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Statistical Properties of Distribution of Solid Particles 
at the Bottom Setting in Turbulent Shear Flow 

By 

Hiroji NAKAGAWA*, and Kuninori OTsuBo** 

(Received December 19, 1978) 

Abstract 

In this paper the behavior~ of settling particles in turbulent shear flow are investigated 
and the statistical properties of distribution of the particles at the bottom are obtained 
experimentally and theoretically. For the properties of distribution of the particles, the 
mean settling length of the particle, that is, the mean value of the streamwisely transported 
length of the particle, and the standard deviation of the settling length are considered. 
These statistical properties are obtained by experiment and the trajectories of the settling 
particles are photographed by storoboscopic light. Then, on the basis of these experimental 
results, the stochastic models for the behaviors of the settling particles are developed. 
These models can explain well the actual phenomena, and it is found that these stochastic 
models are to be pertinent. Problems to be solved in the future are discussed. 

1. Introduction 

A local scour around the bridge pier is caused by high shear near the bed. The 

high shear is produced by a horseshoe vortex caused by a flow separation which occurs 

near the pier due to a pressure increase owing to the presence of the pier. It is well­

known that the rubble mount method is effective to reduce the local scour and protect 

the bed around the pier. The principle of the rubble mount method is to cover the bed 

by large scale rubbles, which make a critical shear stress larger than a flow shear stress 

acting on the bed. In a deep ocean cannal with a high flow velocity, the protection 

work at the bottom is very difficult. In this case, the rubble mount method is easy and 

inexpensive, since the rubble is simply dumped from a ship or official platform. But, 

when the rubble falls in the turbulent shear flow, it oscillates and fluctuates, due to the 

flow fluctuation and vorticies behind the rubble itself. Hence, when it reaches the bed, 

its longitudinal transported length is considerably dispersed. In order to execute the 
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rubble mount method effectively and economically, rubble must be distributed properly 

at the appointed region on the bottom. Therefore, it is necessary to make clear the 

property of distribution of the falling particles. 

Extensive experiments were conducted in order to understand the physical behavior 

of the falling particles in turbulent shear flow and the distributional properties of parti­

cles on the bottom bed. Based on these experiments the statistical properties of particle 

distribution are analyzed by using the mean settling length and the deviation of its 

length. These statistical properties are expressed as a function of the mean velocity, 

depth, characteristics of particles such as the settling velocity and the shape factor, etc .. 

We propose a stochastic model for the behavior of the settling particle. Using this 

model, the relations between the mean settling length, the standard deviation of its length 

and depth, the mean velocity and the settling velocity are investigated. The details are 

discussed in the following sections. 

2. Experimental Setup 

The flume used for this experiment was 15 m long, 0.5 m wide and 1 m deep, and 

was made of steel, but the sides of the flume were made of glass 1 cm thick. Then we 

could execute the stroboscopic photographing. 

In order to measure the transported length of a particle, which fell in turbulent 

shear flow and reached the bottom, we used the collecting box. This box is 5 cm in 

depth and 30 cm X 30 cm square, and longitudinally it is divided at 1 cm intervals and 

transversely divided at 16/15 cm intervals. This box was set up on the flume, such that 

the top of this box was level at the bottom. The particles were dumped from the appoint­

ed point at the free surface. After the particles had been dumped N times, we pulled 

up this box and counted the number of particles at every section. 

Experimental runs of series P, B and F are summarized in Table 1. Series P 

indicates the experiments in which one particle is dumped by a pincette, and in series B, 

particles are dumped by a bucket. Series F indicates the experiments for photographs, 

in which one particle dumped by a pincette is shot on storoboscopic light. The particles 

used are beads of 5 mm and 7 mm diameters, an iron ball of 5 mm diameter and gravel 

of 4.5 mm mean diameter. The flow depth of series P and Bare 20, 35 and 50 cm, and 

uo is the mean velocity at the section. 

In Table 1, N is the number of trials, in a word, the number of settling exercises, 

and m is the number of particles dumped at one trial. In series B, the particles are 

dumped by a bucket, and then m is 1 or 5 or 10, but mainly 10. The photograph of 

the bucket used in this experiment is shown in Photo. 1. 

