimensional vectors with all the elements
equal to zero and unity, respectively. A sufficiently accurate solution of the stable

equilibrium point can be obtained in 4 or 5 iterations.





