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'Abstract 

In this paper we propose a new evaluation method for the bursting period, on the 
basis of the phenomenological consideration that the number of the occurrences of inter• 
action-like motions should be removed from those of the ejection or the sweep events in the 
sorted Reynolds-stress fluctuating signals. Then, it is confirmed by this method that the 
mean bursting period in open-channel flows may be universally expressed by outer rather 
than inner parameters, and that its probability distribution becomes log-normal, irrespective 
of the Reynolds and the Froude numbers, as well as the wall roughness. 

Next, in order to explain even quantitatively the bursting process or the turbulent 
structure in the wall region, we propose a simple mathematical model on the basis of the 
Einstein-Li model and also the knowledge of the bursting-period characteristics obtained 
above. Though the present model is inherently quasi-two-dimensional and quasi-linear, 
this model can describe fairly well some distributions of mean-velocity, turbulence inten­
sities and Reynolds stress. In particular, it can satisfactorily explain a sequence of the 
bursting process. 

1. Intr()duction 

213 

Intensive experimental researches on the bursting phenomenon have been performed 
by making use of visual methods or conditional point-measurements, since it was con­

firmed that the bursting process played an essential role for the turbulence-production 

mechanism near the wall in a turbulent boundary layer, 1> a pipe 2> or open-channel flows. 3> 

Kline et al.,1> Corino & Brodkey, 2> Kim et al., 4> Nychas et al., 5> Offen & Kline6>, 7> and 

others found by flow visualization that a sequence of the bursting events such as ejections 

or sweeps had a quasi-cyclic process. That is to say, it shows a periodic motion on the 

average in space and time, but not perfectly periodic at one place in time nor at one time 
in space. For example, Corino & Brodkey 2> presented visual sketches of a sequence of 
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the bursting events near the wall as shown in figure 1. They pointed out that there were 

variations of the sequence, and that all of the steps did not appear all the time or in the 

exact fashions described, but on the average it proceeded. 

Thus, in order to reveal the governing parameters of the bursting phenomenon, it 

is necessary to investigate its periodic characteristics. The visual method whereby the 

bursting period is determined by counting the frequency of occurrences of the coherent 

motions near the wall visualized on high-speed movie films, is simple and plain. How­

ever, it needs laborious work and more or less involves subjective judgement. 

On the other hand, Lu & Willmarth, 8> Brodkey et al., 9> Nakagawa & Nezu10> and 

others have shown that the existence of a sequence of bursting events such as ejections, 

c:> 
Flow Direction 

0 
(l) Deceleration Event ( 4) Shear Layer 

40 

0 
(2) Acceleration Event (5) Ejection Event 

40 

0 
(3) Two-layer Velocity (6) Sweep Event 

__,,.{3~ [(l }-+-( 2 ~ 4~:;( 5 )~ 6 )] 

Sequence of Events 

Fig. 1. Observation of a sequence of the bursting events (after Corino and Brodkey). 2> 
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sweeps and interactions can be also detectable even in the fluctuating velocity signals 

obtained by hot-wire or hot-film anemometers when a conditional sampling technique 

is reasonably used. If it is, therefore, possible to establish a reasonable criterion for 
discriminating the ejections or the sweeps from these velocity signals, the bursting period 

can be also evaluated easily from the data analysis of point-measurement signals by using 

a high-speed digital computer. Of course, these results should be compared with the 

visual data, since it may be fairly difficult to detect accurately the coherent motions ex­

tending in space only by one or a few hot-films. 

Firstly, Rao et al. 11> estimated the mean bursting period Ts from the single-hot­

wire signals of streamwise velocity fluctuations u(t) in a boundary layer by using a special 

criterion for discrimination. They proposed the following experimental results. 

Ts u.2 /11=0.65 R,o. 7a 

TsUmax/8*=;:32 

(1) 

(2) 

where, U* is the friction velocity, Umax is the free stream velocity corresponding to the 

maximum velocity in an open-channel, R, is defined as R,= Umax8/11, 8* is the dis­

placement thickness and 8 is the momentum thickness. They found that the mean 

bursting period could scale with outer rather than inner parameters, as shown in (1) and 

(2), and that the probability distribution of the bursting period might be log-normal. 

Next, Kim et al. 4> found that when the auto-correlation of u(t) reached the re-rise 

maximum, the lag time To agreed fairly well with the bursting period evaluated from the 

visual data. Consequently, they suggested that To could be regarded as a bursting peri­

od Ts. By these means, Laufer & Narayanan12> evaluated the mean period of the 

bursting phenomenon near the viscous sublayer in a boundary layer, and verified that (1) 

was valid and could be reduced to the following equation by assuming the 1/7-power 

velocity law: 

(3) 

where 8 is the boundary layer thickness. Consequently, (1), (2) and (3) are almost the 

same. (TsUmax/8 becomes nearly equal to 4 from (2) since 8/8.=8 for the 1/7-power 

velocity law.) Also, the dependency of the bursting period upon the outer parameter 

(Umax and 8) is confirmed. However, Lu & Willmarth8>, 13> pointed out that these 
criteria had something unreasonable, and proposed another method described as follows. 