In order to investigate the behavior of one particle falling in turbulent shear flow, 

we introduced the photographic method such that the particle was shot on storoboscopic 
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Table 1. Experimental Setup 

I Mean I Water I I I Mean I Water I I I Run Velocity Depth Particle m N Run Velocity Depth Particle m N 
uo (cm/s) H (cm) I uo (emfs) H (cm) 

P-1 0.0 20.0 Bead 1 150 B-1 0.0 20.0 Beads 1 200 
P-2 10.0 d=0.5cm 150 B-2 0.0 d=0.5 cm 5 100 

P-3 15.2 150 B-3 0.0 10 100 

P-4 25.3 150 B-4 10.0 1 200 
P-5 0.0 35.0 150 B-5 10.0 5 100 
P-6 10.0 150 B-6 10.0 10 100 

P-7 15.2 200 B-7 15.2 1 200 
P-8 25.3 150 B-8 15.2 5 100 
P-9 0.0 50.0 150 B-9 15.2 10 100 
P-10 10.0 150 B-10 25.3 1 200 
P-11 15.2 150 B-11 25.3 5 100 
P-12 25.3 150 B-12 25.3 10 100 

P-13 0.0 20.0 Gravel 1 150 B-13 0.0 35.0 10 100 

P-14 10.0 d=0.45 cm 150 B-14 10.0 10 100 

P-15 15.2 150 B-15 15.2 1 200 

P-16 25.3 150 B-16 15.2 5 100 

P-17 0.0 35.0 150 B-17 15.2 10 100 

P-18 10.0 200 B-18 25.3 10 100 

P-19 15.2 250 B-19 0.0 50.0 10 100 

P-20 25.3 250 B-20 10.0 10 100 

P-21 0.0 50.0 250 B-21 15.2 1 200 

P-22 10.0 200 B-22 15.2 5 125 

P-23 15.2 200 B-23 15.2 10 100 

P-24 25.3 250 B-24 25.3 10 . 100 

P-251 15.2 

I 
35.0 I Bead I 11 

200 B-25 0.0 20.0 Gravel 10 100 

P-26 15.2 50.0 d=0.5cm 200 B-26 0.0 d=0.45cm 5 125 

I 1 I 
B-27 0.0 10 100 

P-271 15.2 35.0 I Gravel I 200 B-28 10.0 1 200 
P-28 15.2 50.0 d=0.5cm 200 B-29 10.0 5 125 

F-1 10.0 20.0 Bead 1 15 B-30 10.0 10 100 

F-2 15.2 d=0.5cm 15 B-31 15.2 1 200 

F-3 25.3 15 B-32 15.2 5 125 

F-4 10.0 50.0 150 B-33 15.2 10 100 

F-5 15.2 150 :!3-34 25.3 1 200 

F-6 25.3 160 B-35 25.3 5 125 

F-7 10.0 20.0 Gravel 1 15 
B-36 25.3 10 100 

F-8 15.2 d=0.5 cm 15 
B-37 0.0 35.0 10 100 

F-9 25.3 15 
B-38 15.2 10 100 

F-10 10.0 50.0 130 
B-39 15.2 1 200 

F-11 15.2 150 
B-40 10.0 5 125 

F-12 25.3 160 
B-41 15.2 10 100 
B-42 25.3 10 100 

F-131 25.3 I 50.0 I B. (0.7) I 1 I 130 B-43 0.0 50.0 10 100 

F-141 I 11. (0.5) I 11 
B-44 10.0 10 100 

25.3 50.0 20 B-45 15.2 1 200 

F-151 0.0 I 60.0 I B. (0.5) I 11 10 B-46 15.2 5 125 
B-47 15.2 10 100 

F-161 0.0 I 60.0 I G. (0.45) I 11 10 B-48 I 25.3 10 100 
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Photo. 1. Bucket for particle dumping. 
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light. The principle of this method is such that we irradiate storoboscopic light to a 

falling particle at some constant intervals in a dark space. Then the falling particle 

trajectory can be seen as a spotted line, and we can photograph this spotted line on one 

frame. The characteristics of turbulent shear flow were not measured, but the mean 

velocity at the center of the flume was measured by a propeller-type velocity meter. 

3. Analysis of Experimental Results 

3.1. Terminal Falling Velocity and Resistance Coefficient of Particle 

For one of the properties of a particle falling in the turbulent shear flow, the terminal 

falling velocity was investigated. The terminal falling velocity in turbulent shear flow 

zv I was compared with that in still water. The particle sizes are from 4 .5 mm to 7 mm, 

and the Reynolds number R,( = zvod/v) is of 10 3 order. In this region of the Reynolds 

number, the experimental result showed that the terminal falling velocity in turbulent 

shear flow is less than that in still water. Furthermore, we investigated the resistance 

coefficient of a particle falling in turbulent shear flow. 

3.1.1. Terminal Falling Velocity of the Particle 

The terminal falling velocity of the particle was evaluated from photographs in 

which a falling particle was shot on storoboscopic light. By knowing the trajectory of 

the particle for a given time interval, the falling velocity can be calculated. The mean 

value of the falling velocity was obtained by averaging more than ten data from photo­

graphs. 
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Table 2. The Values of w 0 , wt & CD 

Run I uo (cm/s) H(cm) I Particle (cm) I WJ, WO 

(cm/s) 

F-1 10.0 20.0 Bead 45.3 0.45 

F-2 15.2 (0.5) 44.6 0.46 

F-3 25.3 46.6 0.42 
F-4 10.0 50.0 45.3 0.45 
F-5 15.2 45.0 0.45 
F-6 25.3 44.3 0.47 

F-7 10.0 20.0 Gravel 29.9 0.96 
F-8 15.2 (0.45) 31.7 0.94 
F-9 25.3 30.8 1.00 
F-10 

