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Safety Analysis and Minimum-Weight Design of 
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By 
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Abstract 

This paper deals with the safety analysis and the minimum-weight design of rigid 
frames based on reliability concepts. A safety analysis of redundant systems has dif­
ficult features, which are due to the fact that those systems generally have many various 
possible failure modes. As a rule, the approximations have been done on the assump­
tions of statistical independence and complete dependence among failure modes. How­
ever, the resulting solutions may be widely different as the number of failure modes in­
creases. Also, usual structures have considerable dependence on their own failure 
mechanisms. 

A simple formula presenting a good upper bound is derived herein by using the 
correlations between every two modes. The discussion is done with respect to the lower 
bound. Its improvement is attempted by introducing a simple mathematical model, 
which is used for estimating the probability that any three events occur simultaneously. 
This paper also outlines the minimum-weight design with reliability constraints. The 
proposed method is employed in the safety analysis. The results are discussed and com­
pared with those of the deterministic method. For large systems, an approximate design 
method is proposed, which decomposes the possible failure modes into basic and non­
basic modes. 

1. Introduction 

There remain many problems to be overcome in the application of reliability 

concepts to the design of real structures. The reliability analysis still requires 

some improvements, regardless of whether the classical theory or the extended 

theory is employed. Large and complex structures may fail in one of many pos­

sible mechanisms which are interrelated with each other. In addition to local 

failure phenomena, common failures may occur due to the initial yielding, the 

actual collapse and the instability of the structures. Indeterminate trusses can 

be considered to fail by the initial yielding. There are, however, many routes to 

reach the system collapse in indeterminate trusses, which while it is considerably 

* Department of Civil Engineering 
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difficult to trace all of them, some investigations were presented. 1l2l While the 

actual collapse criterion is applied without difficulty, several mechanisms must be 

taken into consideration. 

The limit analysis concept is employed here to discuss the safety of rigid 

frames. Also, only the failure due to the formation of plastic hinges is treated, 

so the failure through the loss of stability is not accounted for. Since the collapse 

mechanisms are inter-dependent, this effect is inevitable in the exact evaluation of 

reliability. Theoretically, the system reliability may be calculated by integrating 

the joint probability density function. But, actually, it is impossible to estimate 

this function, and even if it is found, the calculation requires a numerical integra­

tion which is prohibitive and time-consuming. Therefore, the approximations have 

been used on the assumptions of statistically complete dependence and probabilistic 

independence among modes.3l These assumptions give the lower and upper 

bounds, respectively. However, the difference between the upper and lower bounds 

may become large as the number of failure modes increases. 

In this paper, a simple method presenting a good upper bound is proposed 

by calling attention to the events that two modes occur simultaneously. A sto­

chastic dependence between modes is introduced by considering the coefficient of 

the correlation between each modal margin. Then, in order to remove the inte­

gration process, the approximate method developed by M. Tichy and M. Vorlicek 

is used in the actual calculation.4l Since the relations used here are purely math­

ematical, the formula can be applied for the safety analysis of systems possessing 

different kinds of failure modes. 

From the view of safety design, only the value of the upper bound is necessary, 

but the lower bound is important to check the availability of the approximation. 

There is a brief discussion with regard to the lower bound. Furthermore, an im­

provement is attempted based on the fact that the simultaneuos occurrence of 

three modes is considerably affected and limited by the occurrence of two of these 

modes. A simple mathematical model is developed to evaluate the effects of those 

events on the average. 

The minimum-weight design of rigid frames is also outlined in the last sec­

tion. The proposed method is discussed and compared with the method develop­

ed by J. Stevenson and F. Moses.5l6l Furthermore, we propose an approximate 

technique for large structures, in which the possible failure modes are partitioned 

into two groups, that is, basic modes and non-basic modes. This can clarify the 

contribution of each mode to the total collapse and make the calculation relatively 

inexpensive. 
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2. Reliability of Structural System7l8l 9l 10l 

Supposing that a structural system has n failure modes, the probability of a 

system failure, p1, can be written in the terms of the modal failure events F; as 

follows: 

( 1 ) 

where the symbol " U " signifies the union of the events. The event F; occurs when 

the modal resistance R; is less than the modal load effect Si• 

F; = (R;-S;<O) (2) 

Taking the collapse mechanism as a typical failure mode, the failure event 

F; is written by introducing the reserve strength Z; in the following: 

F; = (Z;<O) 

where Z; = t A;kMk-t Bi .s. 
k=l j=l J J 

( 3) 

( 4) 

Mk structural resistance of a structural member at the k-th point in the 

structure 

S; : effect of the j-th load on the structure 

A;k resistance coefficient determined by the position and condition of the 

k-th point related to the i-th failure 

B;; load coefficient determined by the position and magnitude of the j-th 

load on the structure related to the i-th failure mode 

The beam failure mode of a single-bent frame shown in Fig. 1 is 

Z1 = MB+2MB+MB-4P1L/2 

If the form of Eq. 4 is used, 

where 

M1 = M2 = Ms = M1 = Mc 

M3 = M4 =Ms= MB 

Au = A12 = Al6 = A11 = 0 

A1a = A1s = 1 

A14 = 2 

B11 =0 

B12 = 2L 

S1 = P2 

S2 = pl 

( 5) 

( 6) 

(7) 
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IP, 
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FAILURE MODES 

21 = Me+ 2Me+ Me -4P1 L/2 
22 = Mc+ 2Me+ Mc -4PiL/2 
23 = Me+ 2Me+Mc -4flL/2 
24 = Mc+ Mc+ Mc+ Mc- P2 L 
25 = Mc+ Me+ Me+ Mc-PzL 
26 = Mc+ Mc+ Me+ Mc-P2L 
27 = Mc+ 2Me+2Mc+Mc-P2L-4P1L/2 
28 = Mc+ 2Me+2Me+Mc-P2L-4P1L/2 

Fig. 1. Single Bent Frame. 