The fluctuating signals w'(t)=uv/u'v' of the Reynolds stress (where v is the normal 

fluctuating velocity, u' = W and v' = W) were used as a detection of the coherent 

motions. The mean period T, of the ejection motion was evaluated from w'(t) in the 

ejection event (u<O, v>O), when the discrimination level was set at the value of (4.0,_, 

4.5) where the sweeps almost disappeared. The mean period T, of the motion was also 

evaluated in the same manner. Their results agreed fairly well with the visual data, or 
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(3), and this evaluation method might become more reasonable than previous methods. 

Indeed, Sabot & Comte-Bellot1 4> evaluated the bursting period in a pipe flow by this 

method. 

In the light of the above, the present study is to propose another reasonable evalu­

ation method of the bursting period, and investigate the periodic characteristics of the 

bursting phenomenon in open-channel flows. Then, on the basis of the knowledge 

obtained from these investigations, a simple mathematical simulation model will be pro­

posed in order to explain the bursting phenomenon or the turbulence characteristics 

quantitatively. 

2. Experimental equipment and data analysis 

Two groups of experiments on two-dimensional fully developed turbulent flows in 

an open channel were conducted in a tilting flume 15 m long, 50 cm wide and 30 cm 

deep. One group was a lower-velocity one (the Reynolds number Re= Umh/v, where Um 

was the mean velocity and h was the flow depth. It was nearly equal to 1 X 104) which 

consisted of four kinds of bed roughness; that is, one smooth lucite bed (Case A) and 

three roughness beds (Cases B, C and D). The scope of this group was described in 

our previous paper.10> The other was a higher-velocity group (Re=3.2 x 104) on a 

smooth bed for five different kinds of the Froude number Fr= Um/../ gh . The hydraulic 

parameters for each run are shown in Table 1. It was expected that the effects of 

roughness, the Froude and the Reynolds numbers upon the bursting phenomenon would 

be observed by these nine tests. 

Table 1. Hydraulic parameters for experiments and the results of the mean bursting period. 

~ ~~ ~~ I"& H JI~ ~;\ ~1;\ =~ --;;;- ~ .., ~1 "' .,~o ~o -,.. 
~~ "' ~8 ~8 ~~ .... ~- + 

ti! ~! ~~~ ~ ~ u ~ ~ X 
~ ~ I~ I~ 11~ 11~ 

II 

A-1 7.77 16.8 14.8 0.810 1.09 5.98 0.170 =;0 2.60 2.21 74.8 63.6 

B-1 7.94 17.7 15.5 0.895 0.98 5.66 0.175 9.1 2.41 2.06 69.0 59.0 

C-1 7.83 15.7 13.2 0.989 0.98 7.37 0.150 48.0 1. 90 1. 57 88.3 72.9 

D-1 7.63 17.2 13.9 1.267 0.86 8.32 0.160 136.2 2.43 1.96 148.8 120.0 

G-1 8.01 48.3 40.1 2.152 3.03 16.3 0.455 =;0 1. 82 1.87 132.0 135.8 

G-2 5.49 73.2 58.5 3.138 3.23 17.6 0.798 =;O 1.61 1.43 121.0 107.9 

G-3 4.14 101.8 77.2 3.748 3.27 15.9 1. 21 =;O 1. 75 1.68 102.4 98.3 

G-4 3.15 118.6 101. 2 4.711 3.19 14.9 1. 82 =;0 2.26 2.04 133.8 120. 7 

G-5 2.20 169.4 144.8 6.162 3.27 13.9 3.12 =;0 2.79 2.31 141. 0 116.8 
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The stream wise and normal components of the instantaneous velocity were measured 

by using a set of constant-temperature anemometers with a DISA type 55A89 dual­

sensor hot-film probe. The output signals of the anemometers were recorded in analog 

form by using an FM tape recorder, and then were reproduced for conversion to digital 

form. It is important how to determine the number N of samples and the sampling 

frequency f at any measuring point on performing an analog-to-digital conversion. 

The maximum cutoff wave-number k.,. is given by 

(4) 

If L:,,k.,. is over about a hundred, the spectral analysis becomes possible at least to the 

extent of the inertial subrange. 15> Thus, the sampling frequency f was chosen in each 

run so as to satisfy this analytical condition. The total sampling time T=Nlfis given in 

the following by using (3) : 

(5) 

Though the larger the sample size N is, the better the accuracy of data analysis becomes, 

N=5000 was chosen in this study because of the limitation of our computer technique. 