I 

10.0 50.0 31.7 0.95 
F-11 15.2 31.1 0.98 
F-12 25.3 30.9 1.00 

F-13 25.3 50.0 B. (0.7) 54.1 0.44 

F-14 
I 25.3 50.0 I. (0.5) 96.8 0.48 

F-15 
I 

0.0 60.0 B. (0.5) 49.7 0.38 

T 
---------- - ------

F-16 0.0 60.0 G. (0.45) 32.6 0.90 
-----

For the same diameter bead, the variation of the calculated terminal falling velocity 

is very small. However, the falling velocities of gravel are different each time due to 

the effect of the shape of the gravel. The observed values of falling velocities in still 

water and in turbulent shear flow are shown in Table 2, in which wo is the value in still 

water and w I in the turbulent shear flow. As shown in Table 2, there is a general trend 

such that w I for every condition is less than wo, and, the faster the mean flow velocity 

is, the less is w 1 . In the author's experiments, the particle Reynolds number is limited 

in the order of 103 , and so it cannot be concluded that the trend for w 1 mentioned above 

is allowable for larger Reynolds numbers. This trend might be attributed to the magnus 

effect due to the interaction between the particle rotation and the mean flow. This 

problem should be thoroughly investigated in the future. 

3.1.2. Resistance Coefficient of the Falling Particle 

The resistance coefficient of the particle which is falling in still water or in turbulent 

shear flow is calculated by the following equation. 1 > 

Wo, Wt={A (~ - 1) {D d r/2 
where A=coefficient related to a particle shape 

p =density of water 

a=density of solid particle 

g=acceleration of gravity 

(1) 
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d =particle diameter 

C v =resistance coefficient 
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For the value of A, we used 4/3 for both beads and gravel because the value of A for a 

complex shape particle could not be easily determined. The value of C v is shown in 

Table 2. 

3.2. Distribution of Particles on the Bottom 

The distributions of the particles at the bottom are plotted on the paper for the 

Gaussian plot, as shown in Fig. 2. In these plots, X-direction denotes longitudinal 

and streamwise direction and its origin is the point where the particle is dumped. Y­

direction is in a transverse direction of the flume and its origin is the same point as that 

of X-axis. As shown in Fig. 1, the distributions of particles at the bottom can be recog­

nized as Gaussian distributions for all cases, as well as in other runs. Thus, we can 

conclude that the distributions of particles at the bottom are Gaussian, independently 

of the dumping method, particle size and quality of materials. 

For the elementary properties of settling particles, we take up the mean settling 

length of the particles (the longitudinal transport length), X, and the standard deviation 

of the settling length us. X and us are defined as follows, respectively, 

1 Nx,. { 1 Nxm _ }1/2 
X Nx ~ X;, Us= Nx -1 ~ (X;-X)2 m ,a1 m ,1111 

(2) 

where X; is the settling length for particle i, and ivaries from 1 to Nxm. Both X and 

us were obtained by reading each value of the Gaussian plots given in Fig. 1. We 
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Fig. 1. Distribution of particles at the bottom. 
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expressed them as X • and ax•· 

3.2.1. Mean Settling Length of Particles 

Fig. 2 shows the relation between (X./d) and (u/wo·H/d) in the case of the P series 

experiments, while Fig. 3 shows the same relation in the B series experiments. As 

shown in both figures, (X./d) can be expressed as 

(3) 

where u is defined as u=(l/H) 
0
j 8 

u(z)dz and z is the vertical distance of which the 

origin is on a free surface. 

2 Dumped by Pl NCETTE 
10 ...------~------~ 

Xn 
d 

IOt::=-------jF------;:::::::;:::::::;:::::;t::::;:::::;-1 
H 85 GB7 I 

10 

20 0. 

u H 
Wo 0 

Fig. 2. Relations between (X nfd) and (u/wo) (H/d) in case of series P. 

2 Dumped by BUCKET 
10 =--~---j---------!-----, 

?/ 

I 1£_-----1.-----1......LLLl.ll.L-.....L--'---'--'-...L.LILI..L..-:::--...L-~~ 

I 10 

Fig. 3. Relations between (X./d) and (u/wo) (H/d) in case of series B. 
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Fig. 4. Standard deviation of settling length in case of series P for bead. 
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Eq. (3) shows that X. is not affected by either the settling method or the particle 

properties. From these results, it is concluded that the settling particles are transported 

with a mean flow velocity on the average. 

3.2.2. Standard Deviation of Settling Length 

Standard deviation ax. shows different properties according to dumping methods. 

ax. is related with the non-dimensional parameters (u/wo) and (H/d), and the relation­

ship between ax. and these parameters is found to be dependent on the dumping method 

and the type of particles, as discussed in the following. 