Then, the failure probability of the i-th mode, p 1;, is given as 

By paying attention to then-th event, Eq. 1 can be expanded to be 

( 8) 

where the symbol " n" signifies the intersection of the events. The last term on 

the right side in Eq. 9 is lowly limited by the probability of the occurrence of two 

events. 

where Fk is one of the events F; (i= 1, ... , n-1) 

Thus, the upper bound ofp1 can be reduced, that is, 

(10) 

( 11) 

To obtain the closest upper bound, one should select the value which maximizes 

the last term of inequality 11. When the expansion is continued, a simple formula 

presenting an upper bound can be obtained. 

(12) 
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Here, assuming a statistically complete dependence between each mode, the 

failure probability becomes as follows: 

(13) 

where F;w is the weakest mode. 

On the other hand, assuming a probabilistic independence, it can be expressed as 

(14) 

It is apparent that Eq. 12 givse a better upper bound than Eq. 14, because the 

value calculated by Eq. 12 is less than that by Eq. 14 by the value of its second 

term. 

When the failure modes do not have a strong dependence, Eq. 13 gives a value 

very far from the true solution. For such a case, the following equation may give 

a better result. 

(15) 

3. An Improvement on Evaluation of System Reliability 11> 

In the preceding section, the simple method is presented, which requires the 

probabilities that two events occur simultaneously. These probabilities can be 

obtained by introducing the inter-dependence between two modes through the 

coefficients of correlation. Using the approximate method developed by M. Tichy 

and M. Vorlicek,4> they can be calculated without integration. When P,(F;) 1s 

less than P,(F;), the probability of the occurrence of two events, F; and F;, is 

expressed as 

where r F;F;: the coefficient of correlation between F; and F; 

<p; = -log10 P,(F;) 

(16) 

(17) 

While the implementation of Eq. 12 needs only the failure probability of each 

mode and the coefficient of correlation, it may give a too conservative value for a 

case where the failure modes are considerably dependent. To examine the ac­

curacy of this method, an improvement on the lower bound is considered in this 

section. 

Eq. 1 can be rewritten in the terms of the intersections of the events as follows: 
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It is evident that in Eq. 18 any term has a greater value than those of the successive 

terms. Also, the former is influential on the latter. Generally, higher terms are 

truncated in the calculation, assuming that those have small values. However, 

this assumption is not true for some cases, and the case treated here •may be one of 

the exceptions. Therefore, we attempt to take additionally the third term of Eq. 

18 into account, in order to improve the approximation. In order to obtain this 

probability analytically, a simple mathematical model is proposed so as to estimate 

the probability of those events easily. 

Generally, the failure probability of the i-th mode is calculated as the negative 

region shown in Fig. 2. Then, the circle with the same area as this region is 

transferred to express the failure event F1 and a similar treatment is used for the 

remainders, F; and Fk. The probability of the occurrence of two events is given 

as the intersected region of two circles, as shown in Fig. 3. Also, the event that 

three modes occur at the same time can be specified as the shading part of Fig. 4. 

This procedure is summarized as follows: 

f (z;l 

Fig. 2. Failure Probability of the i-th Mode. 

Pr [Fi) 
Pr [Fi) 

Fig. 3. Probability of Two-Events-Occurrence Fig, 4. Expression of P,(F;nF,nFk)• 

Step 1 Specify the three circles, where their radii are determined by cor­

responding their areas to their failure probabilities. 

Step 2 The distances between each two circles can be obtained by making 

the overlapped section areas equivalent to those of the two-events-oc­

currence probabilities. 

Step 3 The three-events-occurrence probability can be calculated as the 

area of the induced curve-linear triangle. 
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It should be noted that the actual failure events can never be exactly expressed 

by that simple figure, which may have a complicated boundary. 

The two-dimensional model employed here may be insufficient to express 

some special cases. Nevertheless, it can be considered to give the inter-depen­

dence between three modes on the average, though it may include little physical 

meaning. 

The system failure probability, p1, is calculated by using the first to the third 

terms of Eq. 18. 

PtS tP,(F;)- 2J P,(F;nF;)+ 2J P,(F;nFjnFk) (19) 
i=l O<i<J<• O<i<J<t<• 

While this model is developed to improve the lower bound, the used equation will 

give an upper bound. It is natural that this approximation presents a conserva­

tive value when the model corresponds well to the actual event and the calculation 

is performed with a good accuracy. The obtained value will approach the true 

solution more closely, whether it is conservative or not. 

4. The Relation between Proposed Method and Ordering Method 

F. Moses and D. Kinser12)13) proposed the analysis method called the order­

ing method for estimating the over-all failure probability. By using the relation­

ship of mutually exclusive events, p I can be wirtten as 

While this equation covers all possible failure events of the entire system, it requires 

numerous computations. Its implementation can be performed only when the 

correlations among all modes are found. It is apparent that the following rela­

tion exists. 

(21) 

where k is one of numbers 1 through n-1. 

If k is selected as having the minimum value of P,(F; nFn) (i=l, ... , n-1), that is, 

•-1 

P,(FknF,.) = MinP,(F;nF,.) (22) 
i=l 

the difference between the left hand and the right hand of inequality 21 will be 
•-1 

the smallest. Now, the probability, Min P,(F; n F,.) can be rewritten by use of 
;=1 

the failure event F; as follows. 