Thus, this sample size (T......,50 Ts) may be comparatively small but it includes the cha­

racteristics of bursting phenomenon from this data analysis. 

Next, several tests of flow visualization were also conducted by using a hydrogen­

bubble method in order to supplement the hot-film data. Especially, the behaviour of 

high- and low-speed streaks was investigated by visualization of the instantaneous velo­

city profiles in a horizontal plane. The details of this visual method and its results are 

given in another paper of ours. 16> 

3. Periodic characteristics of the bursting phenomenon 

3.1 Discrimination criterion and definition of the bursting period 

The instantaneous Reynolds-stress signals w(t)-=uv/uv are reasonably used as 

discriminating information, since they are directly related· to the mechanism of turbu­

lence-production, namely the bursting phenomenon.10> Now, w(t) is conditionally 

divided into four events: w1(t) when u>O and v>O (outward interaction), w 2(t) when 

u<O and v>O (ejection), wa(t) when u<O and v<O (inward interaction) and w4(t) when 

u>O and v<O (sweep). Obviously, 

(6) 

Two typical examples of the conditionally sampled signals w1(t) (i=l......,4) measured 

at y+=38 (wall region) and y/h=0.193 (equilibrium region) over a smooth bed (Case 
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(a) Wa 11 Region (y+=38) 

) (1) Outwards Interaction Event 
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(2) Ejection Event 
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10.0--+---l------------------------c-lf-----

) 

10.0 

0.0 
0.0 

(4) Sweep Event 

I, I 11 II I 

ii ~' INl.11 II ~ii 11 ~ 
I 

10.0 

.I I 

I u 
J 

20.0 

~Li 
~IU I I I ' lM 

Lil \,ll~IH 1U 1J~ Ill ll1l JI I ~I. ,R 
I I 

30.0 40.0 50.0 
Time t (Second) 

Fig. 2. (a) Fluctuating signals of Reynolds stress at each event in the wall region. 

A-1) are shown in figure 2, (a) and (b), where the structure of their Reynolds stress has 

been already made clear theoretically and experimentally. 10> It is confirmed that the 

Reynolds stress fluctuations w(t) are very intermittent, and especially that the ejections 

and sweeps generate turbulence violently in the form of a very sharp pulse. Such a 

behaviour has been also visualized by many other researchers 2>, 3>. 4>, 5>. 
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(b) Equilibrium Region (y/h=0.193) 
(1) Outwards Interaction Event 

219 

10.0 -+--------------------------------

(2) Ejection Event 
t) 

10. V 

I 

0. 

11 

111 1 I I .I I, I I 

ll~i d, 1,11 11 I I ,J 'u., I I, U1ll ii ll,1! 1 ll 11 II ill 
0 I I I I 

3 Inwards Interaction Event 
lw,(tllt-----------------------

10.o-t-------------------------------

10.u;---------.--------+-------------------

o. 0 ....... ....,...-'+.....Lf"'--"fll'l-¥Ll!j!W 
0.0 10.0 20.0 30.0 40.0 50.0 

Time t (Second) 

Fig. 2. (b) Fluctuating signals of Reynolds stress at each event in the equilibrium region. 

The hole size H for the division of the bursting events is introduced as a discrimi­

nation level of the ejection or sweep motions.10> Assuming that each event motion with 

a certain level H occurs when lw;(t)I reaches or exceeds level H, its mean period T; 

(£=1,....,4) is obtained by counting the number N; of the occurrences in the total observ­

ing time T, as follows : 
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(7) 

For example, figure 3 shows the variation of the mean period T2(H) of an ejection event 

normalized by outer parameters ( U max and h) for a smooth bed. Since Ta is a monoto­

nously increasing function of H, the mean period T, of the ejection motion which can be 

observed visually, that is, an event (5) in figure 1, cannot be determined from figure 3 

without providing a discrimination criterion. According to the Lu & Willmarth me­

thod, as mentioned previously, T, Umax/h becomes (4--10) since the level His about 10, 

at which the contributions of the sweeps almost disappear.10> This range of T, is too 

large to know the effects of hydraulic parameters such as Re, Fr and the wall roughness 

upon the bursting period systematically. 

Now, it may be noticed in figures 3 and 4 that Ta shows a nearly linear increase with 

H when H;:;; 5, and a more remarkable increase when H-:Z 5 although the slope of T2(H) 

increases more or less continuously. This tendency of Ta(H) may be related to the fact 

that the interaction events scarcely contribute to the production of Reynolds stress when 

level H reaches about 5. 10> This suggests that the ejection signals wa(t) or the sweep 

signals W4(t) with H:$5 contain a part of the interaction motions corresponding to the 

events (1)--(4) in figure 1. This suggestion may be also inferred from the results of a 

conditional sampling technique, as shown by the following. 

