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Abstract 

Owing to the increasing size and complexity in power systems, the study of the 
stability equivalent is receiving a great deal of attention. This paper describes a syste­
matic method for the recognition of coherent machines by means of the Lyapunov 
function which is used for the transient stability analysis. A group of generators, whose 
partial Lyapunov function has a small value compared with that for the whole system, 
is aggregated into one equivalent generator. This method does not require a long time 
simulation of the entire system. The parameters of the simplified system are also 
determined by using the Lyapunov function. The method is applied to IO-machine 
and 50-machine sample systems and the results are shown. 

1. Introduction 

137 

Power systems today continue to increase in size and complexity because of the 

increasing demand for electric power, and because the power supplies are located far 

from the demands. Furthermore, as the inter-connection among the power systems 

tend to be strengthened, aiming for improved economy and reliability, it has become 

impossible in the stability analysis to neglect the effect of the adjacent power systems. 

In the analysis of such large-scale power systems, it is impossible, or even if possible, 

it is not economical to represent the whole system in uniform detail. Hence, the study 

of the stability equivalents has been receiving a great deal of attention. The methods 

are classified as the following three categories : 

i) the use of network equivalents and the allocation of inertia by distribution factors,'> 

ii) replacing coherent generators-generators which swing in a group under transient 

conditions-by one equivalent generator,2> 

iii) modal analysis of the linearized system equation and order reduction. 

Although method ii) is advantageous in the point that the existing transient stability 

program can be used without any significant modification, it requires a coherency 

* Department of Electrical Engineering 
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recognition which is made using the observed results of the stability study of the entire 

system. 

In this paper, we propose a systematic method for coherency recognition, using the 

Lyapunov function which is used for the transient stability criterion. A group of 

generators, whose partial Lyapunov function has a small value compared with that for 

the whole system, is aggregated into one equivalent generator. This method does not 

require a long time simulation of the whole system. The parameters of the equivalent 

generator and the equivalent circuit are determined in such a way that the value of 

the Lyapunov function is changed as little as possible by the aggregation. The 

method is applied to IO-machine and 50-machine sample systems and its validity is 

examined. 

2. Coherency Recognition Using Lyapunov Function 

2. I Principle of the Method 

As is well known, the transient stability criterion by Lyapunov's direct method is 

made through the following procedure. First of all, an appropriate Lyapunov function 

(V-function) is constructed and V.,, the critical value of V. is obtained which gives 

the stability boundary. The system differential equation is solved under a faulted 

condition using a numerical method until the value of V exceeds V.,. The critical 

clearing time t. is given as the time when the value of V equals V.,. If the actual 

clearing time is less than t., the system is judged to be stable. 

From the above procedure of the transient stability criterion, it can be seen that, 

if the value of the Lyapunov function, not for the entire system but for a group of 

generators, is sufficiently smaller than that of the entire system, the value of V is not 

changed very much by aggregating the group of generators. Accordingly, the stability 

criterion using the V function can be made with almost the same accuracy even after 

the aggregation. Furthermore, as the generators, whose partial V function is of small 

value, have similar time variations in their phase angles and angular velocities, and 

also tend to swing together, it is thought that the simplified system well retains the 

performance of the original system. 

2.2 Swing Equations and Lyapunov Function 

The movement of the generator rotor is assumed to be represented by the follow­

ing classical model, which is used in the simplest analysis of transient stability. 

do,. 
dt=w,. 

M,. ~;,. =Pm,.-P,,.-D,.w,. 
( I ) 
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where E,. : induced voltage behind transient reactance x; of the k-th genera­

tor 

: phase angle and angular velocity of the k-th generator, respecti­

vely 

G,1 + jB,1 : transfer admittance between the induced voltages of the i-th 

generator and that of the j-th generator 

M,., D,. : inertia constant and damping coefficient of the k-th generator, 

respectively 

P .. h Pd : mechanical power input and electrical power output concerned 

with the k-th generator, respectively 

In this paper, we use the following Lyapunov function obtained from the first inte­

gration (also called the energy integration) of the differential equation (1) : 

where 

R-1 " 

V(o, w) = ~ ~ M1M,.wJ,.!2MT 
i=l j=.i:+l 

W;1,=W;-W1, 

0;1,=0;-01, 

MT=:EM, 
1-1 
oj,. : the position of the stable equilibrium point after the clearance of 

the fault 

2. 3 Algorithm of Coherency Recognition 

The Lyapunov function (2) is rewritten without using the I mark as follows, for 

example, for a four-machine system. 