(23) 



Safe/y Anab,sis and Minimum- Weight Design of Rigid Frames Based on Reliabiliry Concept 481 

Since P,(Fn) is constant, the minimum value is obtained when P,(F; n Fn) indi­

cates the maximum value. 

n-1 n-1 

Min P,(F; n F,.) = P,(F,.)-Max P,(F; n Fn) (24) 
i=l i=l 

Using Eq. 24, Eq. 20 can be approximately expressed as follows: 

2 n-1 

-Max P,(F, nF2))+··•+(P,(Fn)-Max P,(F; nFn)) 
i=l i=l 

(25) 

Thus, the relationship between the proposed method and the ordering method is 

clarified. Namely, they are equivalent, if the ordering method accepts the ap­

proximation as shown in Eq. 21. 

5. Minimum-Weight Design with Reliability Constraints14> 

In this section, the minimum-weight design of rigid frames is outlined, based 

on the reliability concepts. As F. Moses12> and others mentioned, the minimiza­

tion with a probability level moves the design away from having many active 

individual constraints. However, it is naturally anticipated that the safety analysis 

process will have more complicated and difficult features. The minimum-weight 

design procedure is formulated as follows: 

where 

Minimize W= KtA1L; 
;=1 

subject to 

A; : the cross sectional area of the i-th member 

L;: 

K: 
W: 

the length of the i-th member 

constant 

total weight 

m : number of members 

p fa: allowable failure probability 

(26) 

Then, according to Ridha's work16>, the cross sectional area can be expressed by 

the full plastic moment. 

A-= _!_(~)213 M.213 
I 3 s • I ,, (27) 

where S,; : the yielding stress of the i-th member 

M;: the full plastic moment of the i-th member 
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Taking M; as the design variable, this design problem is reduced to a nonlinear 

programming problem. The objective function is calculated from Eqs 26 and 

27, and the over-all failure probability Pt is obtained from Eq. 12. 

There is, however, a point to be careful about in the use of Eq. 12 for the 

minimum-weight design. While the cross sectional areas of members are pre­

scribed in the analysis, they are variables and are to be specified in the design 

procedure. Through the optimization, the dominant failure mode may move from 

one to others. Then, the ordering of possible modes is influential on the accuracy 

of Eq. 12. Its second terms (two-events-occurrence probabilities) are found to be 

the maximum value among those probabilities which are related to a failure mode. 

In this paper, the failure modes are successively ordered from those with the 

largest failure probability. Since this process is employed in each design stage, 

it will require some time for computing the data. 

6. Approximate Design Method Using Decomposition Technique 

As mentioned above, the minimum-weight design of rigid frames is reduced 

to a mathematical programming problem. Then, using Eq. 12 for the safety 

analysis, it is easily performed with the aid of an appropriate mathematical pro­

gramming technique. However, there still remain some problems in its direct ap­

plication to large structural systems. As the number of the failure modes in­

creases, the implementation of Eq. 12 will consume more time, especially in the 

calculation of the covariance matrices. This procedure, of course, does not require 

so many runnings different from the usual deterministic analysis. However, since 

this procedure appears many times in the design process, the total computation 

time will become enormous. 

In this paper, an approximation based on the decomposition concepts is 

introduced to remove the problem concerned with computation. It is not likely 

that all collapse modes will be critical for the deterministic design. While the 

critical modes are active as constraints, the remainders are not and they don't 

contribute to the resulting solution. If the active modes whose numbers are the 

same as those of the design variables are taken as the constraints, the optimum set 

of values on weight and design variables can be obtained. This can be under­

stood by corresponding the active modes to the "basis" of the coordinates of the 

design space. 

Here, paying attention to this fact, the possible modes are divided into two 

groups: a basic group and a non-basic group of modes, which correspond to the 

groups of active modes and non-active modes. It is, however, to be noted that 
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this explicit classification of modes is hardly allowed in the probabilistic design. 

This is because all modes contribute to the evaluation of a system failure probability, 

even if some of them are very small. Furthermore, since the probabilistic design 

has only one constraint, a sufficient number of modes is not explicitly determined. 

Therefore, the basic and non-basic modes can be expressed only by the terms of 

"dominant" and "indominant", respectively. 

The basic modes are possibly selected in the following way. If the modes, 

which have the larger probability and are less correlated, are chosen to be part of 

the basic modes, the resulting solution may show a good agreement with the exact 

one. Then, the failure probability of the entire system is calculated by neglecting 

the effects of the non-basic modes. 

(28) 

where Fb denotes the failure event induced by at least one of the basic modes. 

It should be noted that some treatment is necessary to use Eq. 28 for the 

design process, because it underestimates the failure probability. Assuming that 

the non-basic modes are independent of each other and uncorrelated to the basic 

modes, p I can be expressed as 

(29) 

where q and n denote the numbers of the basic modes and all modes, respectively. 

While the use of this equation removes the problem of underestimation, it still 

involves the problem of the execution time for the case of complex structures having 

a large number of non-basic modes. For such cases, it is a considerably prohibi­

tive task to calculate the failure probabilities of all the non-basic modes. Then, it 

is to be desired that safety is guaranteed without using the non-basic modes in the 

design process. 

E. Vanmarcke proposed an iterative design scheme for the design of large 

systems. At first, the design is performed by solving a relatively simple auxiliary 

problem in which only a set of basic modes are considered in computing system 

failure probabilities. Next, by changing the set of basic failure modes, new designs 

are successively generated. At every step, the upper bounds on the objective func­

tion are followed by solving the formulation: 

Minimize 

subject to 

objective function W 

Pt~P,a-P/ 
(30) 

where P/ can be found by subtracting P,(Fb) from the system failure probability 



484 Naruhito SHIRAISHI and Hitoshi FURUTA 

which was obtained by using the design variables of the earlier stage. This method 

is very useful, because it not only saves the core size and the execution time but 

also easily gives good solutions which satisfy the design requirement. However, 

it seems to have problems in convergency and applicability such as how many 

modes are appropriate for the basic modes, and when or by what the iteration 

should be terminated. If the structural system to be designed has more dominant 

modes than the employed basic modes, the resulting upper and lower bounds will 

not converge, and the modified allowable failure level may become negative for 

some special cases. 

