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Summary 

As a preparatory study of ablation cooling or transpiration of combustible gases into 
a boundary layer, a simple theory has been developed for the calculation of skin­
friction, heat transfer and mass transfer coefficients of a flat plate turbulent boundary 
layer transpired with foreign gas. For this purpose, the theory previously developed 
by the author has been extended. The extension was made in two points, namely 
that the assumption on the Prandtl and Schmidt number with their values being 
unity was removed, and that a compres~ibility of fluid was successfully taken into 
account. The extended theory is also similar to those by Rubesin and Pappas, and 
by Denison. 

However, an improvement has been made in that any number of chemical species 
is allowed to compose the fluid. This is very neccessary in order to apply the theory 
to the problems mentioned above. The results abtained are in fairly good agreement 
with the available experimental results. Also, the computational time is believed to be 
much shorter than that needed in similar numerical colculations by Landis and Mills. 

1. Introduction 

153 

Combustible gas transpiration into a boundary layer, or ablation cooling, is a fami­

liar technique for the protection of a re-entry space vehicle from kinetic heating. 

This ty.pe of boundary layer may be found in other fields of technology. For a pre­

paratory study of the boundary layer, a flat plate, non-isothermal turbulent boundary 

layer with foreign gas transpiration, is dealt with in this article. 

Landis and Mills [ l] carried out a numerical computation of a compressible boun­

dary layer with fore!gn gas transpiration, and obtained results for skin-friction and 

the heat and mass transfer coefficients. A numerical approach is believed to be more 
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useful in the future. In the present situation, however, an analytical approach still 

has usefulness. It is free from any numerical instability and can save the computation 

time and money. 

In recent years, Rubesin and Pappas [2] proposed an analytical theory to calculate 

surface skin friction, and the heat and mass transfer coefficients in the turbulent 

boundary layer with foreign gas transpiration. In their theory, the fluid was assumed 

to be composed of only two chemical species. Therefore, it cannot be applied to a 

case with combustion, or even with mixed gas transpiration. Denison [3] has modified 

their theory, and treated the case of carbon ablation in a high speed flow. In his 

theory, however, an empirical formula was introduced for the fluid density profile, so 

that it cannot be applied to other problems. Economos [ 4] developed an integral 

method with transformed coordinates, which is effective to reduce the governing 

equations formally into those for an incompressible flow. The method was applied 

by the present author to a case with combustion, but the results obtained were 

in poor agreement with the experiments [5]. 

In the authors previous report [6], a theory going along with those of Rubesin 

and Pappas and of Denison was developed allowing any number of chemical species 

in the fluid. However, the Prandtl and Schmidt numbers were assumed to be unity, 

and the heat and mass transfer could not be treated. The present analysis is an 

extension of the previous study, and the above assumption for the Prandtl and Sch­

midt numbers is removed. Additionally, an extension is made in the present study so 

as to deal with a supersonic flow situation, which could not be treated in the previous 

work either. 

2. Outlines of the method 

2.1 Basic equations and thin film theory 

The continuity equation and the governing equations for momentum. heat and the 

mass fraction of chemical species i are given by the following equations: 

d -· d -
7x(pu) +dy(pv) =0, 

- da - da dt 
pu7x+pv----,[y=dy 

~- dh - dh _ dq 
P u7x + pvay - dy 
- dw; - dw- d'J,-: 
pu-+pv--•=----' 

dx dy dy 

( I ) 

( 2) 

( 3) 

( 4) 

where u and v are the streamwise and normal velocity components respctively, x and 

Y the streamwise and normal coordinates, h the sensible total enthalpy. w; the mass 
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fraction of species i, p the fluid density, t' the shear stress, q the heat flux, ]; the 

mass flux of the species i, and the superscript (-) denotes the averaged value. In 
the following, only the averaged quantities are considered so that the superscript (-) 

is dropped out for simplicity. 

The thin film theory ignores the first term on the left side of each governing 

equation, and approximates (pv) on the left by (pv) w• the mass blowing rate at the 

wall. Making use of the theory, Eqs. (2) through ( 4) turn out to be simple forms. 

