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Construction of Lur'e Type Lyapunov Function 
with Effect of Magnetic Flux Decay 

By 

Naoto KAKIMOTO*, Yasuharu 0HSAWA*, and Muneaki HAYASHI* 

(Received December 27, 1978) 

Abstract 

In this paper a generalized stability criterion for a system with multi-argument non­
linearities is derived. The new criterion is based on M. A. Pai's work, and is proved along 
B. D. 0. Anderson's criterion. The new criterion enables us to construct a Lur'e type 
Lyapunov function in a systematic way. The new criterion is applied to a multi-machine 
power system with magnetic flux decays of generators. A new Lyapunov function is 
constructed in a well known manner established by J. L. Willems and other researchers. 
The new Lyapunov function is similar to the one which has already been obtained for a 
system without the magnetic flux decays, except for a few points which will affect a transient 
stability of the system. 

Nomenclature 

n: number of generators in a system. 

YiiLcp;;: post-fault short-circuit transfer admittance between the ith andjth generator 

nodes (obtained after reduction of a network retaining only generator nodes). 

B;;: Y;; sin (cf,;;), post-fault short-circuit transfer susceptance between the i'th and 

jth generator nodes. 

G;;: Y;; cos (cf,ii), post-fault short-circuit transfer conductance between the ith and 

jth generator nodes. 

8;;: complement of the short-circuit transfer admittance angle cf,;;. 

m;: angular momentum constant of the ith generator. 

d;: damping power coefficient of the ith generator. 

Pm;: mechanical power input of the ith generator. 

P,;: electrical power output of the ith generator. 

EI a; : field voltage of the ith generator. 

* Department of Electrical Engineering 
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i4;: d-axis current of the ith generator. 

ie;: q-axis current of the ith generator. 

X4;: d-axis synchronous reactance of the z'th generator. 

Xei: q-axis synchronous reactance of the t'th generator. 

X4/: d-axis transient reactance of the ith generator. 

T 40;': d-axis transient open-circuit time constant of the t'th generator. 

E;: internal voltage behind transient impedance of the ith generator. 

E 0;: post-fault stable equilibrium internal voltage of the z'th generator. 

8;: angle of the rotor shaft of the z'th machine in electrical radians, relative to a 

reference frame rotating at synchronous speed. 

8°;: post-fault stable equilibrium angle of the ith generator. 

8;;: 8;-8;, difference between rotor angles of two generators. 

w;: angular velocity of the rotor shaft of the ith generator, relative to the steady­

state speed. 

8: n-dimensional angle vector. 

8,: (n-1)-dimensional relative angle vector. 

w : n-dimensional angular velocity vector. 

M: diag(m1), system inertia constants matrix. 

D: diag(d;), system damping coefficients matrix. 

a: diag(a;), internal voltage attracting coefficients matrix. 

(1: diag(P;), internal voltage disturbing coefficients matrix. 

I, 0: identity and null matrices. 

prime implying the transposition of the vector or the matrix. 

1. Introduction 

There has been much progress in Lyapunov's direct method for a transient stability 

analysis of an electric power system in the past decade. In 1968, B. D. 0. Anderson 

and J. B. Moore derived a generalized Popov's criterion, which made it possible to con­

struct a Lur'e type Lyapunov function for a system with multiple non-linearities in a 

systematic manner. 1> In 1970, J. L. Willems applied this criterion to a model of a multi­

machine power system with damping torques of generators for the first time. 2> Several 

researchers followed and refined his work3- 5>. The obtained Lyapunov function is 

suitable for estimating the transient stability region. It is important that the construc­

tion method is systematic, and that it is applicable to more complicated systems for which 

the construction methods based on the intuitive considerations will fail. At present, 

however, its application is limited to a very simple system model, because Anderson's 

criterion is applicable only to a system with single-argument non-linearities. 