In this paper, an iterative design method is proposed, based on Vanmarcke's 

method. An improvement of convergency is attempted. The number of basic 

modes is not fixed and new dominant modes are successively added as the design 

stage proceeds. The procedure is summarized as follows: (See Fig. 5) 

Add New 
Basic Modes 

READ: N • Number of Design 
(I) Variables 

Pia •Specified Allowable 
Failure Level 

SET : Possible Failure 
Mechanisms 

: Initial Values of 
Design Varlobles 

I• 0 

PERFORM : Failure Probability 
Analysis m 
Ohtaln Pf 
Find Basic modes 

PERFORM : Optimum Design for 
the Modified Allowable 
Failure Level 

NO 

NO 

Fig. 5. Flow-Chart: Iterative Design Scheme. 

1) Construct the possible failure mechanisms. Specify the number of basic 

modes as that of the independent design variables. Give the allowable 

failure probability level. Assume the initial values for the design vari­

ables. 
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2) Perform the failure probability analysis for the current set of design vari­

ables. Obtain the system failure probability and find the basic modes. 

3) Solve the problem: 

Minimize W (scaled weight) = :iJ M;L; 
i=l (31) 

where p ,_en is the modified allowable failure level. This value is obtained 

by using the modification factor a<1>. 

where 
P,.u> = p,_c1>.a<1>.a<2> ••. a<I-1) 

aU> = Pt.<1>/P,(F/ll) 
(32) 

(33) 

Introducing the modification factor a<1>, the allowable failure level is 

forced to converge to an appropriate value. 

4) If the improved design is not generated after two cycles, new basic modes 

are added for the next cycle. That number is found in the subsequent 

analysis by comparing the basic modes with those of the previous stage. 

If the design is improved, the basic modes are exchanged, but the number 

is unchanged. 

5) Upon proceeding to the iterative process, the final design is achieved 

when the basic modes are not changed, or the difference between the 

predetermined failure level and the calculated failure probability is suf­

ficiently small. 

7. Numerical Results 

To illustrate the validity or the accuracy of the analysis and design methods 

proposed in this paper, some test examples are presented. In all examples, the 

loads and resistances are assumed to be normally distributed, because of the easi­

ness of the treatment and the security of the central limit theorem. At first, the 

approximation method proposed by M. Tichy and M. Vorlicek4l is examined for 

some cases in which the ratio of P,(F;) and P,(F;) varies. The results are shown 

in Fig. 6 (a),_,(d), in which the abscissa is the coefficient of correlation. From 

these figures, this method seems to underestimate the joint probability density 

function when the probabilities of the i-th and j-th failure events have the same 

order, or their coefficient of correlation is greater than 0.8. For other cases, this 

method presents conservative values which are fairly close to the true solutions. 

Example 1 Reliability Analysis of Portal Frame 

This simple model is used to explain the proposed methods in detail. The 
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load condition and failure modes are illustrated in Fig. I. The applied loads P1 

and P2 are considered to be dependent and to have the mean values and the coef­

ficient of variation presented in Table I. 

Table 1. Reliability Analysis of Single Bent Frame 

a) Condition of Input Data 

Mean Value of Moment 
Resistance 

Mean Value of Load Coefficient of Variation 

(K-FT) Resist. 

40 0.5 1.0 0.2 

b) Calculated Probabilities of Failure 

Dependent I Lower Bound I 
(Eq 19) 

X 10- 2 

I 
X 10- 2 

I 0.808 0.920 

I 0.8 sec. I 

a):::::, 1.0 
N 

8 0.8 1.1.. 

>-
I-
in 0.6 z 
"' 0 

>-
I- Q4 :; 
iii 
<t 
a, 
0 0.2 a: 
0. 

I-z 
0 0.0 --, 

bl 1.0 

N 
. .: 0.8 
N 
U:: 
>- 0.6 I-
in z 
"' 0 
>- 0.4 
I-
:; 
iii 
<t 

0.2 a, 
0 

rf 
I-
z 
0 0.0 --, 

Simulation I Stevenson's M. Upper Bound I 
(Eq 12) 

x10- 2 

I 
x10- 2 X 10- 1 

0.958 0.886 0.100 

5 x 104 trials 
I 

1.9 sec. 0.8 sec. 

I 
I 

I 

/ 

Pr(Zi<0)=IO2 
I 

I 
-ExAcT I 

Pr(Zj<0)=I fl I FUNCTION I 
I ---- EMPIRICAL 

,' FUNCTION I 
I 

I , 
' 

0.6 0.8 1.0 
CoRRELATION COEFFICIENT 

Pr(Zi<0)= I 62 

-2 
Pr(Zj<0) = 0.75X I 0 

-ExACT 
FUNCTION 

---- EMPIRICAL 
FUNCTION 

0.6 0.8 1.0 
CORRELATION COEFFICIENT 

Fig. 6 

I 
I 

Load 

0.2 

Independent 

X 10- 1 

0.150 
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C) ~ 1.0~---------------, 