They are: 

where 

i-=t".(l+Bq,), 

-q= p,U,(fi ... d-li .. ) St(l +BH)' 

- J, = p, U, (w;,-w;,.) St .. ( 1 + BW1), 

B= (pv),. __g__ 
p,U, Cf' 

fl= Ii-Ii.. Cf 
h,..4-h 2St' 

W- w1 -w;.,, Cf 
,- w-1,w;,. 2St., · 

( 5) 

(6) 

( 7) 

( 8) 

( 9) 

ef> in the above equation is the normalized veocity ( u/ U.), the subscript e denotes the 

main stream condition, o the boundary layer thickness, Cf the skin friction coefficient, 

St the Stanton number for heat transfer, St., the same for mass transfer. The sub­

scripts w and ad specify the wall and adiabatic conditions, and the superscript means 

the sensible total enthalpy, given by the total enthalpy relative to the reference state 

enthalpy of the mixture. 

2.2 The expressions for -r-,q and Ji 
In the viscous sublayer, the expressions for t", q and ] 1 can be given as follows: 

t'= uU, !!:i_ 
o drj' 

(11) 

q=-~[ fi ... d-/i., dfJ +(Pr-l) U: dq,
2
], 

Pr o dr; 2 dr; 
(12) 

(13) 

where w;., has been assumed to be small compared to unity, and the Soret and Dufour 

effects have been neglected. r; is the normalized distance from the wall (y/o), µ the 

viscosity of the fluid, and Pr and Sc; the Prandtl and Schmidt numbers. 
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Accepting Prandl's mixing length hypothesis and assuming that the Prandtl and 

Schmidt turbulent numbers are respectively unity, the counterparts of the above 

expressions in the fully turbulent region of the boundary layer can be written as 

follows: 

r=prU!vlfl ~:. 

q= -prU. (li .. od-li .. )ifl*I !: 
Ji= -prU.(w,.-w,,.) if !ti !:1 

where " is the Karman constant. 

2.3 The formal solutions for the profiles of <p, ii and W1• 

(14) 

(15) 

(16) 

Equating Eqs. (5) and (11) and integrating once with respect to 7), the following 

profile available in the viscous sublayer for </> is as follows: 

1 [ Cf c• d7J ] </>=-exp B-'--Re,J - -1 
B 2 o 11, 

(17) 

where p.= 11,/ u, and, 

On the other hand, in the turbulent region, the integration of an equation result­

ing from the combination of Eqs. (5) and (14) gives formally the following profile for 

<f>: 

7J=7J,exp[a., (C-C.) ], (18) 

where (C-C,) is the following function of</> 

(19) 

and p the normalized density of the fluid (pl p.), the subscript s denotes the edge of 

the viscous sublayer, and a,. the parameter relating to Cf as follows: 

Eq. ( 18) is practically available to calculate the </> profile only after the integration 

(19) is performed. This will be performed later. 

To solve the profiles of H and W,, the distributions of Pr and Sc, must be known 
• Here it was considered to replace them with their representative values Pr, and Scf, 
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and to introduce the following representative values: 

r+• BPr(f)_d<jJ 
lr= Jo l+B<jJ 

ln(l +B<jJ,) 

r+• BSc;(<p) d<jJ 
Jo l+B<jJ 

ln(l +Btj>,) 

(20) 

(21) 

In the case of subsonic flow, these values fit exactly for the purpose. Next it is assu­
• 

med that Pr and Sc; distribute linearly for <jJ. Then, the above expressions for Pr 

and Scf reduce to the following simpler forms: 

• Pr,-Pr,.+(Pr,. Pr,-;!,r•)tn (l+B<jJ,) 
Pr =------~~~=--~~------

ln(l+Btj>,) 

Scf= Sc1,-Sc;,.+(Sc1.- Sc;,;/c;,. )tn (l+B<jJ,) 

ln(l+B<jJ,) 

(22) 

(23) 