Since a coherent motion of bursting phenomenon is visualized in a form of the 

10 

5 

Mean Period of Ejection Event 
Smooth Bed ( Case A) 

NO. y/h 
I 0.064 
2 0.090 
3 0193 
4 0.450 
5 0.643 
6 0.772 
7 0.901 

5.0 10.0 H 
Fig. 3. Mean period T2 of ejection event with H. 

15.0 
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Smooth Bed(Case A-1) 
O : from present method 
• :From Kim et al. 's method 

0.5 y/h 

10 

0 
1.0 o.o 

Rough Bed(Case D-1) 
O: from present method 

0.5 y/h 

Fig. 4. Mean period T2 of ejection event againsty/h as a parameter of H. 
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1.0 

streamwise velocity fluctuations u(t) instead of the Reynolds stress fluctuations w(t), a 

trigger level UL is set for u(t). Then, denoting t=O when lu(t)/u'I crosses a special 

trigger level UL in an increasing direction, w2(t) has been ensemble-averaged. Figure 5, 

(a) and (b), shows the behaviours of the ensemble-averaged ejections with three cases of 

trigger levels; that is, UL=0.5, 1.0 and 1.5, in the wall and the equilibrium regions, re­

spectively (corresponding to figure 2). The existence of the coherent motion is not 

recognized at UL=0.5, but if UL is set at 1.0, w2(t) has a large peak immediately after 

u - Trigger Level Times 

--- -a.so 88 
------- -1.00 47 
--- -1.50 32 

u - Trigger Level 

--- -0.50 
------- -1.00 
----1.50 

Times 
109 
69 
45 

-0.5 0.0 

(a) 
Smooth Bed ( Case A-1) 
Behavior of Ejection 

y/h• 0.064 y+•38 ( Wall Region) 

(b) 
Smooth Bed (Case A-1) 
Behavior of Ejection 

y/h•0.193 (Equilibrium Region) 

O,S Time (Second)l.O 1.5 

Fig. 5. Behaviour of ejection motions detected at the trigger level UL in the 
wall and equilibrium regions. 
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u(t)/u' reaches a level of -1.0, and a larger peak appears at UL=l.5. The ensemble­

averaged sweeps have shown a similar trend as do the ejections. The fact that the ejec­

tion or the sweep motions can be detected in w(t) when UL~l.O, agrees well with the 

point-measurement data given by Lu & Willmarth. 8> Since UL=(l.Q,-,1.5) corresponds 

roughly to H-::::.5, 15> the energetic ejection or sweep motions which can be observed visual­

ly, corresponding to event (5) or (6) in figure 1, would be able to be detected from the 

conditionally sorted signals w2(t) or W4(t) when His set at about 5. 

From the above phenomenological considerations, the contributions of the interac­

tion motions should be removed from the sequence of the bursting process in order to 

evaluate the period of only the ejections or sweeps. However, there is at present quite a 

lack of knowledge about the contributions of the interaction-like motions which may be 

contained in the signals of w2(t) or w4(t). Hence, we now propose a tentative assump­

tion that the interaction-like contributions may be of the same order as those of the 

interaction event signals w1(t) or wa(t), since the contributions of lw;(t)l;:;5 might be 

roughly equal to each other, owing to a detection of old-born or new-born small bursting 

motions. By assuming that the number N;n of occurrences of these interaction-like 

motions with a level of H is roughly given by an average of those of two interaction 

events: that is, N;n=(Ni+Na)/2, the revised bursting period is defined as follows: 

T2=T/(N2-Nin) (Ejections), T4=T/(N4-N;n) (Sweeps) (8) 

T2Umax/h is shown against Hin figure 6 for the case corresponding to figure 3. When 

15 

10 

5 

Mean Period of Ejection Event 

Smooth Bed ( Case A ) 

NO. y/h 
1 0.064 
2 0.090 
3 0.193 
4 0.450 
5 0.643 
6 0. 772 

O 0~..__..__...__...__.,.,_5 --'---'---'-__.l.__.l.10__,__, __ 
H 

Fig. 6. Mean period T'2 of ejection event where the interaction-like motions are subtracted. 