(1) Series P 

Fig. 4 shows the relation between (ax./d) and (u/wo)(H/d) in both cases of sphere 

(based or iron) and gravel. As shown in this figure, ax.Id for spherical particles can be 

expressed as, 

(4) 

In case the of gravel, as shown in Fig. 5, ax./d can be expressed as 

ax. =a2(___!!__)1/2(9)s1, 
d wo d ' 

(5) 

Dumped by Pl NC E TTE 

4 V 
3IG.,.., ... .2.i; 

"_,..,;'f ~~ 

G -Uo 
7 IC>.0% / --15.2 ,El -,-

25.3.# 
-,-T 

2 2 
IO (...!:!..)3 ..!::! 

w0 d 

I 
I 10 10

3 

Fig. 5. Standard deviation of settling length in case of series P for gravel. 
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Fig. 6. Standard deviation of settling length in case of series B. 

A qualitative explanation of the relationship between ax. and these non-dimensional 

parameters is given in section 3.4. 

(2) Series B 

Fig. 6 shows the relation between (ax./ d) and (u/wo)(H/d) in both cases of bead 

and gravel, and the relations can be expressed as 

Bead·--• =aa --•-ax ( u !j)l/4 

, d wo d ' aa=const. (=2.2) (6) 

Gravel·--• =a4 --•-ax ( u !j)l/2 

' d wo d ' 
a4=const. ( =1.02) (7) 

Qualitative explanation about these relations will also be given later. 

(3) Effects of the number of settling particles on standard deviation 

We investigated what effects are provided on the value of ax. by m, the number of 

settling particles in one trial. Fig. 7 shows the relation between the ratio of ax; to ax,0 , 

where a; is the standard·deviation for i number of settling particles, and H/d with the 

parameter of u. For gravel, this ratio is always nearly one, and the effect of m on ax 

seems to be negligible. For bead, this ratio is approximately 0.85 and the number of 

161 

10 

I' - -
101 
B';ci 

~ 
H 
d 

BG 
oe 

p • 

Fig. 7. Effect of number of settling particles at one trial on the value of ux. 
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settling particles, m, has some effect on the standard deviation u;, but this trend is depen­

dent of H/d. 

( 4) Effects of dumping methods on standard deviation 

The relations between the dumping methods and standard deviations are investi-

O"p 
O"B 

I 

-I 
10 

10 

l'r: 

" ! 

' e 

..,, 
Ill' 

~G o:o' 
IQ() ail¢ 
1!5.2 8111 
2!5.~. -

H 
d 

I I I 

Fig. 8. Effect of settling method on the value of ax. 
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0 

Fig. 9. Trajectories of settling particles in turbulent shear flow. 
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gated by evaluating the value of up/ere, where up indicates ux. in series P and us is ux. 

in series B, as a function of H/d, as shown in Fig. 8. For both bead and gravel, us is 

greater than up, and this tendency is more remarkable for bead than gravel. The value 

of up/us approaches unity with an increase of H. This means that the effect of the set­

tling method on ux. is remarkable near the free surface where the particles are dumped, 

and becomes negligible with an increase of H. The spherical particle is more sensitive 

to the initial outer force, which is generated at the time when the particle is dumped, 

than an irregular shaped particle such as gravel. 

3.3. Behavior of Particle Falling in Turbulent Shear Flow 

In Fig. 9, the trajectories of falling particles, which have been obtained from storobo­

scopic photographs, are revealed. It is noticed from this figure that the settling particle 

falls with oscillating, being transported streamwise with a mean flow velocity. The 

wavelength of particle oscillation is about 20d to 30d, and the amplitude of its oscillation 

is about 3d, but these values are not constant and indicate a stochastic nature, each 

having a probability distribution. 

In Fig. 10 the relation between (X./d) and (u/wo)(z/d) is shown, where z is the 

vertical distance from the free surface and X. is the settling length when the particle 

10 u z 
wod 

Fig. 10. Relations between (X./d) and (u/wo) (z/d) in case of series F. 

I 
I 

I~,.... I - Uo IS.. &, I 

~ •.frtJ, 10.0 CD 

e ~ 15.2 e 1> le 
)--~ 25.3 • 

Q 2 u L I 
I 10 10 

Fig. 11. Standard deviation of settling length for spherical particle. 
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has fallen to z. As shown in Fig.10, Xn is proportional to both u and z, and is inversely 

proportional to wo. 

Fig. 11 shows the relation between (ax./d) and (u/wo)(z/d) for bead. Although 

data in the figure indicate some scattering, (ax/d) can be expressed as follows: 

ax=a1(...!!_JJ),lh 
d Wo d J ' a1=const. 

where ax is the standard deviation of X at z. 

For gravel, as shown in l<ig. 12, (ax/d) can be expressed as 

a2=const. 

(4') 

(5') 

The properties of X and ax in the F series experiment are equal to those in series P. 