These expressions are used in this study not only for subsonic flow but also in a 

superson c flow case. The expressions do not exactly fit the supersonic case, but the 

error caused by this may not exceed so much the one caused by the assumption of 

the linear dependencies of Pr and Sc; on tf>. In a case without transpiration, incide­

ntally, the expressions (22) and (23) reduce to the follouing very simple forms: 

• I Pr =2 (Pr,. +Pr,), (24) 

(25) 

From Eqs. (5) (6), (11) and (12), the profile of Hin the sublayer can be expressed 
• in terms of Pr introduced above. That is 

where 

(} + B</J) Pr•=-------* 

B(P;- 1) - K;r 
Pr-2 

• 

• x [B(Pr-1) (1 +Eli) 

+KP;(l+B</J){l P;-I (l+B</J)}], 

K= Cf 
2St 

• (Pr-I) U! 
• Pr(ft ... 0 -ft.,) 

Pr-2 
(26) 

(27) 

Similarly, from Eqs. (5), (7), (11) and (13), the result for W; in the sublayer is 
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obtained in the following form: 

On the other hand, in the turbulent region the profiles of H and W 1 are obtained 

by using Eqs. (5) through (7) and (14) through (16). They are: 

I+Bfl- l+Bfl. (l+B¢) (29) 
l+B . 

l+BW1 l+BW1•(l+B¢) (30) l+B . 

2.4 Momentum Integral Equation, 
The momentum integral equation for a compressible, turbulent boundary layer on 

a flat plate with transpiration and with a zero pressure gradient may be written in 

the following form: 

(31) 

where Re, and Rez are the Reynolds numbers based on the momentum thickness of 

the boundary layer and on the longitudinal distance x along the wall, respectively. 

The velocity U., the fluid density p. and the viscosity µ, in the main flow are intro­

duced into both Re, and Rez. 

The integration of Eq. (31) with respect to x may lead to the following equation 

(32), because, in a turbulent boundary layer, the relative change in Re.,, (J Rezl Rez) 

causes a much smaller relative change in Cf, (JCJ!Cf). 

(32) 

where either B or (pv)., has been assumed to distribute uniformly along the entire 

region of x considered. 

2. 5 Skin friction coefficient 

Rubesin and Pappas, and Denison proposed the following parameter (C.-C,) to 

express Re,: 

(33) 

which is obtained by putting the upper limit of the integration of Eq. (19) equal to 

unitv. In the present problem, Re, can be expressed in terms of (C.-C,) as follows 

[6]: 

(34) 
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The insertion of Eq. (34) into Eq. (32) gives the following result: 

(35) 

For later use, here is considered an incompres~ible, adiabatic case without transpira­

tion. Specifying the case with subscript 0, Eq. (35) reduces to 

1-jb,o =---1,_ln [,c✓<;_(o_ Re,. ]. 
.../Cfo .../2 2 Reao1),o · 

(36) 

where the relations C,
0 

= l and C,
0 

= ,p,0• obtained easily from Eq. (33), have been 

inserted. The following relations are easily confirmed to hold 

(37) 

where 

(38) 

By making use of the above relations and by setting ,c=O. 4 and v~ = 13. l. Eq. (36) 

becomes 

Jro =4.38+2.50 ln[ Re,. r0J, (39) 

This relationship is akin to Schoenherr's expres~ion [8] for the total skin friction, while 

Eq. (39) is for the local skin friction. Eq. (39) agrees however with the measured 

values in the wide range of Re,.. namely, for 106
::::;; Re,.:;;,; 108 [6]. 

Here are introduced the following two parameters. 