V = (M1M2wt + M1Mawfa + M1M,wf, + ["¥;Af~_~f~ +_µ;µ~~tf.M:~:xf,c,ji)_/~Af? 
+ [ { - M1 (P m2- G22Pi) + M2(P ml - GuEf.)} (021 -0;1) 

+ {-M1(P,.s-G33ED +MaCP.1-GuEf.)} (oa1-o;,) 

+ { - M1 (P ,.,- G .. .E!) + M,(P .. 1- GuEf.)} (041-0~,) 

+<~M2(P~~~ C~_m) "+Ms(P~;~-C~E:)} (J~~il~)--

+ { - M2(P .. ,-c .. E!) + M,(P .. 2- czz.m)} (042-0~) 

+{_~!vf.a(l\,,~_9,.~)±.!vf.,(J\,s~_933~)}(oa~_!1~)J/!':fr. 
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- B21E2E1 ( cos 021 -cos on) - Ba1EaE1 ( cos oa1 -cos 0;1) - B,1E,E1 ( cos 0,1 -cos ol1) 

-B32EaE2( cos 032·- cos ok) :-B,2E,Ei cos 042-COS Ol2) -B,aE,E_a(cos 043--~~s ola) 

( 3) 

Now, if we assume that generators No. 2, 3 and 4 behave in completely same way, 

that is, the swing curves being parallel with each other, then that part of the above V 

function encircled by the dotted line becomes zero. This part is the Lyapunov function 

just for the three machines No. 2, 3 and 4, except that the denominator is MT instead 

of M2 +M3 +M,. Hence, it is seen that the value of the partial Lyapunov function 

for a group of coherent generators is small. On the other hand, it cannot always be 

said that a group of generators whose partial Lyapunov function is of small value is 

coherent, because it is possible that the value of the partial V function is accidentally 

small. The coherency, however, can be recognized very accurately via the algorithm 

described below.5> 

Step 1. Classify the whole system, using some method suitable for the given system, 

into the part which is retained in detail and the part to be equivalized. 

Step 2. Pick up the pair of generators with the maximum transfer admittance, 

which belongs to the part to be equivalized, and has not yet been assigned to any 

coherent group nor been calculated in the value of the partial V function. If no 

such pair is found, the coherency recognition is completed. Even if one is found, if 

the value of the transfer admittance is less than a certain definite value Y,h, the 

recognition is completed. 

Step 3. Calculate the value of V for the pair of generators chosen in Step 2. If the 

value is less than the threshold value V,h, proceed to Step 4. If it is greater than 

v,h, then go to Step 2. 

Step 4. Select the generator which does not yet belong to any coherent group and 

which has the largest admittance from the group under consideration*. If the 

admittance value is less than Y,h, make the group one coherent group and go to 

Step 2. If the admittance value is greater than Y,h, then add the generator to the 

group and calculate the value of the partial V function. 

Step 5. If the value of Vis still less than V,h, leave the last generator added to the 

group and go to Step 4. If the value of V exceeds V,h, then remove the last added 

generator and make one coherent group. Go to Step 2. 

In the above algorithm, the values of the partial Lyapunov functions are calculated 

at an appropriate time after the fault occurrence. Hence, the coherency can be 

recognized systematically by performing the simulation of the whole system under the 

* The admittance between a group of generators and one generator is defined by the maximum 
value of admittances between that one generator and each generator belonging to the group. 
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faulted condition for only a short time period. Furthermore, if the angular accelera­

tion can be assumed to be constant, for a while after the fault occurrence, the angu­

lar velocity and the phase angle can be approximately calculated for the short faulted 

period. In such a case, the coherency can be recognized without the simulation of 

the entire system. (See chapter 4.) 