In both series, the same dumping method by pincette was used. The turbulent structure 

is different for the P series and the F series, even if the mean flow velocity is the same for 

both cases, because of different depths. X and ax at 20 cm and 35 cm depths, which 

are obtained from particle trajectories shown in Fig. 9 for the F series, are compared with 

the values in the P series for the same depths, respectively. In spite of different turbulent 

structures, the property of X and ax are the same in both cases. This is caused by the 

fact that, because the particle diameter is comparatively large, the falling particle is not 

affected by a small scale turbulence but rather by large scale parameters such as the 

mean flow velocity and the vorticies occurring behind the particle itself. 

3.4 General Considerations for Experimental Results of Standard Devia 
tion 

In this section, the properties of ax obtained at 3-2 are discussed qualitatively by 

taking account of the following four casues of the variations of X: 

i) Stochastic properties of the flow such as turbulent fluctuation 

ii) V orticies generated behind the falling particle 

iii) Shape factor of the particle 
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iv) Initial disturbance induced at the beginning of dumping work 

The effects of i) and ii) are typically shown in the P-series experiments (P-1,.,_,12 in 

case of bead.) The behavior of the particle due to i) and ii) is analogous to Brownian 

motion and therefore the standard deviation will be proportional to H 112 . 

The effects of iii) appear in the P-series experiments of gravel (P-13,.,_,24). Since the 

settling velocity wo is affected by shape factors, standard deviation ux depends upon the 

deviation of wo for the constant mean flow velocity. Also, since X <X(u/wo)H, ux is to 

increase with H, if the value of wo is different for each particle. At last, ux due to iv) 

is independent of H, because this deviation is caused only by the dumping condition. 

When a bead is dumped by a pincette, the factors causing the deviation X are i) 

and ii), and thus ux increases with n11 2. But when the same bead is dumped by a 

bucket, the deviation of X caused by iv) is not neglected, and ux tends to increase with 

less power than 1/2 of H. 

For gravel, if it is dumped by a pincette, the deviation of Xis caused by i), ii) and 

iii) and ux tends to increase with H", where a is the value from 1/2 to 1. When the 

gravel is dumped by a bucket, all factors of i),.,_,iv) have an influence on the deviation of 

X, and ax has a possibility of increasing with HI, where f3 is the value from O to 1. 

When the particles are dumped with a knot, ux caused by iii) tends to be smaller, and this 

tendency is thought to be important for estimating crx. 

4. Stochastic Model of Settling Particles 

4.1 General Scope of Modelling 

Most of the current studies on the behavior of settling particles are cases of particles 

settled in still water. Furthermore, the distribution of settling particles at the bottom, 

which are dumped from an appointed position on the free surface, has hardly been 

investigated. Yanai1> considered the movement of particles as a random walk, and 

concluded that the distribution of particles on the bottom is binomial and the standard 

deviation a increases with H 112• Kikkawa et al. 2> resolved the distributional property 

of a settling particle by using the concept of a stochastic differential equation. They 

said that the standard deviation u of the settling particles increased with z 112, in which 

z was the vertical distance from the settled point. Li et al. 3> investigated the mean set­

tling length of a particle in turbulent shear flow and its distribution function, but the 

settling particle was so small that it moved together with the sorrounding fluid turbulence. 

There is no study dealing with the properties of a settling particle when the Reynolds 

number is greater than 102, because in most cases small particles were used and the flow 

surrounding the particle was limited to such cases where the Stokes' law could be adapted 

Here, we have investigated the behavior of large particles in turbulent shear flow, 

with the particle sizes being from 4.5 mm to 7 mm, and the Reynolds number R,(=wo 
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Fig. 13. Definition ksetch of particle movements. 

d/v) is in the order of 103 • 
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The behavior of a settling particle is so complex and uncertain that it is difficult to 

obtain its dynamical and deterministic description. Hence, in describing its behavior, 

the stochastic approach should be applied. As shown in Fig. 10, the motion of a settling 

particle can be regarded as a stochastic process in which both the duration and the 

amplitude of a particle oscillation are random variables, each having a probability dis­

tribution. Therefore, we propose the stochastic model to find the relations between X, 
ux and H, u, wo. 

4.2 Structure of Stochastic Model 

The trajectory of a settling particle is shown schematically in Fig. 13, in which the 

dotted points indicate the position where the settling particle changes its direction due 

to vortices behind particle and large scale turbulence. X; is the horizontal distance 

and h; is the vertical distance between the (i-1) th spot and the i-th spot, in which i starts 

at the free surface. The duration, in which the particle moves from the (i-1)-th spot to 

the i-th spot, is defined as T;, and T; is expressed as T;=h;fw 1 , where w I is the termi­

nal fall velocity of the particle in the shear flow. 