-(Cf) Q_ Cfo Ru, (40) 

The subscripts Re,. and Re, mean to compare the two boundary layers with and 

without transpiration respectively at the same x, and at the positions of differentx' s, 

but having the same momentum thickness as each other. From Eqs. (35), (36) and 

( 40), the- following equations can be reduced respectively for {J and ¢: 

l 1-,p .../Cfo ln [ .../fJ(l +B) Re,o 1),o] ~=--'IL+ (41) 
.../ll C.-C, .../2,c(C.-C,) Re,7J, 

_l __ 1-,p,
0 ...JC.fo ln [ .../¢(1 +B) Re,7J, ] (42) 

{¢- c.-c, .../2,c(C.-C,) Re,o 1J,o • 
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2. 6 Auxiliary Relationships 

The unknowns appearing in Eqs. (41) and (42) just given are (C.-C,), y-:-, if>., u-:­
and Re,7J,, The calculation of the first is the main concern of this report, and will 

be explained later. In the reference [6] several possible expressions were examined 

for each y-:-, if>, u-:- and Re,1)., and a set of expressions was found giving the best final 

results. They are: 

(43) 

,1, _ u+ p--112/_ff 
'f's- 'o "' 2~ ' (44) 

(45) 

(47) 

Eq. (43) was obtained by making me of the Howarth ru,rnmption that p,µ,=pw/1.w• 

Eq. ( 45) was basically derived from Eq. ( 17) theoretically, but modified a little by 

paying attention to the form of the damping function for the mixing length in the 

sublayer [9]. Eq. (46) was found by optimization of the results. These expressions 

are also used in the present study. 

2. 7 Stanton numbers for heat and mass transfers. 
As seen from Eq. (9), fl and fl, include the Stanton number in the form of (CJ/ 

2St). Thus, the ratio can be determined simply by matching Eq. (26) with Eq. (29) 

at ef> = if>,. The final form of the expression is given as follows: 

2St 
Cf 

* 
+ 2(l+B) [t- P~-1 (l+Brp,) + 

B2 Pr-2 
*l (l+Bef>,)P~-1] • u: }· 

Pr-2 2Ch .... -/i.,,) 

(47) 

The ratio of the Stanton number for a mass transfer to Cf is obtained in a similar 

way. That is 

2St,. B 
Cf = {(l+B)(l+Bef>,)s,f-1 _l}. 

(48) 
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2.8 The evaluation of (C,-C,) 
The integration of Eq. (33) should be performed for the evaluation of (C,-C,). 

For carrying out the integration, p must be given in terms of rp. In the case of 

subsonic fiow, this has been done allowing more than two for the number of species, 

and the integral (33) has been expressed successfully by elliptic integrals. In the case 

including supersonic flow, the effect of kinetic heating on the p profile must be inclu­

ded additionally. 

The integration starts from rp=rp., so that the expression of p only in the turbulent 

region is sufficient for the present demand. As seen from Eqs. (29) and (30) fi and 

w1 affecting the value of p in the turbulent region can be given by the linear func­

tion of rp. For simplicity, they are rewritten as follows: 

(49) 

(50) 

x, 8, s1 and <11 can be determined by the above matching of Eqs. (26) and (28) with 

their counterparts Eqs. (29) and (30) at the sublayer edge rp=rp,. 
By making use of these forms of the profiles of Ii, and w1 and by a thermally and 

calorifically ideal gas assumption, p can be expressed in the following way: 

where 

_ _ l+Frp 
(>- p .. (l + Erp - E.rp2)_(_l +_G_rp_)' 

u2 • 
x+n-2 -I;, h10 (e1+<1;) 

f.CP,<11 
F=---'-'--

f,cp1e1 
I 

X_-..:, h- e-41 •o ' 

E =---U_!~-­
• 2(x-I: h, e;) 

I 0 

f. R,<11 
G= ---'-'--­

f, R1e1 
I 

(51) 

(52) 

In Eqs. (52), n represents the total number of chemical species existing in the fluid, 

and R,, Gp,, and H,
0 

are the properties of the species i: the gas constant, the specific 

heat at constant pressure, and the heat of formation at a reference state. 

of Eq. (51) into Eq. (33) gives the following final form of the integral: 

_ _ r1 fJ¾2op(l + Frp) 
C, C,-J+,v(l+Brp)(l+E,rp)(l+E

2
rp)(l+Frp) (l+Grp) drp, 

Insertion 

(53) 



162 Kenjiro SUZUKI 

where E1 and E2 are related to E and E. defined above as follows: 

and oF is a sign parameter such that oF = ± 1, depending on (1 + F\Y) zO. 
The above integral can be expressed with the first and the third kinds of Legen­

dre-Jacobis standard forms of the elliptic integral. While the integration should be 

the main part of the theory, the explanation of the manipulation how to reduce the 

final expression is cumbersome, so that it is given in the Appendix. 