N 
N 
;:;:: 0.8 

~ 
-2 

Pr(Zi<O)=IO 
~ 0.6 
w 

0 
Pr(Zj<0)=0.5xl0

2 

-EXACT 
FUNCTION 

---- EMPIRICAL 
FUNCTION >-

j 0.4 

i 
ID 

l 0.2 

1-z 

~ 0.0 

d) I.Ob N 
N 0.8 
ii: -2 
>- Pr(Zi<O)=IO 
I- -3 
~ 0.6- Pr(Zj<O)=IO 
w 

0 

~ 0.4 
::; 

i 
ID l 0.2 

0.6 0.8 1.0 
CORRELATION CoEFFICIENT 

,/ 

I 
I 

I 

I 
I 

' I 
I 

' ' ' ' ,' 
I 

' I 
I 

I 
I 

I 
I 

' I 

' ' ' I 

-EXACT 
FUNCTION 

---- EMPIRICAL 
FUNCTION 

1-
z 

~ 0.0 

.,,,,,,," 
~~~ 

0.2 0.4 0.6 0.8 1.0 
CORRELATION COEFFICIENT 

Fig. 6. Comparison of Empirical and Exact Function. 
(Tichy's Method and Exact Solutions) 

Assuming the statistical independence and the complete dependence, the re­

sulting band is considerably wide, and the proposed method (Eq. 12) gives an 

upper bound which is closer to the true solution than Eq. 14. By using a circle 

model described in section 3, Eq. 19 presents a good lower bound. While the 

method by J. Stevenson shows a good agreement, it may lead to unconservative 

solutions, and also it requires twice the execution time of Eq. 12 in computing. 

(See Table I) 

Example 2 Reliability Analysis of One-Bay Two-Story Frame 

This model, whose geometry and applied load are shown in Fig. 7, is con­

sidered to have many dominant failure modes which are considerably inter-de­

pendent on each other. Then, the assumption of statistical independence will 

give a too conservative value. By taking the correlation of two failure events 

into account, the proposed method improves the upper bound effectively. (See 

Table 2 and Table 3) 
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Table 2. Reliability Analysis of Two-Story Single-Bay Frame (I) 

a) Condition of Input Data 

Case Mean Value Mean Value of Load Coefficient of Variation 
of Moment 

I Moment Resistance I No. Resistance P1 P2 Load 

1 40 1.0 0.5 0.2 0.2 

2 40 0.8 0.4 0.2 0.2 

3 40 0.6 0.3 0.2 0.2 

b) Calculated Probabilities of Failure 

Case Simulation 

No. 

l 

2 

3 

Dependent Independent Limit 
I Analysis 

0.118 
0.941 X 10- 1 0.462 

104 trials 

0.131 X 10- 1 

0.841 X 10- 2 0.369x 10- 1 

104 trials 

0.640x 10- 3 

0.271 X 10- 3 0.831 X 10- 3 

5 X 105 trials 

Proposed Method 
* Upper Value, by Tichys' Method 

Lower Value, by Numerical Integration 

Elastic J. Stevenson 

Analysis 

0.722 0.113 

104 trials 7.8 sec 

0.414 0.112 X 10- 1 

104 trials 7.2 sec 

0.109 0.587 X 10- 3 

104 trials 5.7 sec 

Table 3. Reliability Analysis of Two-Story Single-Bay Frame (II) 

a) Condition of Input Data 

No. 

1 

2 

Mean Value 
of Moment 
Resistance 

40(K-FT) 

40 

Mean Value of Load 

P 1 (K) 

1.0 

0.8 

I P2 (K) 

0.5 

0.4 

Coefficient of Variation 

Moment Resistance I 
0.1 

0.1 

Load 

0.1 

0.1 

b) Calculated Probabilities of Failure 

Simulation 
No. Dependent Independent Limit 

I 
Elastic J. Stevenson 

Analysis Analysis 

0.504x 10- 2
1 0.776 0.480xI0- 6 

1 0.425x 10- 2 0.969x 10- 2 

5 X 104 trials 104 trials 4.8 sec 

0.ll3x 10-s I 
I 

0.199 0.938x 10-s 
2 0.864x 10- 6 

IO trials4 3.2 sec 

P1, P2 

Dependent 

Dependent 

Dependent 

Proposed 
Method 

0.157* 

0.132 

2.5 sec 

0.160x 10- 1 

0.147 X 10- 1 

2.5 sec 

0.710x 10- 3 

0.649x 10-3 

2.5 sec 

P1, P2 

Dependent 

Dependent 

Proposed 
Method 

0.515 X 10-s 

2.5 sec 

0.961 X I0- 6 

2.5 sec 
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Table 4. Reliability Analysis of Two-Story Single-Bay Frame (III) 

Mean Value Lower Proposed M. Proposed M. of Moment Dependent Bound by (Lower Simulation (Upper Bound) Resistance Eq. (19) Bound) 

60 
0.355x 10- 2 0.947x 10- 2 0.ll2 x 10- 1 0.121 X 10- 1 0.138xl0-l 

(4.61 X 04 tri) 

70 I 0.123 X 10- 2 10.375 X 10- 2 0.375 X 10- 2 10.380 X 10- 2 1 0.400x 10- 2 

(4.6 X 104 tri) 

Mean Value of Load: P 1 =1.0(K) P=0.5(K) 

f-,--- 200 (_F_T)_-<>t1 

T 

100 
_LIFT) 

Fig. 7. Two-Story Single-Bay Rigid Frame. 

Independent 

0.170x 10- 1 

0.407 X 10- 2 

The failure probability decreases and approaches the result obtained by as­

suming the statistical independence, as the mean value of the load decreases. 

This phenomena can be explained by the fact that the coefficient of correlation 

between each mode becomes smaller according to the decrease of the load. How­

ever, this tendency accompanied with the decrease of failure probability is not 

observed when the coefficients of variation of the load and resistance decrease. 

The approximate solution by the method of M. Tichy and M. Vorlicek is com­

pared with the exact solution for this model to show that this method always pre­

sents conservative values. Its application can be considered useful for ordinal 

structures, because it can save the execution time by the elimination of numerical 

integration. Next, the failure probabilities are calculated for those cases in which 

the moment resistances have 60 and 70 (K-FT) as mean values. Then, the nu­

merical results are summarized in Table 4, including the results of the improving 

method proposed in section 3. 