As mentioned in 3-2, the particle is streamwisely transported with an almost mean 

flow velocity, and then the transported distance during T; can be expressed as c1u Ti(c1= 

w1/wo), unless the falling particle is influenced by the vortices or turbulence. Actually, 

the transported distance is deviated by the above causes, and length of deviation Llx; 

is represented as 

(8) 

If X(z) is defined as the horizontal transported distance at the time when the particle 

has fallen to z, then X(z) is given by 
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N<t> z Nell 
X(z)= ~ X;=u-+ ~ Llx; 

i=l Wo i=1 
(9) 

in which N(t)=the number of oscillating steps before the particle falls to z and t=z/wo. 

N(t) is regarded as a random variable, while Llx; is also a random variable. For con­

venience, we define LIX as 

Net> 

LIX= ~ Llx; 
i=1 

(10) 

Both N(t) and Llx; are random variables and independent of each other, and thus LIX 

is regarded as a compound stochastic process. 

Now, the mean value and the variance of X(z) are respectively given as follows: 

E[X(z)]=E[ ui:
0 
]+E[LIX] 

V[X(z)]=E[X2(z)]-E[X(z)] 

=E[ (ui:
0

) 

2 

+2(ui:
0 
)..1x+Llx 2]-E2[X(z)] 

=E[ (ui:
0

) 

2

]+2E[ (ui:
0
)..1x ]+E[LIX2

] 

(11) 

(12) 

In order to make clear the relationships between E[X(z)], V[X(z)] and z, the 

statistical properties of both LIX and (uz/wo) for z must be given. Firstly, the.properties 

of L:IX for z will be investigated. According to the theory of the compound stochastic 

process, 4> the mean value and the variance of LIX can be expressed as 

E[LIX]=E[N(t)]·E[Llx;] 

V[LIX]= V[N(t)]'E 2 [Llx;]+E[N(t)]-V[Llx;] 

(13) 

(14) 

Therefore, the problem comes to the stochastic properties of Llx; and N(t). As to Llx;, 

the following can be assumed on the basis of the trajectories of the falling particles as 

shown in Fig. 9: 

i) Llx; shows either a plus or minus value sequentially or randomly until the 

particle reaches the bottom. 

ii) Each amplitude of particle fluctuation is independent. 

Now, let x;+ and x;- be the amplitude of particle fluctuation for streamwise and 

counter-streamwise, respectively. Fig. 14 shows the distributions of both x;+ and x;-, 

which were obtained from observed trajectories for several runs. Although some 

scatter exists, almost the same distributions are obtained for both x;+ and x;-, so that 

their mean values and variances become nearly the same. For the stochastic model 

of Llx;, therefore, the following two models are presented. Model 1 is such that x;+ 
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and x;- exactly occur alternatively, and Model 2 is such that the direction of .dx; is 

random. According to Model 1, Eq. (10) is rewritten as 

N <I> 1/2N <I> 
L1X= ~ .dx;= ~ (x;+-x;-), (15) 

i=l i=l 

When x; is defined as x;=x;+-x;-, E[x;] and V[x;] become in consideration of the 

relations that E[x;+]=E[x;-J and V[x;+]= V[x;-J, 

E[x;]=E[x;+]-E[x;-]=0 

V[x;]= V[x;+]+ V[x;-]=2 V[x;+] 

(16) 

(17) 

According to Model 2, the probability distributional function of .dx;, g(.dx;), is 

symmetrical for the g(.dx;) axis, and, letting f (x;+) be the probability density function 

of x;+, g(.dx;) is expressed as g(.dx;)=l/2:/(1.dx;I). Then, E[.dx;] and V[.dx;] are 

written as 

E[.dx;] =0 (18) 

V[.dx;]=E[x;H]= V[x;+]+E 2[x;+] (19) 

Next, we consider the stochastic properties of N(t). If the duration T; is an inde­

pendently random variable, N(t) becomes the renewal process. According to the rene­

wal process theory4> it is recognized that, if E[T;]=T and V[T;]=a., 
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fort---+- oo 

for t---+-oo 

Since t=z/wf, Eq. (20) and Eq. (21) are rewritten as 

1 z E[N(t)]=-•-
-r Wf 

fort---+- oo 

fort---+- oo 

According to Eqs. (16), (17) and (22), E[LIX] and V[LIX] for Model 1 are given as 

E[LIX]=E[½N(t)]-E[x;]=0 

V[LIX]= V[½N(t)]-E 2[xi]+E[½N(t)]· V[x;] 

=E[½N(t)]· V[x;] 

a 2 1 =-•-•- V[x;+]•z 
73 Wf 

for Z---+- oo 

According to Eqs. (18), (19) and (23), E[LIX] and V[LIX] for Model 2 are given as 

E[LIX]=E[N(t)]·E[Llx;]=0 

V[LIX]= V[N(t)]-E 2[Llx;]+E[N(t)]-V[Llx;]=E[N(t)]-V[Llx;] 

=E[N(t)]-{ V[x;+]+E 2[x;+]} 

for z---+- oo 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

(27) 

The stochastic properties of uz/wo are dependent upon those of wo which are related 

to the kind of particles. In the case of bead, the particles have the same size and shape 

for all runs, and so wo seems to be constant and V[uz/wo] is zero. But, in the case of 

gravel, the shapes of the particles are different from each other even for the same dia­

meter, and thus wo is regarded as a random variable and V[uz/wo] is not zero. In the 

following, the properties of E[X(z)] and V[X(z)] for bead and gravel will be investigated. 