It is desired to improve a mathematical model and to construct new Lyapunov 
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functions to include a magnetic flux decay, an automatic voltage regulator (A VR), etc. 

The magnetic flux decay of a generator narrows the transient stability region. On the 

other hand, an A VR operates so as to keep a terminal voltage of the generator constant, 

and improves the transient stability. Hence, their effects are important for the stability 

analysis. Inclusion of the flux decay and A VR to the system model needs a new stability 

criterion for a system with multi-argument non-linearities. 

For a one-machine power system, the effects of the magnetic flux decay and A VR 

have been included in the Lyapunov function in several ways. 6- 8> Among them, M.A. 

Pai and V. Rai8> expanded Popov's criterion to a system with multi-argument non­

linearities, and applied their criterion to a one-machine power system with the flux decay 

and voltage regulator. The Lur'e type Lyapunov function was systematically construct­

ed. Their criterion is applicable not only to a one-machine power system but also to a 

multimachine power system. However, their system model is more of a particularized 

form, and it is convenient to derive a new criterion for a general system model before 

applying the criterion to a multimachine power system. 

In this paper, Pai's criterion is generalized to a new stability criterion, which is prov­

ed that it is valid along Anderson's criterion. The new criterion is, of course, applicable 

to a system with multi-argument non-linearities. It is applied to a multi-machine power 

system with magnetic flux decays of generators. A Lur'e type Lyapunov function is 

constructed in a well-known manner established by J. L. Willems, 2> M.A. Pai and P. 

G. Murthy, 3> and V. E. Henner. 4> The obtained Lyapunov function has an additional 

term which represents the magnitude of the flux decays. If the fluxes are assumed to 

be constant, then the Lyapunov function reduces to the one which is constructed under 

an assumption of the constant flux. 

The new stability criterion is also applicable to a system with an automatic voltage 

regulator, or to more complicated systems, which is described in another paper. 

2. Stability criterion 

The non-linear systems considered here are those where the system is of the form 

shown in Fig. 1. The Lyapunov stability is considered, and so the inputs are not indi­

cated. The matrix W(s) is an m X m matrix of stable rational transfer functions, 

assumed to be such that 

W(co)=0 (1) 

The non-linearities F(a) are assumed to satisfy the following conditions9>: 

1) F(a) is continuous and maps Rm into R'". 

2) For some constant real matrix N, 

F(a)'Na~O for all aER'" (2) 
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W{s) 

a 

Fig. 1. Nonlinear system model 

and 

F(a)=O if a=O (3) 

3) There is a function Vi E C1 mapping Rm into R such that 

for all aERm (4) 

and 

Vi(a)=0 if a=O (5) 

and for some constant real matrix Q 

17Vi(a) =Q' F(a) for all aERm (6) 

The stability criterion for the above system is given as follows: 

Theorem 

If there exist real matrices N and Q such that 

Z(s) =(N + Qs) W(s) (7) 

is positive real, then the system shown in Fig. 1 is stable, where (N+Qs) does not cause a 

pole-zero cancellation with W(s). 

Before proving the theorem, it is necessary to introduce the lemma by B. D. 0. 

Anderson. 10> 

Lemma (B.D.O. Anderson) 

Let Z(s) be a matrix of rational transfer functions such that Z ( oo) is finite and Z(s) 

has poles which lie in Re s<O, or are simple on Re s=O. Let (A,B, C) be a minimal 

realization of Z(s)-Z(oo). Then Z(s) is positive real if and only if there exist a sym­

metric positive definite matrix P and matrices Wo and L such that 

PA+A'P=-LL' 
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PB=C-LWo 

Wo'Wo=Z(oo)+Z'(oo) 

With the aid of this lemma, the theorem is proved. 