This method is considered to improve the lower bound. In the calculation 

process, the curve-linear triangles, which correspond to three-events occurrence 
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probabilities, are approximated by the linear triangles, in order to save the execu­

tion time and make the programming simple. In spite of this approximation, this 

method gives lower bounds very close to the solutions obtained by the Monte Carlo 

simulation. However, this method seems to have the possibility of presenting 

greater values for cases where the difference between the curve-linear triangle and 

the linear triangle is small, or the estimating method for the two-events-occurrence 

probability presents values that are too conservative. Nevertheless, these results 

show good agreement with the true solutions. 

Example 3 Reliability Analysis of Two-Bay One-Story Frame 

In this model, the beam mechanism can be considered to be the most domi­

nant mode, and to have less correlation among the modes. (See Fig. 8) Table 5 

r--150 
(FT) 

1/ 

P, 

150 =--4 
(FT) 

Fig. 8. One-Story Two-Bay Rigid Frame. 

T 
100 
J_(FT) 

Table 5. Reliability Analysis of One-Story Two-Bay Frame 

a) Condition of Input Data 

Mean Value Mean Value of Load Coefficient of Variation 
No. of Moment 

I I 
Resistance P 1 (K) P2 (K) Moment Resistance Load 

1 

I 
40(K-FT) 

I 
1.0 

I 
0.5 0.2 

I 
0.2 

2 40 1.0 0.5 0.2 0.2 

b) Calculated Probabilities of Failure 

Simulation 
No. Dependent Independent Limit 

I 
Elastic J. Stevenson 

Analysis Analysis 

0.158x 10- 1 0.736x 10- 1 0.162 X 10- 1 

I 0.808x 10- 1 0.200x 10- 1 

5 X I 04 trials 5 X 104 trials 4.2 sec. 

0.158x 10- 1 0.163 X 10- 1 0.163xl0- 1 

2 0.808x 10- 2 0.199x 10- 1 

0.610x 10- 1 5 X I 04 trials 3.6 sec. 

Pi, P2 

I 

Dependent 

Independent 

Proposed 
Method 

I 
0.169x 10- 1 

1.8 sec. 

I 
0.169x 10- 1 

1.8 sec. 
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shows that all solutions are almost equal, excepting those obtained by assuming 

complete dependence or independence. Considering the matter of less calcula­

tion time, the proposed method is also useful for this case, though Stevenson's 

method presents the closest value to the true solution. 

Example 4 Minimum-Weight Design of Portal Frame 

By using the proposed analysis method, a simple portal frame, shown in Fig. 

1, is designed to minimize its total weight or its cost with some specified allowable 

failure probability levels. The obtained results are shown in Tables 6 and 7, and 

compared with the results obtained by J. Stevenson as well as the results based 

on the assumption of the independence of the failure modes. The probability of 

Table 6. Input Data for Single Bent Frame Optimum Design 

L=lO FT 

Start (K-FT) Load (K) Coefficient of Variation Prob. of Failure 
No. 

I Mo MB P1 P2 Mo MB P1 P2 to be allowed 

1 220 260 30 20 0.10 0.10 0.10 0.10 0.08 

2 320 360 30 20 0.10 0.10 0.10 0.10 0.008 

3 320 360 30 20 0.10 0.10 0.10 0.10 0.0008 

4 380 420 30 20 0.10 0.10 0.10 0.10 0.00008 

5 320 360 30 20 0.10 0.10 0.05 0.05 0.0008 

6 320 360 30 20 0.10 0.10 0.15 0.15 0.0008 

7 320 360 30 20 0.10 0.10 0.20 0.20 0.0008 

each failure mode is affected by its mean value and variance. For example, the 

failure modes, Z 1 and Z2, have nearly equal central safety factors, but their failure 

probabilities have a relatively large difference. This is due to the difference of 

their variances. Then, one will reach the conclusion that the number of inde­

pendent design variables, which are included in the failure modes, is very im­

portant in the probabilistic design. Therefore, the failure modes which are con­

sidered to be dominant in the deterministic design do not always become dominant 

from the probabilistic point of view. 

Table 8 indicates the failure probabilities calculated by the proposed method 

and Stevenson's method. The proposed method gives a greater value than Ste­

venson's method. The reasons are that Stevenson's method does not have the 

security of safety, and the assumption adopted in his work is not adequate, except 

for the case where the effect of variance is sufficiently small compared with the 

difference of the mean values. 
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Table 7. Numerical Results of Single Bent Frame Example 

a) Optimum Solutions 

Case I Final (K-FT) 
Object Prob. of Prob. of Failure 

No. I Ma I MB Function Failure (Independent) 

1 171.12 188.01 197.41 0.888x 10- 1 0.163 

2 178.95 219.14 213.61 0.800x 10-2 0.160x 10- 1 

3 195.06 241.68 227.66 0.798x 10-3 0.149x10-2 

4 190.51 247.72 240.07 0.798Xl0-S 0.124 X 10-3 

5 168.98 229.61 215.99 0.800x 10-3 0.142 X 10-2 

6 208.63 266.66 241.36 0.800x 10-3 0.151 X 10-2 

7 238.48 285.19 256.05 0.798x 10- 3 0.157x 10-2 

b) Failure Probabilities of Individual Modes 

Case I 
No. 

1 0.573 X 10-2 0.572 X 10- 1 0.543x 10- 1 0.0 0.0 0.0 0.218 X 10-2 0.183x 10-2 

2 0.463 X 10-2 0.653 X 10-2 0.472 X 10-2 0.0 0.0 0.0 0.ll5x 10-3 0.479x 10- 4 