2.9 The properties of the fluid 

Usual gas does not obey so well the calorifically ideal gas assumption. Considering 

this fact, the following averaged specific heat Cpt has been used for CA in Eq. (52): 

(54) 

For the determination of Cpt, an iterative calculation is nesessary, but it converges 

very rapidly. CA in Eq. (54) is calculated from its polynomial expression given by 

Prothero [10]. The calculation of Pr.,, Pr., Sc;.,,, and Sci. in Eqs. (22) and (23) 

needs the viscosity and the thermal conductivity of the mixture, and the effective 

binary diffusion coefficient D; between species i and the mixture of the remaining 

species. For the evaluation of the first two properties, Wilkes equation was used. A 

modified Stefan-Maxwell equation was used for the calculation of Di, and is described 

as follows: 

1 
µ,M;:E MM Pfi (w;m;-~-m;m,-~) 

D,- i , , o 

( '°' W;-~ _ W;-~ ) p W;L.,-- --
j M; M 

(55) 

where Pfi ,; is the diffusivity of a species pair i and j in a binary mixture, M and M, 

are the molecular weights of the mixture and of the species i, respectively, and the 

suffix -oo denotes the condition in the injectant reservoir. The value of Pfi,;, the 

viscosity and the thermal conductivity of species i were calculated with rigorous kine1ic 

theory [9]. 

3. The presentation and discussion of the results. 

The results of Cf, St, and Stm to be shown here are plotted against the following 

three parameters b, bh and bm respectively: 

b=~ ___g_ bh= (pv)., 1 
p,U. Cf1 p.U. sf; 
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The suffix l used in the above definitions denotes the boundary layer without trans­

piration and having the same main flow/wall temperature ratio (T.,,/T.) as that in the 

boundary layer to be con sidered. Gji, Sti, and St,.
1 

, are calculated with Eqs. (35), 

(47) and(48)by setting B=O, Re,1J,=Re,i71,
1

, and Cf=CJ1• The calculated values are 

shown in Figs. l and 2, together with the computed results by Landis and Mills, and 

the experimental results by Spalding and Ch, [11]. The present results show reasonable 

5 --
4 ---:------

-----:::---- Te•O 2-
3 >-VO'/,_..;:: --- ---- . 2 

3 

I 

0.8 
.Pr-nt { -- s,1 

0.6 Cal. --- -- cn12 

5 lxl0 2 5 lxl0 2 5 lxla8 
Rex 

Fig. l Effect of Temperature ratio on C/1 and St1(--, Cfi/2 and 
St1 calculated numerically by Landis and Mills, Oe Spalding 
and Chi for Tw/Te=O. 375 and 0. 5, respectively). 

x16
3 

5~-----------------, 

4 . Present Cal. -- St !
--- Cn/2 

·····•... .. ......... Stm1<~•l 
3 >··-..... --- StmtCC02) 

2 

I 

0.8 

0.6 

1x106 2 5 1x107 2 
Rex 

---)Landis 
-- and Mills 

Fig. 2 Comparison of Cfi, St1 and St.1 presently obtained with the 
numerical results of Landis and Mills at Tw/Te=O. 9. 
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values, but critically speaking, both the present theory and the calculation by Landis 

and Mills seem to show a slightly larger dependence on the temperature ratio. 

Figures 3 through 5 show the present results for a subsonic flow situation. These 

figures clearly show the higher effectiveness of Helium gas transpiration to reduce Cf, 

St and St,.. Their normalized values (Cj/Cj1), (St/ St,.) and (St,./ St,.) are found 

to depend rather slightly on both the temperature ratio and the Reynolds number. 