Proof of Theorem 

(8) 

The transfer function W(s) possesses a minimal realization (A, B, C), which is a set 

of three constant matrices satisfying 

W(s)=C'(sI-A)- 1B 

An expansion of Z(s) in terms of A, Band C gives 

Z(s)=(N+Qs) W(s) 

=NC'(sI-A)-1B+QC'[(sI-A)+A] (sI-A)- 1B 

=QC'B+(NC'+QC'A) (sI-A)-IB 

(9) 

(10) 

and we see that since Z(s) is positive real, Anderson's lemma can be applied to the triple 

(A, B, CN'+A'CQ'), which is a minimal realization of Z(s)-Z(oo). Thus, there exist 

a positive definite symmetric matrix P, and matrices L and Wo such that 

PA+A'P=-LL' 

PB=CN' +A'CQ' -LWo 

Wo'Wo=QC'B+B'CQ' 

Consider as a tentative Lyapunov function for the system of Fig. 1: 

(ll) 

V(x)=x'Px+2Vi(a) (12) 

where x is the state vector of the system. Observe that the positive definiteness of P 

and the positive semi-definiteness of Vi(a) ensure that V(x) is positive for every nonzero 

x. Differentiating V(x) gives 

V(x)=x'Px+x'Px+217Vi'(a)a 

=(x' A' -F(a)' B')Px+x'P(Ax-BF(a)) 

+2F(a)' QC'(Ax-BF(a)) 

=x'(PA+A'P)x-2x'(PB-A'CQ')F(a) 

-F(a)'(QC'B+B'CQ')F(a) 

=-x'LL'x+2x'LWoF(a)-2x'CN'F(a)-F(a)'Wo'WoF(a) 

=-(x'L-F(a)'Wo') (L'x-WoF(a))-2F(a)'Na (13) 

The first term is plainly non-positive, and the non-negative nature of F(a)' Na ensures 

the non-positivity of the second term. Accordingly, V(x) proves to be non-positive. 

This completes the proof. 
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3. System equation 

Consider an n-machine power system with the magnetic flux decays of the genera­

tors. Under the usual assumptions made in the power system transient stability analysis, 

and neglecting the short-circuit transfer conductances, the motion of the rotor of the ith 

generator is described by the second-order equation 

m· d 281 +d· da; =~B-·(E-DE-Osin8··0 -E-E·sin8··) 
' dt2 ' dt f~1 '' ' ' '' 1 

' ' ' 

for i=l, 2, ... , n (14) 

and the change of the internal voltage of the ith generator is described by the first order 

equation 

dE; ft 

--:y-= -a1(E1-E1°)-P1 'EB1;Eicos 8;;0-cos 8;;) 
a/ j=l 

for i=l, 2, ... , n 

where a; and P1 are defined by eq. (A9) (Appendix A). 

The following (3n-1) quantities are selected as the state variables. 

8,;=81(i+l)-81 O(i+ll 

w;=8; 

'1E1=E1-E0 ; 

Then the state vector is given by 

x=[8,', w', .1E']' 

for i=l, ... , n-1 

for i=l, ... , n 

for i=l, ... , n 

The state equation of the system is given by 

x=Ax-BF(a) 

a=C'x 

where 

[

o K' ft(N-1) o l 
A= 0 -M-1.Du 0 

0 0 -au 

[

G(ft-l)ffl O l 
C= 0 O 

0 Iu 

in which 

(15) 

(16) 

(17) 

(18) 

(19) 
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[ 
h<•-1> 

T.m= 
-I(n-l)(n-1) 

(20) 

and there is a relation as 

(21) 

The row vector h<•-1> and 01(m-n+ll has all its elements equal to unity and zero, respec­

tively, and m=n(n-l)/2. 

The non-linearity F(a) consists of two vectors. 