4.3 Application of Stochastic Model to Experimental Results 

In the case of bead dumped by a pincette, the initial deviation of Xis negligible, so 

E[X(z)] and V[X(z)] can be represented by Eqs. (11) and (12), respectively. In these 

equations the value of (uz/wo) is considered to be constant, and can be rewritten as 

E[X(z)]=~z+E[LIX] 
Wo 

V[X(z)]=E[LIX2]-E 2[LIX]= V[LIX] 

Then, for Model 1, E[X(z)] and V[X(z)] are expressed as 

E[X(z)]=~Z 
Wo 

(28) 

(29) 

(30) 
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V[X(z)]=,81 V[x;+]z 

And, for Model 2, 

E[X(z)]=~z 
Wo 

for z-oo 

for z- oo 
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(31) 

(32) 

(33) 

In both Models 1 and 2, E[X(z)]=uz/wo and V[X(z)]ocz. These statistical properties 

explain qualitatively the experimental results for bead settled by a pincette. 

By using these stochastic models, we attempted to simulate the behavior of the 

settling particle. An example of the results is shown in Fig. 15 for the case of run F-6. 

In this simulation, the observed values of E[x;+] and V[x;+] shown in Fig. 14 were used. 

From Fig. 15 it is recognized that Model 2 is better fitted to the experimental results 

than Model 1. This fact suggests that the direction of the fluctuation of the particle is 

random. 

Next, we investigate the case where wo is a random variable such as gravel. The 

distribution of wo is considered to be a gamma distribution or a logarithmic normal 

distribution. For the gamma distribution, the distribution function F(wo) is given by 

A(Awo)•-1 

F(wo)= (n-l)l •exp(-Awo) 

Then, E[wo] and V[wo] are expressed as, respectively; 

n 
E[wo]=x, 

n 
V[wo]=,\ 2 

In this case the distribution of X( =uz/wo) is given as 

, UZ (UZ) AUZ (::r-l ( \ / 
F [X] = xs •F X =}{• (n-1)1 •exp -1\uz,X) 

Thus, E[X] and V[X] are represented as 

(34) 

(35) 

(36) 
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E[X]=~ ~ 
n-1 

V[X] 
,\2(uz)2 

(n-1)2(n-2) 
(38) 

By using Eq. (35), Eqs. (37) and (38) are transformed to 

UZ n 
E[X]= E[wo]° n-1 (39) 

V[X]- (uz)2 • n 
- V[wo] (n-1)2(n-2) 

(40) 

For example, if n=lO0 and A=lO0/wo, then E[wo]=wo and V[wo]=0.0lwo, and we 

can obtain that E[ X] =(100/99)·(uz/wo) =:::.uz/wo and V[ X] =(1002/99 2 X 98)·(uz/wo) =:::. 

0.0l(uz/wo). The latter relation shows that the deviation of X due to the randomness 

of wo increases with z2. According to the above consideration, E[X(z)] and V[X(z)], in 

the case where wo is a random variable, are given as follows: 

E[X(z)]=E[!!_z]+E[.::IX]=!!_ •z (41) 
Wo Wo 

V[X(z)]= v[;
0 

z ]+ V[.::IX]= vto] •(uz) 2+ V[.::IX] K1; constant (42) 

Fig. 16 shows the simulated result for the run F-12 in which Model 2 is applied for 

.::Ix;. For the case where wo is regarded as a random variable and the standard devi­

ation of wo is E[wo]/10, the simulated curve gives a good agreement with the experi­

mental result. 

On the other hand, when the particles are dumped by bucket, the deviation of X(z) 

at the starting point of settling, i.e. at z=0, cannot be neglected. This deviation is 

<Yx/d 

10 

I I 

Gravel 
d •0.45cm 

I Lta 
A ...... -

/ ·" 
-3 ,J~ • (J i.,-0 

/ ai<J ,..ij:p 
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Fig. 16. Variation of ax simulated by stochastic models for gravel, 



Statistical Properties of Distribution of Solz"d Particles 
at 1/,,e Bottom Settling in Turbulent Shear Flow 

independent of z and hence Eq. (9) is written as 

N<ll 

X(z)= ~ X;+X;.; 
i=1 
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(9') 

in which X;.; is the fluctuation due to the initial effect and E[X;.;]=0 and V[X;.;]=a1 

where a1 is a constant. Because X;.; is considered to be independent of uz/wo or LIX, 