3. Determination of the Equivalent System Parameters 

The construction of the stability equivalents using this coherency consists of two 

phases, i. e., the recognition of the coherency and the determination of the parame­

ters of the equivalents. While the coherency recognition has not been studied very 

much, several methods for determining the parameters of the equivalent circuits and 

generators have been reported. They are quite similar to each other in many points. 

In this paper, we determine the parameters of the equivalents so as to make the 

change in the value of the V function as small as possible. That is to say that the 

parameters are determined in such a way whereby the value of V is not changed, 

provided that the following three conditions are satisfied : (a) the relative angular 

velocity between the aggregated generators is zero (w1;=0, for i, jES, where S is a 

set of the aggregated generators), (b) the angular difference is equal to that at the 

stable equilibrium point of the post-fault system (o11 =o/1, for i, jES), and (c) the 

voltages behind the transient reactance are equal to each other (E1=E;, for i, jES). 

Equivalent parameters (subscript e denotes the quantities for the equivalent generator) 

from the part corresponding to the kinetic energy of the Lyapunov function : 

from the first term of the part corresponding to potential energy : 

P.,.= ~P .. 1 
iES 

from the second term of the part corresponding to the potential energy : 

Y.1= ~ Y 11 
iES 

( 4) 

( 5) 

(6) 

( 7) 

As the effect of the damping is not considered in the Lyapunov function used in this 

paper, the damping coefficient of the equivalent generator is chosen to be the average 

value of DJ M1 weighted by M1 ; 

( 8) 

The equivalent internal voltage is taken from the average value of the induced volta­

ges of the generators weighted by the driving point admittance value; 
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(9) 

The stable equilibrium state is obtained for the equivalent system with the above 

parameters, and transient performance is calculated by taking the equilibrium as the 

initial state. As regards the initial values in the calculation of the equilibrium state, 

if we use the values of the original system for the retained generators and the average 

values of the original system (weighted by the inertia constant) for the aggregated 

generators, the number of repetitions is only one or two. 

4. Numerical Examples and Discussions 

4. I IO-machine System 

The method described so far is first applied to the IO-machine system shown in 

Fig. 1. The fault assumed is a three-phase short circuit at one of the x-marks in 

the figure, and is denoted as Fault A or Fault B. Reclosing is not considered. The 

first step of the coherency recognition algorithm, i. e., the classification of the whole 

system into the part retained in detail and the part which has a possibility of simpli­

fication, was performed using the absolute value of the admittance from the faulted 

point (admittance distance4>, see Appendix). In practical problems it may be possible 

to classify intuitively from the regional characteristics and the boundaries between 

utilities. 

Fig. 1. Sample JO-machine system. 

Table 1 shows the admittance matrix (absolute value) including the generator 

transient reactances. In the case of Fault A, if we take the generators which have 

a mutual admittance less than 1 p. u. from the very close generator No. 2 to the 

fault point, generators Nos. 4-9 are chosen as eligible for aggregation. The coherency 

recognition algorithm previously described is applied to these six generators, and the 
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Table l. Transfer admittance between generators. 

3 I 4 

2.35 I 1. 14 

1. 18 0.57 

10.14 0.52 

I 9.70 

I 
I 

Table 2, 

I 5 I 6 

I 1. 36 I 0.52 

I 0.68 I 0.26 

I o. 62 0.24 

I 3.13 0.49 

I 11.28 I 0.58 

I I 5.53 

I 7 

I 1.52 

I 0.76 

I 0.70 

I 1.42 

I 1. 69 

I 1.96 

\ 12. 20 

8 

2.82 

I 0.53 

I 0.63 

I 0.70 

I 0.83 

I 0.32 

I o.93 

\ 11.00 

I 
I 
I 
I 
I 
I 
I 

Coherency recognition for Fault A. 