The non-linearity /1(a) is an m-vector 

Ju(a)=B;; {E;E; sin(ak+o;;0)-E;0E;0 sin O;;O} 

for i,j=l, 2, ... , n, k=l, ... , m 

where k is related with i and j by 

k=(i-l)n-z'(i+l)/2+}, 

The non-linearity /2(a) is an n-vector 

• 
J2;(a)='E,B;;E;(cos o;;0-cos o;;) 

j=l 

for i=l, 2, ... , n 

The output a is an (m+n)-vector defined by 

for z'<j 

a1,=0;;-0;;0 

am+i=E;-E;0 

for k=l, 2, ... , m 

for z'=l, 2, ... , n 

(22) 

(23) 

(24) 

(25) 

(26) 

where k is related with i andj by eq. (24). Eq. (18) describes the multi-machine power 

system as a multivariable dynamical system with a linear element in the forward path, 

and multiple, memoryless and coupled non-linear elements in the feedback path. 

4. Determination of positive real matrix 

The transfer matrix W(s) for the linear part of the system in eq. (18) is 

W(s)=C'(sI-A)-1B (27) 

where A, B, C in eq. (19) is the minimal realization of W(s) (Appendix B). To apply 

the theorem derived in section 2, we have to find matrices N and Q such that 

Z(s)=(N+Qs) W(s) (28) 
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is positive real. The matrices N and Q also have to satisfy the conditions for the non­

linearity F(a). In this problem, matrix N is chosen;as 

(29) 

to satisfy eq. (2) because the term F'(a)Na can have negative values in some region 

around the origin, for example, for a positive diagonal matrix N. 8> To determine 

matrix Q, we choose function Vi(a) in eq. (4) as 

(30) 

where i, j and k are related by eq. (24). , The partial derivative of Vi(a) is given 

as follows: 

o"JVi =B;;{E;E; sin(a.+8;;0)-E;0E;0 sin8;;0} 
UU/r 

/11r(a) for k=l, ... , m 

n 
~ B;;E;(cos 8;;0-cos 8;;) 
j=t 

for i=l, ... , n 

Eq. (31) and eq. (32) are unified to 

[
Imm 

LI Vi(a)= 
0 

Accordingly, matrix Q in eq. (6) is 

(31) 

(32) 

(33) 

Q=I<m+n>tm+n) (34) 

Z(s) in eq. (28) with Nin eq. (29) and Qin eq. (34) must be positive real. Substituting 

eq. (19) for matrices A, Band C into eq. (27), the transfer matrix is 

(35) 

Substituting eq. (29), eq. (34) and eq. (35) into eq. (28), we obtain 

Z(s)= [

T'(sI+M-tD)-1M-1T O ] 

0 s(sI +a.)-1p 
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(36) 

where Z1(s) and Z2(s) are defined in an explicit way, and are symmetric matrices. 

The conditions for Z(s) to be positive real are 

1) Z(s) has elements which are analytic for Re s>O, 

2) Z*(s)=Z(s*) for Re s>O 

3) Z'(s*)+Z(s) are positive semi-definite for Re s>O 

The first two conditions clearly hold. For condition 3) to be satisfied, it is sufficient to 

show that Z(jw)+Z'(-jw) are positive semi-definite for each real scalar w. Since Z(s) 

is a direct sum of Z1(s) and Z2(s), Z1(s) and Z2(s) are investigated independently of each 

other to determine whether they are positive real. Replacing s withjw in eq. (36) for 

Z1(s) and Z2(s), we obtain the positive semi-definite matrices 

Z 1(jw)+Z1'(-jw)=T'diag( m;2:/+d;2 ) T 

Z2(jw)+Z2' (-jw)=diag( 2P;2 
2

) 
· w 2 a; 

(37) 

(38) 

Hence, the matrices Z1(s) and Z2(s) are both positive real, which guarantees that the 

matrix Z(s) in eq. (36) is positive real, and accordingly that the system of eq. (18) is 

stable. 

5. Construction of Lyapunov function 

Since the positive real matrix Z(s) is established, there exists, for the system of eq. 