To compare with the experimental results at an isothermal situation, the two calcu­

lated curves at (T .. IT.) =0. 67 and l. 67 for Helium gas transpiration already shown 

in Fig. 3 are replotted in Fig. 6 together with several theoretical results. The present 

1.0---------------~ 

0.8 

.-0.6 
~ 
C: 0.4 

0.2 

0 

Tw °K Te°K Rex•I06 R9x■ lo8 
800 300 ---
500 300 --
300 500 -----
300 800 ---

b 
2 3 

Fig. 3. Effects of temperature difference and Reynolds number on 
the skin friction coefficient. 

0.8 

.,::-0.6 
{!! 
in 

0.4 

0.2 

0 

-f,jr 

',, 

"-..,.,.,.,_"~ .... 

" .. ,.::.. ........... 
~~:, .. 

~O~K ~~I06~~1ofl 

300 -- --
500 ----- -----
800 --- ---

2 3 

Fig. 4-. Effects of temperature difference and Reynolds number on 
the Stanton number for heat transfer. 
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0.8 
l 
!,, 

j 0.6} '~He-Air 
(/) '! ' ,,, E ,, 

in 0.4 \\t\\\ Tw °K Te °K \I\ 800 300 
,•~· 1500 300 

02 \~ 300 1500 

-Air 

~~--:.-­
R9x•I06 Re,rl<f 

· ~ \l 300 800 
\~ .'\\,'I.. Landis-Mills (Tw/Te)•0.9 

'- --~ 
0 2 3 

Fig. 5. Effects of temperature difference and Reynolds number on 
the Stanton number for mass transfer. 

results are considered to be superior to the theory of Rubesin and Pappas. This may 

be mainly due to the refined expressions ( 43) through ( 46) for the thickness of the 

sublayer [6]. The present results go along well with the theoretical results of Eco­

nomos and of Landis and Mills. The computation time is believed to be even shorter 

when compared to that required in the calculation by Economos method. The 

experiment by Pappas and Okuno shown in the above figure was carried out on a 

1.0 
Tw°K Te°K r~ i--500 300 

---- 300 500 106 
0.8 

::::.~ 
_0.6 

' 
-~--g 

~ 
\ \ ----~--

•1~ '-~ ......... o 

d 0.4 

,, 
He-~~-- ci~~---, ,, 

o', 

"- cs--, ......... 
"- 'lo 

0.2 

" ...____ 

0 2 3 
b 

Fig. 6. Comparison of the present present theory with other theories 
and experimental results(, .... ,theory by"Economos, -•-numer 
cal result by Landis and Mills, - · •-theory by Rubesin and 
Pappas, 0 e Romanenko and Kharchenko, EB Dunbar and 
Squire, f::,. Pappas and Okuno, 0 Scott refered to in the 
reference [4]). 
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1.0..,-------------------, 

0.8 

..:: 0.6 
~ ir 
iii 

0.4 

0.2 ' Tw °K Te °K Rex 
Present f -- 500 300 K)6 

Col. ----- 300 500 106 

0 2 3 

Fig. 7. Comparison of the present theory with other theoretical and 
experimental results (-•- numerical resul by Landis and 
Mills, 0 • Romanenko and Kharchenko). 

cone surface, but is usually compared with the flat plate data. Their results are not 

the local value but the results of the total skin friction coefficient, CF. In relation to 

this, it may be appropriate to add the comment that Eq. (32) holds exactly for CF if 

B or the mass blowing rate is uniform over the range of x considered. Thus, it may 

not be so illogical to compare their results with the present calculation. 