9 

2.60 

0,40 

0.49 

0.49 

0.58 

0.23 

0.65 

1,76 

9.20 

I 10 

I 4.62 

I 1.44 

I 2.79 

I 0.86 

1.02 

0.39 

1 1.14 

I 1.15 

1 o.9o 

i 15. 20 

group of value of partial V fn. result* generators 

1 4,5 0. 88X 10-4 0 

2 4, 5, 7 O. 13x10-3 0 

3 4,5, 7,6 0. 67X 10-z X 

4 8,9 0. 24X 10-4 0 

* The value of V fn. for the entire system is 4. 465. 
0 : coherent, X : not coherent 
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JNo. of 
generator 

I 1 

I 2 

I 3 

I 4 

I 5 

I 6 

7 

8 

9 

10 

results are shown in Table 2. First, the pair of generators Nos. 4 and 5, which have 

the largest transfer admittance between them, are considered. We take l p. u. for 

Y,h, which is the same value as that used in Step 1. The admittance value now is 

3.13 p. u. and greater than Y,h• Hence, the partial V function is calculted for this 

pair. The value of the V function is computed at 0. 31 sec after the fault occurrence. 

The critical clearing time for Fault A was 0. 32 sec. We use for V,hl / 1000 of the 

V function value for the entire system ( = 4. 465). As the value of V for generators 

Nos. 4 and 5 is less than V,h, the third generator No. 7 which has the largest 

admittance from Nos. 4 and 5 ( = 1. 69 p. u.> Y,h) is added to this pair and the 

value of V for the three generators is computed. Since its value is still less than V,h, 

we add generator No. 6 which has the largest admtitance ( 1. 96> Y,h) from the 

group Nos. 4, 5 and 7 and calculate the value of V. As the value now exceeds V,h, 
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we remove No. 6 and make one coherent group by Nos. 4, 5 and 7. Among the 

remaining generators Nos. 6, 8 and 9, we consider the pair of No. 8 and No. 9 which 

have the largest transfer admittance ( 1. 76> Y,h) and calculate the V function. Since 

the value is less than V,h, we take generator No. 6 which has the largest admittance 

from the pair under consideration. (In fact, No. 6 is the only remaining generator.) 

However, the admittance value 0. 32 is less than Y,h, hence No. 8 and No. 9 make one 

coherent group. There is only the one generator No. 6 remaining and the coherency 

recognition is completed. Consequently, the ten generators are aggregated into seven. 

Fig. 2 shows the swing curves for both the original and the simplified system with 

Fault A cleared at 0. 31 sec. after its occurrence. Although the magnitude of the 

oscillation is a little exaggerated by the simplification, the coincidence of the two 

systems is fine. Table 3 shows the results of the stability criteria via the Lyapunov 

function. The correct critical clearing time 0. 32 sec. was obtained for this fault 

using the Lyapunov function. The criterion is unchanged by the simplification of 

the system. 

2 
-- original system 

------ simplified system 
"0 
~ .,-
C) 
C 

"' 

-1 

Fig. 2. Swing curves of JO-machine system (Fault A). 

Table 3. Stability criterion via Lyapunov function (Fault A). 

original system simplified system 

v., 5.015 5.117 

O. 31sec 4.465 4.561 

O. 32sec 4.867 4.969 

O. 33sec 5.292 5.398 
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Table 4. Coherency recognition for Fault B. 

group of value of partial V fn. result* generators 

1 4.5 o.24x10-3 0 

2 4,5,7 o.12x10-2 0 

3 4,5, 7, 6 0.16X 10-1 X 

4 2,3 o. 22x10-1 X 

* The value of V fn. for the entire system is 10. 63. 
0 : coherent, X : not coherent 

4 

-2 

Fig. 3. Swing curves of IO-machine system (Fault B). 

-1 

Fig. 4. Swing curves of IO-machine system (Fault A, heavy load). 
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The coherency recognition was also made for Fault B and generators Nos. 4, 5 

and 7 from the eligible ones Nos. 2-7 were found to be aggregated (Table 4). The 

effects of the simplification are shown in Fig. 3. 