(18), the Lyapunov function 

V(x)=x'Px+2 Vi(a) (12) 

where Pis a (3n-1) X (3n-1) positive definite symmetric matrix satisfying the matrix 

equations 

PA+A'P=-LL' 

PB=CN' +A'CQ' -LWo 

Wo'Wo=QC'B+B'CQ' 

(11) 

where L and Wo are (3n-1) X (m+n) and (m+n) X (m+n) auxiliary real matrices. 

As Z(s) is positive real, there exists a matrix Y(s) such that 

Z(s)+Z'(-s)= Y'(-s) Y(s) (39) 

where Y(s) is the (m+n) X (m+n) matrix, and Y(s) has a minimal realization (A, B, 

L), i.e., 
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Y(s)-Y(oo)=L'(sI-A)- 1B (40) 

and Wo in eq. (11) is given by 

Wo=Y(oo) 

(Appendix C). 

(41) 

Since W(s) in eq. (35) is a direct sum of W1(s) and W2(s), and Z(s) in eq. (36) is a 

direct sum of Z1(s) and Z2(s), the positive definite matrix Pis expressed as a direct sum 

of the positive definite matrices P1 and P2, where P1 and P2 are the (2n-1) and nth 

order, respectively. The transfer matrix W1(s) is rewritten as 

where A1, B1 and C1 are defined by 

P1A1+A1'P1=-L1L1' 

P1B1=A1'C1Q1' 

The matrices P1 and L1 are partitioned as 

(42) 

(43) 

(44) 

(45) 

where Pu, Pa, Pu and P22 are (n-l)X(n-1), (n-l)Xn, nx(n-1) and nxn mat­

rices, and Lu, La are (n-l)Xm and nxm matrices, respectively. Substituting eq. 

(43) for A1, B1 and C1 into eq. (44), we obtain 

and 

0=-L11L11' 

PuK' -P12M-1.D=0 

PuK' +KP12-P22M-1.D-M-1.DP22= -L12L12' 

PaM-1T=0 

P22M-1T=T 

The matrix eqs. (46)-(50) are solved after some manipulation. 4> 

KP11K'=p.DU.D 

KP12=p.DUM 

P22=M+µMUM 

(46) 

(47) 

(48) 

(49) 

(50) 

(51) 

where p is a non-negative scalar, and U is an n X n matrix with all elements equal to 1. 
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Substituting eq. (51) into eq. (48), we obtain 

2D+(p,-p)(MUD+DUM)20. 

To satisfy the above inequality, the following inequality must be satisfied: 

n 
µ*~m;-1:;;;0 

i=l 

that is,µ* must lie between the two roots of the quadratic equation, where 

µ*=µ-p 

If the damping torques are uniform, that is, 

then µ* reduces to µ,o, where 2> 

n 

(52) 

(53) 

(54) 

(55) 

µ,o=-1/~ m;. (56) 
i=l 

Next, P2 is calculated. The transfer matrix W2(s) is written as 

(57) 

where A2, B2 and C2 are defined by 

(58) 

Since Z2(s) in eq. (36) is positive real, Z2(s)+Z2'(-s) is factorized as follows: 

(59) 

Hence, we obtain 

(60) 

Solving eq. (40) with A2, B2, C2 in eq. (58) and Y2(s) in eq. (60) we obtain L2 as follows: 

(61) 

Substituting eq. (58) for A2 and eq. (61) for L2 into eq. (11), and then by solving it, P2 

is found out to be 

(62) 

Thus we obtain P1 and P2, and accordingly P. 

Now, we can derive an expression for the Lyapunov function. Substituting eq. 