3 0.635x 10- 3 0.416 X 10- 3 0.434x 10-3 0.0 0.0 0.0 0.207 X 10-s 0.137x 10-s 

4 0.339x 10- 4 0.577 X 10- 4 0.319x 10- 4 0.0 0.0 0.0 0.358 X 10- 6 0.745x 10- 7 

5 0.499x 10-3 0.497 X 10-3 0.413x 10-3 0.0 0.0 0.0 0.720x 10-s 0.256x 10-s 

6 0.413 X 10- 3 0.669x 10- 4 0.425x 10-3 0.0 0.0 0.0 0.459x 10-s 0.145Xl0-S 

7 0.547 X 10-3 0.551 X 10- 4 0.469x 10-3 0.0 0.0 0.0 0.225x 10-s 0.124x 10-s 

c) Safety Factors for Mean Load and Moment Re5istance 

Case 

I 
Z1 

I 
Z2 Za 

I 
Z4 

I 
Zs 

I 
z6 

I 
Z1 

I 
Zs No. 

l 1.25 1.20 1.22 3.42 3.59 3.51 1.33 1.37 

2 1.46 1.32 1.39 3.57 3.97 3.77 1.44 1.54 

3 l.61 1.46 1.53 3.90 4.37 4.13 1.58 l.70 

4 l.83 1.55 l.69 3.81 4.65 4.23 l.64 l.85 

5 1.53 1.33 1.43 3.38 3.98 3.68 1.42 1.57 

6 1.78 1.58 l.68 4.15 4.74 4.45 l.70 l.85 

7 l.90 l.75 l.82 4.77 5.24 5.00 l.91 2.02 

Table 8. Optimum Solutions Calculated by Stevenson's Method 

Final (K-FT) Object Prob.of Failure 
Case No. Function 

Ma MB J. Stevenson Proposed Method 

2 

I 
196.38 

I 
196.89 

I 
207.68 

I 
0.765xl0-l 0.325 X 10- 1 

3 215.45 213.07 219.57 0.762x10-3 0.831 X 10-2 



Safety Anarysis and Minimum- Weight Design <if Rigid Frames Based on Reliabilifv Concept 493 

Example 5 Optimum Design of Two-Story Single -Bay Frame 

A model similar to Example 2 is employed to demonstrate the approximate 

design method based on the decomposition concept. The optimization is per­

formed by the SUMT incorporating Powell's direct search technique, which does 

not require the derivatives of the functions. The possible modes are divided into 

basic and non-basic modes. This model has more than fifty collapse mechanisms. 

It is difficult to specify the appropriate basic modes at the start of the design pro­

cess, because the dominant modes may change at any stage of the optimization. 

Here, their selection is automatically carried out at each design stage. 

At first, the example frame model is designed by using Eq. 29 in computing the 

system failure probability. Then, sixteen modes are used for the basic ones. 

While this method needs less calculation time than the entire mode design, it 

gives a heavier design. (See Table 10) 

Next, according to Vanmarcke's method, some designs are generated, where 

8 and 16 are employed as the number of basic modes so as to investigate its in­

fluence. As shown in Table 9, Table 10 and Fig. 9, infeasible designs are generated 

Iteration 
Number 

l 

2 

3 

4 

5 

6 

pf w 

0.011 

0.010 

0.009 

49000 

48900 

48800 

Entire Design 

SCALED WEIGHT 

-~--
Prescribed 
Allowable Pf 

FAILURE PROB. 

2 3 4 5 6 Iteration 
Number 

Fig. 9. Convergency of Decomposition Method. 

Table 9. Approximate Design with 8 Basic Modes (Vanmarcke's method) 

I 
X1 X2 I Xa I 

x, 
I 

Scaled Weight Failure Prob. 

69.83 39.12 62.73 62.53 46,842 0.015916 

75.95 43.26 71.00 71.78 52,398 0.005117 

69.54 41.14 65.23 61.28 47,438 0.013771 

74.12 41.34 67.55 67.64 50,132 0.007790 

69.54 41.14 65.23 61.28 47,438 0.013771 

74.12 41.34 67.55 67.65 j0,132 0.007790 

X 1~X4 : Design variables which mean moment resistances (K-FT) 
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Table 10. Numerical Results of Two-Story Single-Bay Frame Design 

a) Decomposition Method (Vanmarcke's method) 

Iter. No. I X1 

1 73.26 41.63 65.57 63.48 

2 72.Q7 40.42 66.91 65.49 

3 74.72 40.61 64.60 64.41 

4 73.89 38.96 68.08 64.69 

5 74.71 40.70 64.61 64.41 

6 75.31 40.58 66.21 62.14 

b) Entire Mode Design 

Entire D. I 71.69 I 40.79 67.25 I 64.93 I 

c) Approximate Method (Based on Eq. 29) 

Appr. D. I 79.52 I 38.98 I 66.30 I 65.53 I 

d) Proposed Iterative Method 

Iteration I X1 

I 63.02 33.54 61.38 62.20 0.010000 

2 55.63 67.75 58.40 49.97 0.026910 

3 91.11 0. 91.03 91.91 0.000692 

4 69.83 39.12 62.73 62.53 0.010000 

5 71.28 42.85 68.30 67.72 0.006283 

6 74.39 39.21 65.73 65.41 0.007991 

7 72.09 39.36 68.08 65.31 0.007826 

8 71.17 42.56 64.80 66.39 0.007861 

9 70.32 42.82 64.31 62.35 0.010000 

10 77.52 40.22 65.60 65.51 0.008256 

11 71.08 41.81 66.43 63.07 0.009539 

12 73.57 40.90 64.24 65.89 0.009466 

13 73.57 40.89 64.33 65.93 0.009465 

X;: Mean Plastic Moment of Member (K-FT) 
i=I, 3: Beams of Upper and Lower Stories 
i=2, 4: Columns of Upper and Lower Stories 

Object Fune. Failure Prob. 

48,788 0.0102509 

48,978 0.0099098 

48,868 0.0102136 

49,002 0.0099248 

48,886 0.0101669 

49,020 0.0099342 

Cal. Time 20 sec./iteration 

48,932 0.0099925 

Cal. Time 150 sec. 

49,066 0.0099558 

Cal. Time 120 sec. 

I 
Scaled I No. of 
Weight Basic Mode 

0.037163 44,628 4 

0.038872 46,350 4 

1.282900 54,808 4 
0.015916 46,842 8 
0.007913 50,030 8 
0.010147 48,948 8 
0.010189 48,968 8 

0.009705 48,984 8 

0.012112 47,960 12 

0.008656 49,770 12 

0.010073 48,878 12 

0.010008 48,920 12 

0.009953 48,944 12 

Cal. Time 118 sec. 

at the first design cycle. These are induced by the lack of effects of the non­

basic failure modes. Next, upper and lower bounds on weight are produced in 