Fig. 4 shows the swing curves for Fault A with all of the generator outputs and 

the load powers doubled. In the case of the simplified system, the coherent groups 

used are the same as those found in Table 2. Although the effects of the system 

simplification are a little greater than Fig. 2, they are not serious and the critical 

clearing time 0. 08 sec. was not changed by the simplification. Therefore, it can be 

said that the coherency recognized under one operating condition can be used under 

other conditions without a great loss of accuracy, because the operating condition does 

not affect the coherency very much. 

4.2 50-machine System 

The simplification method is next applied to the SO-machine system shown in Fig. 

5. The fault assumed is a three-phase short-circuit at the point marked by x in the 

figure. The 35 generators which have a transfer admittance less than 50 p. u. from 

the faulted point are taken as eligible for aggregation. The values of the partial 

Lyapunov functions are calculated at 0. 27 sec. which is the critical clearing time for 

the assumed fault. V,h is I / 1000 of the Lyapunov function for the entire system, the 

same as in the case of the IO-machine system, and Y,h is 50 p. u. These values can 

be determined in accordance with the degree of the requirement for the simplifica­

tion. That is to say, when it is required to simplify the system and reduce the num­

ber of the generators very much, V,h should be large and Y,h should be small. The 

results of the coherency recognition are shown in Table 5. Consequently, the eligible 

Fig. 5. Sample SO-machine system. 
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Table 5. Coherency recognition for SO-machine system (I). 

non-aggregated group 

21,23,26,27,28,29,30,31,32,33,34,35,36,49,50 

coherent groups (recognized at O. 27 sec) 

1 40,41 

2 44,45 

3 1,2 

4 5,6,4 

5 10, 12, 11 

6 18,20,19 

7 47,48 

8 22,25 

9 15, 17, 16 

35 generators are aggregated into 22. (The total of 50 is reduced to 37.) 

Fig. 6 shows the swing curves of some generators in the original system and the 

simplified system when the fault is cleared at the critical clearing time. Fig. 6 (a) 

shows the performance of the generators represented in detail. The magnitude of the 

first swing becomes a little greater hy the simplification and, accordingly, the 

2 

'0 
f! 
4i 
c, 
C 

"' 

-1 

Fig. 6 (a) 

original system 
simplified system 
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2 

"O e ,,. 
ci 
C: .. 

-1 

2 

-1 

cut 
0.27S 
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Fig. 6 (b) 

Fig. 6 (c) 

Fig. 6 Swing curves of SO-machine system. 

subsequent swings are delayed. The magnitude and frequency of the oscillations, 

however, are almost unchanged, and it can be seen that the effect of the simplifica­

tion is small. Fig. 6 (b) and (c) show the performance of the generators which 

belong to the coherent groups. It is seen from these figures that the swing curves of 

the generators which belong to a coherent group are almost parallel to each other 

and the coherency recognition algorithm works well. It is also noted that the perfor­

mance of the equivalent generator is nearly the average of those of the aggregated 

generators. 

As described before, the fault clearing time 0. 27 sec. is the critical clearing time 
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2 

-1 

Fig. 7. Swing curves of SO-machine system (fault cleared- at O. 1 sec), 

for this fault. Hence, the swing of the generators is large and it is the severest case 

from the viewpoint of the system simplification. Fig. 7 shows the performance of some 

non-aggregated generators, when the fault is cleared at 0. l sec. As is clear from the 

figure, the performance of the original system is very well retained with the fault 

cleared at 0. l sec., which is a less severe condition for the simplification. 

In the above calculation, the critical clearing time was obtained in advance, and 

the coherency was recognized using the values of the Lyapunov functions at that time. 

In reality, the critical clearing time can not be known beforehand. Therefore, it is 

necessary that the coherency can be recognized using the value of the V functions 

computed at the actual fault clearing time. Table 6 shows the results of the cohere-

Table 6. Coherency recognition for SO-machine system (II). 

coherent groups (recognized at O. 1 sec) 

1 40,41 

2 44,45 

3 1, 2 

4 5, 6,4 

5 10,12,11 

6 18,20,19 

7 47,48 

8 15,17,16 

9 24,25,22 
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ncy recognition using the value of V at 0. 1 sec. The result is the same as Table 5 

which recognized at 0. 27 sec, except that generator No. 24. is included in the last 

group. Therefore, it is seen that the coherency can be recognized at the actual fault 

clearing time by the proposed algorithm. 