(17) for x, eq. (51) for Pi and eq. (62) for P2 into eq. (12) for the Lyapunov function, the 

following expression is obtained: 
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[

P11 P12 
V(x)=[8,'w'LIE'] P21 P22 

0 0 

=8r'P118,+28,'P12w+w'P22w+LIE'P2LIE+2Vi(a) 

=p8'DUD8+2p8'DUMw+w'(M+µ,MUM)w 

+LIE'a,B-1LIE+2 V1(a) (63) 

Substituting eq. (30) for Vi(a) into eq. (63), and expanding and rearranging the terms 

in eq. (63) we obtain the expression 

• • 
V(x) = "'E,m;,w;1 +µ,(~m;w;) 2 

i=l i=1 

• • 
+"'E, "'E,BiJ{E;EJ(cos8;;0 -cos8;;) 

i=l j=t 

(64) 

Since µ,=µ,*+p, the final expression for the Lyapunov function is derived after some 

manipulation. 

" fl! • • 

V(x)=(l/2"'E,m;) "'E, "'E,m;m;(w;-w;) 2 +(µ,*-µ,o)("'E,m;w;) 2 

i=l i=l i=l i=l 

• + "'E,(a1/,8;)(E1-E10) 2 

i=1 

• • + "'E, "'E,B;; {E;E;(cos 8;;0-cos 81;) 
i=l j=l 

(65) 

The first and second terms in eq. (65) represent kinetic energy. If the damping 

torques are uniform, then µ,* equals µ,o, and accordingly, the kinetic energy depends 

only on the relative angular velocities. p in the third term is an arbitrary non-negative 

scalar, but is chosen to be zero because the term narrows and complicates the estimation 

of the transient stability region.11> The fourth term is the new term which represents 

the magnitude of magnetic flux decays. If the flux is assumed to be constant, this term 

disappears. The fifth term is a potential energy which is stored in the system due to 

the deviations of the rotor angles from their stable points. The potential energy plays 

an important role in defining the transient stability region. 11> Since an expression for 

the potential energy includes the variable internal voltages, the equi-potential curve 



180 Naoto KAKIMOTO, Yasuharu OHSAWA, and Muneaki HAYASHI 

defined by 

V;(8, E)=constant (66) 

varies with the changes of the internal voltages. Accordingly, the transient stability 

region changes with the internal voltages, to which we have to pay attention in applying 

the Lyapunov function to the transient stability analysis. 

6. Damping rate of Lyapunov function 

Assuming the damping torques be uniform or zero, eq. (65) for the Lyapunov 

function reduces to the following: 

n n n 
V(x)=(l/2"E,mi) "E, "E, mim;(wi-w;) 2 

i=1 i=1 j=l 

n n + ~ "E,Bi; {EiE;(cos 8i;O-cos 8i;)-(8i;-8i;O)Ei0E;o sin 8i;0} 
i=l J=l 

" + ~(ai//3i)(Ei-Eio)2 
i=1 

(67) 

where V,,, V; and V1 are defined in an explicit way. 

The time changes of V,,, V; and V1 are written as 

n n +~ "E,Bi;(Ei0E;0 sin8i;0 -EiE; sin8i;)(wi-w;) (68) 
i=1 i=t 

" n 
+2"E.(dEi/dt) "E,Bi;E;(cos 8i;0-cos 8i1) 

i=l j=l 
(69) 

(70) 

The first term in eq. (68) is caused by the damping torques of generators, and is non­

positive. A part of the kinetic energy is dissipated by the damping torques. The 

second term in eq. (68) and the first term in eq. (69) are opposite signs of each other, 

which implies that there is an exchange of energy between the kinetic energy and the 

potential energy. Hence, they do not contribute to the damping of the Lyapunov 

function. The second term in eq. (69) and the first term in eq. (70) are summed up 

as follows: 
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n n 
2"E,(1/{3;)(dE;/dt) {a;(E;-E;0)+f3;~B;;E;(cos 8;;0-cos 8;1)} 
i=l j=l 

II 

=-2"E.(1//3;) (dE;/dt) 2 

i=1 
(71) 

This term is in proportion to squares of the (dE;/dt)s, and accordingly, it is non-posi­

tive regardless of whether the E;s are decreasing or increasing. 

As a whole, the Lyapunov function dampens according to 

(72) 

while the kinetic energy and the potential energy oscillate by exchanging their energy 

between them. 