Bttrsting Phenomenon near Ike Wall in Open-channel Flows 
and its Simple Mathematical Model 223 

His small, T2Umu/h is large owing to the strong cancellation effect of the interaction­

like motions, as mentioned above. Because the interaction-like motions disappear 

gradually as H increases, this cancellation effect becomes weaker, and consequently T2 
approaches T2. Thus, we try to tentatively define the mean period of the ejections T, 
and the sweeps T, as the minimum value of T2(H) and T4(H), respectively, because it 

may be considered that the interaction-like contributions almost disappear at this mini­

mum point. Since the minimum value of T2(H) or T4(H) remains stationary even when 

H varies to some extent, T, or T, can be determined uniquely, and therefore this evalu­

ation method may be well-defined as compared with previous methods. Some results of 

T, evaluated from this method have been plotted in figure 4, together with the data of 

the bursting period TB obtained by Kim et al's method, although it was difficult to 

evaluate Te accurately, except when near the wall. The values of T, had a good agree­

ment with those of Te and our visual data. 16> Therefore, our tentative evaluation 

method of the bursting period seems to be fairly reasonable. 

3.2 Bursting period and its probability characteristics 

The evaluated values of T, and T, in the wall and equilibrium regions (y/h~0.6) 

for all experimental runs are shown in figure 7, normalized by the outer parameters. 

Although there are some scatterings in these data, T,Umax/h and T,Umax/h are ap­

proximately constant for any y/h, irrespective of the hydraulic conditions. Their ave­

rage values againsty/h for each run are described in table 1, and a relation may be ob­

tained as follows : 

T,•Umax ~ T,•Umax ~(l S 3 O) h - h - . ,..._,. (9) 

(9) shows the same order as (3) or Lu & Willmarth's results in a boundary layer, 8> though 

a quantitative comparison among these data cannot be done reasonably because of the 

differences of the flow conditions and the evaluation methods. It should be noticed that 

the ejection period T, becomes nearly equal to the sweep period T,, as pointed out by 

Lu & Willmarth. 8> This means that there exists, on an average, at least one each of 

ejection and sweep motions in a bursting process. Consequently, the bursting period 

Te can be identified with the ejection or sweep one, that is, T,=::.T,=::.Te. 

The inner-parameter description TBU••fv of the bursting period is shown in figure 

8 against the Reynolds number R, (for a boundary layer) or R* = h U*/v (for an open 

channel). The authors' visual data, which were evaluated from the periodic character­

istics of the time-line of the hydrogen-bubble in the wall region, 16> were also plotted in 

this figure in order to supplement the data for the lower Reynolds number. Our results 

in open-channels seem to be similar to those in boundary layers that satisfy (1) very well 

as mentioned in chapter 1. Also, if R, is replaced by R*, (1) may be approximately 
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Case 
O:A-1 
e:B-1 
¢:C-1 
(): D-1 

0 

10 

5 

0 

10 

kt 
0 
9 

48 
136 

Case 
X :G-1 
+ :G-2 
(j) : G-3 
-e,:G-4 
(5/: G-5 

Fr 
0.46 
0.80 
1.21 
1.82 
3.12 

102 

Lu & Willmarth(l973) 
Boundary Layer I: Range of variation 

of data 

y+ 103 

Mean bursting period normalized by the outer parameter as a function of y+. 

valid even in open channels. 

From the previous and present investigations, it may be concluded that the bursting 

period in the wall and equilibrium regions of open-channel flows can scale with the outer 

Open Channel (R.) 
Authors 

• :hot-film 
O :visual 

Boundary Layer (R9) 
'i7:Kim.et al.(1971) visual 

·'-:Rao et al.(1971) hot-wire 
A:Rao et al.(from the hot-wire data 

of Tu & Willmarth(l966)) 
<j):Laufer et al.(1971) hot-wire 

Fig. 8. Mean bursting period normalized by the inner parameter as a 
function of the Reynolds number. 
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valid even parameters ( Umax and h) rather than the inner parameters ( U* and 1Jj U.), 

irrespective of Re, Fr and the wall roughness. This is also supported by the noticeable 

fact that the wall roughness scarcely influences the bursting period, while this effect can 

be noticed clearly in the bursting process near the wall as pointed out by the authors. 10> 

Next, the probability distribution Pr(T) of the bursting period Twill be discussed.*> 

The experimental values of Pr(T) can be obtained from figure 2, since the hole size level 

H corresponding to the mean period T, or T, is determined easily from figures 3 or 4. 

According to the suggestion of Rao et al., 11> the data of the probability distribution of 

uo-1 log (T/To) have been plotted in a normal-probability paper, where log To=log T 

and uo= {(log T/To) 2} 112• Some examples of these results for smooth and rough beds 

are shown in the right and left sides of figure 9, respectively. The straight line described 

in this figure is a log-normal distribution which is written by 

..J (lo~ e) exp {-
2
1 (__!__ log T/ To) 

2
} 

21r uoT uo 
(10) 

Though there is a little scattering in our hot-film data, these data have a good agreement 

with (10), as well as the visual data obtained by Kim et al. 4> Consequently, it is confirm­

ed that the probability of the bursting period can be described approximately by a log­

normal distribution, that is (10), irrespective of Re, Fr and the wall roughness. 