In Fig. 7 are compared the results for St, shown in Fig. 2, with the experiments 

by Romanenko and Kharchenko [12], and the agreement between them is again 

found to be good. In Figs. 8 through 10, the present results are compared with the 

Tw/Te•0.6 Rex•I06 

0.2 

0 
b 

2 3 

Fig. 8. Comparison of the present results with the numerical calculation 
by Landis and Mills (-•- Landis and Mills, Tw/Te=O. 9). 
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PreHnt Cal. -- Tw/Te•0.6 Rex•I06 

0 2 3 
bh 

Fig. 9. Comparison of the present results with the numerical calculation 
Landis and Mills (-·- Landis and Mils, Tw/Te=0.9). 

0.8 
' I 

eo.s· -Cl) ' 

'e I 
in 0.4 

o.2 \ H2-Air 
' 

Present Cal. -- Tw/Te • 0.6 Rex• I 06 

0 2 
bm 

3 

Fig. 10. Comparison of the present results with the numerical calculation 
by Landis Mills, (-•- Landis and Mills, Tw/Te=O. 9). 

numerical results by Landis and Mills for several cases of different injectants. Both 

results show fairly good agreement. The computation time is much shorter in the 

present calculation. Thus, the efficiency of the present method is believed to be 

sufficiently high. These figures again show the higher effectivess of lighter gas trans­

piration. 

In Figs. l l through 13 are compared the present results for a supersonic flow case 

with some available experimental results [13-15]. For Helium gas transpiration, the 

present results agree better with the experimental results than does the theory of 

Rubesin and Pappas. For Carbon-dioxide gas transpiration, the present results show a 



168 Kenjiro SUZUKI 

1.0,..._-------------~ 
\ Present [--M-•3 Rex•I07 

\ Cal. -----M-•3 Rex•106 

i;:0.8 
IU 
)._ 
IU 

~0.6 

€ 
C:: 02 

0.1 

0 

\ adiabatic wall 
\ 

' ' ' ' if, 
' . ', 
0 ',, 

• 0 ', 
', 

0 ',.p 
0 ................ 

o', 

2 
(fU)w x let 
feUe 

:0.6 
~ 
in 0.4 

0.2 

0 

0 

2 3 

Fig. 11. Skin-friction coefficient with Helium 
transpiration into a compressible 
turbulent boundary layer. (Exper­
iments by Pappas and Okuno.) 

Fig. 12. Stanton number for heat transfer (-·­
theory by Rubesin and Pappas, 0 
Experiments by Leadon and Scott at 
Re,:;a;4x 106). 
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Fig. 13. Skin-friction coefficient (0 • Experiments by Dunbar and 
Squire at M~=2. 5, and at M~=3. 5, respectively). 

slightly poorer agreement with the experiments by Dunber and Squire, but are not 

so bad on the whole. 

4. Concluding Remarks. 

A refined classic theory has been developed for the calculation of Cf, St and Stm 

for a subsonic or supersonic, non-isothermal, turbulent boundary layer on a flat plate 

with foreign gas transpiration. The present results are in fairly good agreement with 
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the experimental results found in reference. Any number of chemical species is allo­

wed to compose the fluid in the present method. Thus it has a potentiality applicable 

to the ablation problem. 
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Appendix 

Here is introduced first a parameter P defined as 

IPl=the smallest one of CIBI, !Ed, IE.I, IF!, IGI), (Al) 

and next are specified the recipocals of the remaining constants as A,, A2, A3 and A4 

in a way satisfying the following inequality: 

(A2) 

Noting that either IE,I or IE2 I should be smaller than unity except for the case 

when the main flow Mach number is infinitely large, I Pl is considered to be smaller 

than unity. Thus, (1 + Pep) >O. The Taylor expansion of (1/-./ 1 + Pep) gives 

(A3) 

At the usual Mach number, the first ten terms of the expanded series are sufficient 

to get a converged value. Specifying j of the last of the retained terms in Eq. (A3) 

as M, Eq. (53) reduces to the following form: 

M 

c.-r..=JFfi~2cA.cHc2) +CF+g.)HC3) + ~ (Fg,+g,+i)H(i+2)J, 
;=2 

(A4) 
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H(j+~=sl ~~ . 
#• ,JoA(tj,+A1) (tf,+A2) (tf,+As) (tf,+A,) 

(A5) 

Computation of H(l), H(2), H(3) and H(4) is sufficient to calculate (C,-C,), because 

the following recurrence relation is available. 