turn, and they are conservative and unconservative, respectively. In both cases, 

safety is examined by calculating the system failure probability with an analysis 
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of all the modes. 

For the case of 16 modes, the following items are observed from Table l l. 

The approximate method requires only 20 seconds of computation for one itera­

tion, while the complete mode design requires 150 seconds. Also, the results show 

acceptable values on weight, though the obtained values are slightly different in 

design variables from the exact values. Among the feasible designs, the second 

design shows the least weight, which is only 0.1 per cent heavier than the entire 

mode design. Other designs have larger failure probabilities than this design in 

spite of heavier weights. This fact may imply that the optimization for this pro­

blem is very sensitive to the change of the allowable failure level. It may also 

imply that the induced constraint surface does not have the distinct vertices which 

are observed in linear programming problems. , The design space obtained for a 

two-variable problem indicates this tendency. (See Fig. 10) 

MC(K-FT) 

300 

250 

200 

150 

100 

50 

-- Pllo!'oSED METHOD 
--DEs1GN Cosrs 

I I 1 

0 150 200 250 300 350 400 
Me CK-FT) 

Fig. 10. Design Space of Single Bent Frame. 

Taking 8 as the number of basic modes, this method does not give good solu­

tions, for which the iterative procedure is terminated after four cycles, because the 

solutions hitherto begin to diverge as shown in Table 10. Then, there are con­

siderably large gaps on the weights of the upper and lower bounds. The accuracy 

of the decomposition method is explicitly dependent on how to select the basic 

modes. 

Table 10 (d) presents the results obtained by the proposed iterative method. 

The design starts with the same number of basic modes as that of the independent 

variables. (i.e. 4) After three iterations, four modes are newly added to the basic 

modes. After five more cycles, the number is changed to 12, and an acceptable 
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design is generated at the 13th cycle. This method requires 118 seconds in com­

putation, but the calculation time can be reduced by starting from more basic 

modes. The first three steps contribute nothing to the final design, and they 

should be eliminated. Also, this method gives a good design with only 8 basic 

modes. The obtained design is only 0.03 per cent heavier than the entire mode 

design. The convergency may be improved by introducing the modification factor. 

8. Conclusions 

This paper treats the safety analysis and the minimum-weight design of rigid 

frames based on reliability concepts. The improvements on the upper and lower 

bounds of system failure probability are attempted by considering the correlations 

between two or three failure events. Through this investigation, one may reach 

the following conclusions: 

1) A simple mathematical model proposed herein proves to be acceptable for 

the rigid framed structures treated in this paper. A very close failure prob­

ability can be obtained by considering the effect of three-events-occurrence 

on the average. However, this method seems to be more suitable for examin­

ing the availability of the proposed method presenting an upper bound, be­

cause it consists ofrelatively complex procedures. For that reason, it requires 

more execution time than the latter. 

2) By taking the failure probability as the index of safety, the minimum-weight 

design can be reduced to a mathematical programming problem with only 

one constraint, or to an unconstrained optimization problem. Many designs, 

whose weights are very close to the optimum one, are obtained through the 

optimization. This can be seen in the deterministic bridge design with the 

deflection constraints. If these designs are accepted as approximate solu­

tions, the minimum-weight design will become simple and practical by 

utilizing the advantage that many various constraints can be reduced to 

one constraint. 

4) The use of the decomposition technique makes the proposed method effec­

tive in the redesign procedure. The classification of failure modes can 

clarify their contributions to the system failure. Conservative approximate 

designs can be obtained by using parts of possible modes. If a sufficient 

number of modes is taken as basic modes, the iterative scheme proposed by 

E. Vanmarcke is considered to be suitable. It can save the core size and 

make the calculation inexpensive. The iterative method proposed herein 

has similar merits. This method is superior to Vanmarcke's method with 
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regard to convergency and applicability. There, the modified allowable 

failure level is forced to converge and the appropriate number of basic 

modes is sought for in the program. 
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