If the magnetic flux decay is not considered, then the second term in eq. (72) does 

not appear. Here, we consider this new term. The internal voltages change with time 

according to 

n 
dE;/dt=-a;(E;-E;0)-{3;~B;;E;(cos 8;;0-cos 8;1) 

i•l 

for i=l, 2, ... , n (15) 

The first term in eq. (15) prevents the internal voltage from deviating from its stable 

point. On the other hand, the second term causes the internal voltage to leave from the 

stable point. Fig. 2 shows a cos 8;1-curve. The function (cos 8;;0 -cos 8;1) has 

positive values in section A and C, and negative values in section B. It takes its maxi­

mum value at 8;;=7T rad. Supposing only the ith generator oscillates with respect 
II 

to other generators, "E,B;;E; (cos 8;;0 -cos 8;;) takes its maximum value around 
i=1 

8;;s='TT rad. This means that the internal voltage E; decreases at a maximum rate 

around the stability limit because the stability limit of the 8;1s usually exists near,,, rad. 

Accordingly, the damping rate of the Lyapunov function due to the changes of the 

Fig. 2. Cos 8;1 curve 
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internal voltages is maximum near the stability limit. Similarly, the second term in 

eq. (69) is negative, and the term in eq. (70) is positive, and their absolute values are near 

maximum around the stability limit. 

7. Conclusion 

In this paper, we derived a new stability criterion for a system with multi-argument 

non-linearities in which power systems with magnetic flux decays and automatic voltage 

regulators fall. By using the new stability criterion, a Lur'e type Lyapunov function 

can be constructed in a systematic manner. As an example, the new criterion is 

applied to the multimachine power system with the magnetic flux decays for which no 

Lyapunov function has been constructed, and the new Lyapunov function is derived. 

The new Lyapunov function obtained here is similar to the one already obtained for the 

system with no flux decay, except for a few points. 

1) The new Lyapunov function has a new term which represents a magnitude of the 

flux decay. 

2) The potential energy is a function of the internal voltage. Accordingly, the transi­

ent stability region which is closely related to the potential energy varies with the changes 

of the internal voltages. This is an essential characteristic of the system with the flux 

decay of the generator. 

3) The damping rate of the Lyapunov function is in proportion to the square of the 

changing rate of the internal voltage, and it is maximum around the stability limit. 

Hence, the flux decay has a large influence on the Lyapunov function around the stability 

limit. 

The new stability criterion is also applicable to systems with A VRs, PSSs and 

speed governors. By including their effects, Lyapunov's direct method will become a 

very useful tool for the transient stability analysis of the electric power system, which 

will be reported in other papers. 
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Appendix A. Derivation of system equations 

The voltages and the currents of the generators are related by 

(Al) 

Assuming that .E; is parallel with the q-axis of the ith machine, then, };',};in the ith 

machine frame, is given by 

• = ~ YiiE; L 1r-(S;;+8;;) (A2) 
j=l 

Hence, the d- and q- axis components of the ith machine current are written as 

• = - ~ Vi;E; cos (S;;+0;;) (A3) 
j=l 

and 

iq;=lmi/ 

=}: Vi;E; sin (S;;+0;;) (A4) 
j=l 

The active power of the ith machine is given by 

• ='E Vi;E;E; sin (8;;+0;;) (A5) 
j=l 

In transient analysis the transfer conductances are usually neglected. Then, i4 ;, iq; 

and P,; are written as 
• 

i4;=-B;;E;-'EB;;E; cos S;; 
;-1 
'<i 
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Im 
q-axis 

d-axis 
Fig. A. Relation between internal voltages and currents 

• 
P,i=GiiE12+ "E,B;;E;E; sin 8;; 

;-1 
,.; 