2oA (j-1) H(i+2) =2,JoA (1 + A1) (1 + A2) (1 + As) (l + A.) 

-2tf,!-3.JoA(t/>,+A1) (tj,,+A2) (tj,,+As) (tf,,+A.) 

- (2j-3)oA (Ai+ A2+ As+ A.) H(j+ l) 

- (2j-4)oA (A1A2+ A1As+ A1A. + A2As+ A2A•+ AsA•) H(i) 

-(~i-5)0A(A1A2As+A2AsA.+AsA,A1 +A4A1A2)H(j- l) 

-(2j-6)oAA1A2AsA4H(i-2) (A6) 

Here are introduced the following forms of integrals, which are used to express 

H(l) through H(4). 

(A7) 

(A8) 

where j(;:;) = (Ct-Ct ;;,2) (Dt-Dt ;;,2). Some manipulation is still necessary to trans­

form the above integrals into the Legendre-Jacobi standard forms of an elliptic 

integral. Several variations of the final forms appear, depending on the relative 

magnitude among the coefficients Ct, Ct, Dt, and Dt in the above integrals, but the 

manipulation is straightforward. Thus, to save space here, an explanation will be given 

in the following, but only as regards how to express H(l) through H(4) with / 1 and 

ls (c). 

To start with, the following two real numbers a and f3 are introduced: 

_ 02J1(As+A,)-01(A1+A2) a---~~~'-c'--~-=~ 
2(01 -02J1) 

{1= 02J2(As+ A.) -01(A1 + A2) 
2(01 -02J2) 

(A9) 

(AlO) 

where J, and J2 are the two solutions CJ,>J2) of the following quadratic equation for 

J: 

(As-A.)J2-2[ (A,+ A2) (A3 + A,) -2A3 A,-2A1A2]0AJ+ (A1-A2) 2=0. (All) 

01=±1 depending on (tf,+A1)(tj,+A2)S:O, and o2=±1 depending on (tj,+A3)(tj,+A4) 

zO. There exists a relation among the sign parameters oi, o2 and oA as follows: 
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Next, the following four constan_ts are defined with A1 and A2 just introduced: 

The final form of H(2) can now be expressed by the following unified form: 

H(2) (Al2) 

where 

</>,-a* and 
z,= </>,-fi*' 

and 

when 

or 

when 

By making use of the same constants and the variable z, H( l) and H(3) can be 

rewritten in the following forms respectively: 

(Al3) 

(Al4) 

The third term of each of the above expressions can be intergrated easily and further 

manipulation may not be necessary. Similarly, H(4) can be transformed into the 

following form: 

(Al5) 

The third term of the above expression can be integrated easily as mentioned above, 

and .the manipulation of the last term needs the recurrence relation of the elliptic 
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integral again. It reads in the present situation as follows: 

(Al6) 

except for the cases when Cf =Ct or when Dt=Dt. In these excetional cases, the 

recurrence relation reads as follows: 

(Al7) 

It may be sufficient only to show further manipulation for the last term of Eq. (Al6) 

That can be transformed into the following form: 

(Al8) 

where w=z2
, ii,=± 1 depending on CtDt"<.O, and for simplicity, a set of the constant 

(-Ct/Ct), ( -Dt/ Dt) and zero has been replaced by another set of constants A;, 

A; and A; in a way that they satisfy an inequality A;> A;>A;. Here are defined 

two real constants µ, and v as follows: 

r, and r2 in the above definitions are the two solutions of the following quadratic 

equation for r: 

Eq. (Al8) can finally be transformed into the following form: 

(Al9) 

where j' (zi) = (k1-k2v2
) (L, -L2v2

). The new variable v is related to w as follows: 
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u 
w-µ* 
W-).)*' 

and other constants are as follows: 

in the remaining case of the relative magnitude among wi, w, and ).). o,= ± 1, 

depending on the inequality rir2~0. 