E[X(z)] and V[X(z)] are represented as 

E[X(z)]=E[;
0 

z ]+E[LIX]+E[X;.;] 

vrX(xz)] = v[;
0 

z ]+ V[LIX]+ V[X;.;] 

p,15 

0.1 

0.05 

0.1 

0.1 

0.0 

00 

0.2 

P1(T1} 

0.15-

0.1 

0.05-

Run F-4 

n-1 
·o.(T}• (aT1) -aTI 

...... ,, 1 I a(n-1)! e 
a•30 
n•6 

-;Observed 
E[T1J•0.2 
s.d. [TIl •0.08 

Ti (sec} 

Run F-5 

0.2 

P1(T1} 

0.15 

0.1 

0.05 

n-I 
(aT1} -aTI 0.15 

,....... i PtCTtl•acn-t}'e 
a•30 ' pj(T1} 
n•6 

- ; Observed 0.1 

EIT1J•o.2 
s.d. [T11•0.I3 

T1(sec} 

Run F-6 
P1(T1} 

n-I 
(an} -aTj 0 15 

...... ;p,('T:1}•0-e · 
. I (n-I)! 

a•30 
n• 6 

-;observed 
E[T1]•0.i8 
s.d. [Tf]•0.09 

0.1 

0.05 

Run F-I0 

-;Observed 
E CTtl &0.214 
s.d. [n] •0.17 

(aTi in-I -aTI 
.-.; PiCT1}•acn-l}! 8 

a• 14 
n• 3 

Run F-II I 
(aTj)n- oTj 

-; P1<1i }•a (n-I)! e 

a• 14 
n• 3 

-; Observed 
E [Tj] •0.2I 
s.d. [T1] •Ql2 

.I .2 .3 .4 .5 S 7 T1(sec) 
Run F-I2 

n-I 
(aTt} -0TI 

._. · p1(T1}•a--e 
I (n-I)! 

a•l4 
n• 3 

- ; Observed 
E[T1l•0.23 
s.d.CTI1 •0.13 

O o .I .2 .3 .4 .5 .6 .7 Ti (sec} 
0 l-L-<+'-'-P'-......... 4'-'-'r'-"T"'""r--, 

0 .I 2 .3 .4 .5 .6 .7 T1(sec} 

Fig. 17. Distribution of duration of particle oscillation, T;. 

(11') 

(12') 



94 Hiroji NAKAGAWA, and Kuninori 0TSUBN 

By using Eqs. (32), (33) and (40) which define the statistical properties of uz/wo and LIX, 

the relations E[X(z)] and V[X(z)] to z are given as 

E[X(z)]=A·z (43) 

V[X(z)]=B·z 2+C·z+.D (44) 

in which A, B, C and.Dare the coefficients. If Eq. (44) can be approximated by the 

function of C1z" (C1: coefficient), the value of T/ changes from zero to two, according to 

the values of B, C and .D. If the value of .D becomes relatively large compared with B 

and C, T/ becomes smaller, and if Bis relatively large compared with C and .D, T/ becomes 

larger. In our experiment, when beads are dumped by bucket, the result that V[X(z)] 

cx.z has been obtained, but for gravel the result is such that V[X(z)Jcx.z3✓ 2. 

As mentioned above, we could explain the experimental results by using the concepts 

of the stochastic process. But, these descriptions are limited to the qualitative one, 

and so we need to make clear the statistical properties of [T;] and [Llx;], not only quali­

tatively but also quantitatively. 

Fig. 17 shows the distributions of the duration T; for several experiments. As 

shown in the figure, in spite of the difference of u, almost the same distributions are 

shown for the same particles. For reference, the gamma distribution curves are shown 

in the figures. On the other hand, as shown in Fig. 14, the distributions of x;+ or x;­

are different by the mean flow velocity even for the same particle. In the case of gravel, 

the larger uo is, the larger E[x;+] and V[x;-J are. But, at present, the knowledge for 

[T;J and [Llx;] is limited, and it is necessary to obtain further information about the 

relationships between these parameters and flow conditions. 

5. Conclusion 

In this study, some statistical properties of solid particles, which settled in the 

turbulent shear flow, have been investigated experimentally and theoretically. The 

results obtained here are summarized as follows: 

(1) The mean settling length the flow direction, E[X(z)], is given by uz/wo and 

E[ Y(z)] in the transversal direction is nearly zero for any flow condition. 

(2) The standard deviation of the settling length, ax(z) ,depends upon u, wo and 

the settling method, and the trend of its variation differs according to the type 

of the particles. 

(3) The behavior of the settling particle can be regarded as the compound stochas­

tic and process and can be fairly explained by the stochastic model qualita­

tively. In order to obtain the quantitative description of a settling particle, it 

is neces sary to make clear the statistical properties of [T;] and [Llx;] relating 

to the flow conditions. 
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