The time variation of the internal voltage of the z"th machine is described by 

E;= TI ·' {E/d;-E;-(X4;-X4/)z"4;} 
do• 

= TI , [Eld;- {I-(x4;-xd)B;;} E; 
doi 

• 
+(x4;-x4/)"E,B;;E; cos 8;;] 

;-1 
,.; 

Since the time derivative of E; is zero at the steady state, 

• 
+(x4;-x4/)"E,B;;E;0 cos 8;;oJ 

j-1 
-.; 

Subtracting eq. (AS) from eq. (A7) gives 

where 

. . 
E;=-a;(Ei-E;o)-/J;"E,B;;(E;0 cos8;;0-E; cos 8;;) 

j-1 

ai 

,.; 

• =:::-a;(E;-E;o)-/J;"E,B;;E;(cos 8;;0 -cos 8;;) 
j=l 

(x4-x/); 
Tdo;' 

(A6) 

(A7) 

(AB) 

(A9) 
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The dynamic equation of the ith machine is written as 

As Pmi is given by 

• 
Pm;=G;;E;02+ 'E,B;iE;0Eio sin8;i0 

i=l 

eq. (AlO) is rewritten as follows: 

m;8;+d;8;=G;;(E;o2_E;2) 

• 
+ z;,B;i(E;oEio sin 8;io-E;Ei sin 8;i) 

i=l 

• 
-:::::.'E,B;;(E;0Ei0 sin 8ii0 -E;Ei sin 8;i) 

i=l 

where G;;(E;02-E;2) is assumed to be negligible for each i. 

Summing up the above derivations, the system equations are written as 

. . 
E;=-a;(E;-E;0)-{J;'E,B;iEi(cos 8ii0 -cos 8ii) 

/=l 

for i=l, 2, ...... , n 

Appendix B. Minimal order of W (s) 

(AlO) 

(All) 

(A12) 

(A13) 

The minimal order of the realization of the transfer matrix W(s) is given by 8[W(s)], 

the degree of W(s). It has been shown by Gilbert that if W(s) has a partial fraction ex­

pansion as 

• 
W(s)='E. W;(s+f;)-1 

i=1 
(Bl) 

then 8[W(s)] is equal to the sum of the ranks of W;. 

Since W(s) of eq. (34) is a direct sum of W1(s) and W2(s), the degree of W(s) is 

written as 

(B2) 

W1(s) is expanded as 

(B3) 

where 

F;=diag (0, ... , 0, -d;, 0, ... , 0) (B4) 

As the rank of T'D- 1Tis (n-1), and that of T'F; Tis 1 for each i, 
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(B5) 

W2(s) is expanded as 

(B6) 

where 

Gi=diag (0, ... 0, {Ji, 0, ... , 0) (B7) 

As the rank of Gi is 1 for each i, the degree of rVi(s) is 

(BS) 

Substitute S[W1(s)] from eq. (B5) and S[W2(s)] from eq. (BS) into eq. (B2), then S[W(s)] 

is obtained; 

S[W(s)]=3n-1 (B9) 

Consequently, A, B and C in eq. (18) are the minimal realization of the transfer matrix 

W(s). 

Appendix C. 

Lemma A (B. D. 0. Anderson) 

Let the n X n matrix Z(s) be positive real, and assume that Z(s)+Z'(-s) has the 

rank r almost everywhere. Then there exists an r X n matrix W(s) such that 

and 

Z(s)+Z'(-s)=W'(-s) W(s) 

(i) Whas elements which are analytic for Re s>0, and for Re s~0 if Z(s) has 

elements which are analytic for Re s ~ 0; 

(ii) rank W=r for Re s>0, 

(iii) W is unique, save for the multiplication on the left by an arbitrary ortho­

gonal matrix. 

Lemma B (B. D. 0. Anderson) 

Let Z(s) have a minimal realization (A, B, C) and let Z(s) and W(s) be related as in 

Lemma A. Then there exists a matrix L such that (A, B, L) is a minimal realization 

for W(s). 