Then, the following equation can be obtained ell;sily from (10). 

-2.0 -1.0 
Log(T /7;,) (Normalized) 

0.0 O; 1.0 2.0 
99.0r--,--...-..--,--,-...,...---.---,-,----,--,--,---,-,--,--,--.,.....,---,...,.......,....-,--,-,- / 

{%) . / +• .: •• 
Normalized Period of Ejection 1/ 

.95 .0 Rough Bed (Case D-1) ,.Jo• Yo xe ♦ 
90. 0 y/h + <? : .,.-1°,. t 

O 0.085 Yo. • o.,..~ 
8Q.Q e O.lll _o),.1e • ;l!o~•t 

+ 0.360 A.0-:f+'• o • ++ 
70. 0 X 0.819 'Hi"·~·· /.JV ,.,,. •" 
60.0 --: Gaussian Distribution ~!/l+ + o . ~ ... . 
50.0 ,... ~)O 
40. 0 ",J_y ~~- Normal,zed Period of Bursting 

30, O ;Jt.'1-0 ,t~ EJect10n Sweep y/h 
,..+ .~ JA) '- 0 q:, o.o64(l=3a) 

20.0 ~-,,,~ If'~ i rn~ 
10.0 ~o,•••/•y X 0.772 Kim et al. (1971) (Visual method) 
5 Q "v Ra."666, Re,.5.6x1Q3 

· /e+ ♦ + • 'I' R.•1100, Re•l. lxl04 

X X 

99. 0 

95.0 

0.0 §: 
(lJ 

0.0 :;' 
70.0 ~ 

0.0 ~ 
0.0 :g_ 
0.0 w 
o.o .;:: 
o.o E 

=> 
E 

0.0 c3 
5.0 

1. 0 • L-.L--..J......J-.--'--....1......J.........L......L.-L--'---'-'--L-'---'-_._...,_..._......__,___..__._~~ l. 0 
-2.0 -1.0 0.0 l.O 2.0 

Log(T/T,) (Normalized) 

Fig. 9. N omialized probability distributions of the bursting period. 

*> When it isn'f necessary to distinguish between the ejection period T, and the sweep period T,, these 
suffixes will be omitted in the following explanations. The mean value 'l' of the bursting period can 
be represented for 'l',-:::::.'l',-:::::.'l'B, 
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fo00 

T 1 Pr(T)dT=To1·exp ( 2z;2), K,= (log e)/uo 

Denoting TB=T, uB=((T-T) 2)1/ 2 and if,=uB/TB, 

Uo=(log e)/K =(log e)vln (1 +if,2) 

To=yTB, y=(l+if,2)-1/2 } 

(11) 

(12) 

Thus, if the mean value TB and its coefficient if, of variation are known, (10) can be 

determined as a probability distribution of the bursting period. The experimental 

values of if, for the ejection period are shown in figure 10, and similar results have been 

also obtained for the sweep period. As concerns our hot-film data, the values of if, near 

the wall are nearly constant: that is, if,'.:::(1.Q,_,1.5), while the visual data of Kim et al. 

show if,'.::::0.5. Though at present, while it is difficult to explain the cause of this difference 

between the hot-film and visual data, the former may be apt to be accompanied by a 

kind of unevenness involved in the point-measurements of the coherent motions which 

extend in space. Consequently, the hot film data are probably evaluated larger than the 

visual data. 

3.3 Dependence of the bursting phenomenon upon the inner and 
outer parameters 

For the present, from the previous and present experimental data, we can approve 

the opinion that the bursting period may be controlled by the outer rather than the inner 

parameters. Consequently, the turbulent structure in the wall region of an open-channel 

flow may be characterized not only by the inner parameter,15> but also by the outer para-
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meter that characterizes the free-surface, region, which have been already recognized in 

a boundary layer flow. 

Now, the streamwise, the vertical and the transverse spatial scales of this coherent 

motion are denoted by .\1, .\2 and As, respectively. Since the mean streamwise spatial 

scale X1 is nearly equal to TB· U., where u. is the convection velocity and U.-:::::. U,.=::. 

0.9 Umax, 15> it becomes from (9) as 

( open-channel) (13) 

as well as X1/S=::.4 in a boundary layer, as shown by Hinze. 17> The mean vertical spatial 

scale X2 is considered to be below the wall region thickness, that is, X2+<100. In parti­

cular, it is suggested from the visual observation2> that X2+::;50, where the coherent mo­

tions appear most violently. The mean transverse spatial scale Xs may be able to be 

identified with the spacing between the high and low speed streaks which were found by 

Kline et al. 1> It was confirmed by our visual observations16> that 

(14) 

in open channels, which coincided with the data in boundary layers. 