In the above coherency recognitions, the original system was simulated for 0. 1 or 

0. 27 sec. with the faulted condition to obtain the values of o and w, and the partial 

Lyapunov functions were computed. As was referred to in Section 2. 3, if the angular 

accelerations can be considered constant during a short time after the fault occurre­

nce, we can obtain the values of o and w after the fault from the prefault values oo, 
Wo and the angular acceleration at the moment of the fault occurrence a, as follows: 

o=oo+at2/2 

w=w0 +at 
(10) 

As a result, the calculation of the original system becomes unnecessary. Table 7 

shows the comparison of the approximate values of o and w, obtained by using eq. 

(10) with the accurate values for the arbitrarily chosen four generators. Although 

a considerable difference is recognized for generator No. 30, which is located near 

the faulted point, the approximate values of the other generators are very close to 

their accurate values. Table 8 shows the results of the coherency recognition using 

these approximate values of o and w. Comparing this table with Tables 5 and 6, 

it is seen that for 0. 1 sec. recognition, the results are completely the same. For 0. 27 

sec. recognition, the only difference is that generator No. 19 is not included in the 

sixth group in Table 8. Therefore, it was made clear that the coherency can be 

recognized without the simulation of the entire system by applying the algorithm 

Table 7. Approximate values of il and w. 

no. of accurate value approximate value 

generator il (rad) I w(rad/sec) il(rad) I w(rad/sec) 

10 I 0.730 I 0.187 0.731 0.198 

20 0.453 I 0.203 0.454 0.223 
0.1 sec 

30 0.812 2.306 0.823 2.688 

40 0.331 -0.192 0.333 -0.194 

10 I 0.783 I 0.412 I 0.793 I 0.535 

20 I 0.506 I 0.368 I 0.524 I 0.602 
O. 27 sec 

30 I 1. 330 I 3,152 I 1.668 I 7.257 

40 I 0.270 I -0. 555 I 0.272 I -o. 525 



Transient Stability Equivalents Based on Lyapunov Function 151 

Table 8. Coherency recognition for 50-machine system (III). 

coherent groups 

approximate recognition approximate recognition 
at O. 27 sec at O. 1 sec 

1 40,41 40,41 

2 44,45 44,45 

3 1, 2 1, 2 

4 5, 6, 4 5,6,4 

5 10,12,11 10, 12, 11 

6 18,20 18,20,19 

7 47,48 47,48 

8 22,25 15, 17, 16 

9 15, 17, 16 24,25,22 

proposed in this paper to the approximately calculated during-fault condition. 

5. Conclusions 

We proposed a method for short-term dynamic equivalents based on the Lyapunov 

function. It was shown from the results of the numerical examples that the coherent 

groups of generators can be known through a systematic procedure without the tran­

sient calculation of the entire system. Furthermore, using the Lyapunov function, we 

could derive a method for determining the parameters of the equivalent circuits and 

generators, which method is similar to tho~e so far reported. 

It is expected that the method will be extended so that the effects of the control 

devices (A VRs and governors) can be taken into account. 
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Appendix. Admittance Distance 

The bus voltages are determined from the load-flow calculation, and the loads can 

be represented by the constant impedances between the node and the ground as 

follows, 

l=YV (A-1) 

If we separate I and V into JG, VG for the generator nodes, IF, VF for the faulted 

node and h, VL for load nodes, then 

(A-2) 

Because the loads are contained in Y as constant impedances, h = 0, and V L can be 

eliminated from eq. (A-2) to get 

The following relation holds between the induced voltage EG behind the transient 

reactance x; and the terminal voltage VG 

EG=VG+Xa·IG 

Xd=diag{ix~} 

Eliminating VG from eqs. (A-3) and (A-4), we get 

(A-4) 

(A-5) 

IY7FI (= IY;,I), the absolute value of the element of the matrix Y", is the admittance 

distance from the faulted point to the i-th generator. At the opposite of the usual 

distance, the large value of the admittance distance is interpreted as the electrical 

proximity. 