From the results obtained above, it is deduced that a typical eddy with coherent 

motions near the wall may depend upon both the inner and outer parameters. Conse­

quently, the eddy model qualitatively described by Hinze17> in figure 11 may fairly 

reasonably explain the mechanism of the bursting phenomenon, as will be shown later. 

Furthermore,we have fourid a log-normal distribution of the probability of ,\3, 16> as well 

80 

X3 

Fig. 11. Conceptual model of the turbulence near the wall during a 'cyclic' 
process (after J. 0. Hinze).17) 
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as A1::::::::T• U. (refer to (10)). In other words, it seems that the bursting phenomenon has 

self-consistently the characteristic of a log-normal distribution while it is controlled by 

both the inner and outer parameters. 

Hence, a closer interrelation between the wall and the free-surface regions in an 

open channel corresponding to the inner and the outer layers in a boundary layer is 

suggested more than had been previously expected. 

Incidentally, Laufer & Narayanan13> deduced that the bursting phenomenon near 

the wall might be caused by the bulge motions near the boundary layer edge, but we 

cannot find any bulge motions in an open-channel flow. We infer here that there may 

exist a close relation between the bursting mechanism and the breakdown mechanism 

of the largest-scale eddy with scale Lo. If the Strouhal similarity might be valid for 

both mechanisms, the following relation could be obtained. 

TsUmax/h::::::::(St)-1 (Lo/h) (15) 

where, St is the Strouhal number and it may be now tentatively roughly equal to 0.2, 

with an assumption that the breakdown of this eddy would be roughly similar to that of 

the Karman-vortex. Then, (15) may coincide roughly with (3) or (9) since Lo/h::::::::0.8. 15> 

Hence, it may be fairly well asserted from the visual observations of figure 2 that 

the breakdown of the largest-scale eddy is intermittent, and then generates most of the 

turbulent energy or the Reynolds stress. On the other hand, as indicated by Sandborn, 18> 

the breakdown of the smallest-scale eddy is also intermittent, and then dissipates most 

of the turbulent energy. 

Among the evaluation methods of the bursting period mentioned previously, the 

methods of Rao et al. 11> and Ueda & Hinze19> are based on a microscale intermittency, 

while the methods of Kim et al., 4> Lu & Willmarth, 8> the present authors as well as the 

visual method are based on a macroscale intermittency. Since almost the same chara­

cteristics of the bursting period have been evaluated from these two different methods, 

it is inferred that the breakdown of a macroscale eddy may have a close relation and 

interaction with that of a microscale eddy, and that the turbulent structure may be es­

sentially characterized by both the macro- and micro-scales. Consequently, an energy 

cascade process in which the turbulent energy of macroscale eddies is gradually trans­

fered to that of microscale eddies would be more complicated than we have previously 

understood. Therefore, assuming that there exists a self-similarity in the breakdown of 

eddies of this cascade process, log-normal characteristics of the bursting process or the 

coherent motion reported here could be explained by the eddy model of Gurvich & 

Yaglom20>. Thus, it is suggested that the bursting phenomenon may be closely related 

to the breakdown mechanism of both the macro-and micro-scale eddies, and further 

investigations will be needed in order to make clear the above suggestions. 
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4. Simply mathematical modellin~ of the burstin~ phenomenon 

4.1 Brief recapitulation of previous eddy models and present object 
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Even before the existence of the bursting phenomenon was discovered clearly by 

Kline et al., 1> there had been already several attempts to describe the mechanism of the 

turbulence production near the wall by suitable turbulent eddy models, among which a 

horseshoe vortex model proposed by Theodorsen21> and a renewal model of the viscous 

sublayer proposed by Einstein & Li22> should be still noteworthy, as mentioned in the 

following. 

Willmarth & Tu23> proposed an 'average model of vortex line' in order to quali­

tatively explain the pressure-velocity correlations near the wall, from which the existence 

of the bursting phenomenon might be inferred. Next, Kline et al. 1> offered an eddy 

model by which the mechanism of wall-turbulence production could be reasonably ex­

plained. Both of these eddy models are very similar to Theodorsen's horseshoe vortex 

model. We can recognize for the present that such an eddy model might be most suit­

able for a qualitative explanation of the bursting process, as shown in figure 11. As a 

fact, Black24> formulated this horseshoe vortex model phenomenologically, after which 

he could successfully explain several turbulence characteristics quantitatively. 

In order to quantitatively describe the turbulent structure in the equilibrium region 

(y+>lO0), we25> also proposed a II-eddy model whereby a horseshoe vortex model was 

simplified by assuming that some of the horseshoe vortices in the wall region, shown in 

figure 11, survived without the vortex-breakdown during their development, even in the 

region of y+> 100, and also attained the equilibrium state of turbulent energy, i.e. the 

balance between the production and the dissipation. A II-eddy consists of a primary 

motion with an elliptic steady circulation in the vortex axis, and a secondary motion 

with a perturbation of its vortex tube due to the vortex-stretching effect. The spectral 

analysis of II-eddies with various scales gave a remarkable result whereby the section of 

their vortex tubes was distorted by about 60 percent in the streamwise direction, and the 

angle of the inclination of their vortex tubes toward the wall was uniformly developed 

up to about 80 degrees. The following relations about the turbulent intensities were 

obtained from an equilibrium condition of turbulent energy.15> 

u'JU*=D1·exp (-yJh) 

v'J U*=D2·exp (-yJh) 

w'JU*=Da·exp (-y/h) 

(16a) 

(16b) 

(16c) 

where, D1, Dz and Ds are the experimental constants. Since the II-eddy model predicted 

that v' Ju' =0.55 and w' Ju' =0.69, we could obtain D2=1.27 and Da=l.59 by using the 

experimental value D1=2.315>. Then, it was confirmed that (16) agreed fairly well with 
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the observed values in the region of y+>50, and consequently that the JI-eddy model 

could explain quantitatively the turbulent structure in the equilibrium region. 

However, the JI-eddy model is not applicable to the wall region ofy+<50 where the 

bursting phenomenon occurs remarkably, because a horseshoe vortex in this region is 

under development, that is, a non-equilibrium state. 

Hence, with a view to quantitatively describing the bursting process, we now propose 

a simple mathematical model to simulate this process on the basis of the Einstein-Li 

model and the knowledge obtained in the previous chapter. 

4.2 Formulation of a renewal model 

We consider an idealized model of the bursting process, which is called a renewal 

model, because it is most essential to take account of its periodic characteristics. We 

can divide a period T of the bursting phenomenon into two duration intervals: one is 

the built-up or developing duration T1, and the other is the breakdown duration T2 of 

the coherent vortex motion, that is, T=T1 +T2• The ejection motion occurs in the 

breakdown duration T2, and both the sweep and the interaction motions occur in the 

built-up duration T1, since the former is swept literally by the latter and a new horseshoe 

vortex is born again. For convenience, the beginning of a sweep motion is here denoted 

as t=O, and then a sequence of the bursting process is considered to be a cyclic motion 

of sweep-interaction-ejection-sweep. 

Let U1=(u1, ii1) and ii2=(u2, ii2) be the instantaneous velocities during T1 and T2, 

respectively. The eddy-viscosity might be infinitely smaller in the built-up duration 

and infinitely larger in the breakdown duration than the molecular-viscosity since much 

of the Reynolds stress is generated by the breakdown of the horseshoe vortex, i.e. ejec­

tion motion. Consequently, assuming that the nonlinear coupling effect and the pre­

ssure fluctuation effect are negligible during the built-up time, the Navier-Stokes equa­

tion which controls the coherent motion in this duration can be approximated by using 

the boundary layer theory since .\2+<.\a+<{,\1+ (see 3.3), as follows: 

(17) 

The boundary conditions are 

(18) 

where Uo is the main stream velocity outside the wall region. 

Since the distorted velocity distribution of an ejection motion may be swept due to 

the stress-relieved mechanism and restored to a uniformly accelerated velocity, as ob­

served in figure 1, the initial condition can be idealized by 

(19) 
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Then, the solution of (17) with the conditions of (18) and (19) reads 

2Uo (6 
i11= .r,;- J

O 
e-:z:'dx= Uo erf e 

231 

(20) 

where, e = y/(2✓ 11t) and erf e is the error-function of e. (20) was firstly obtained by 

Einstein & Li, 22> and it forms the origin of the present model. On the other hand, 

Black24> adopted Cole's logarithmic- law, i.e. i11= u. (K-1 lny++5.1) as the initial condi­

tion of (17), and then he obtained a more complicated solution than (20). Though this 

initial condition seems to be more suitable for the actual phenomenon than (19), as seen 

from figure 1, 2•3> we do not adopt the Black solution here because it is too intricate to 

go on calculating further. 

Now, making the axis transformation to o/ot=- Uco/ox (Taylor's frozen hypothesis) 

where Uc is the convection velocity of a horseshoe vortex, and using the equation of 

continuit) , we can obtain 

_ /cg au1 · 1 /--;- · 
vi=- -dy=-- - {1-exp (-82)} 

o ox a 1rt 
(21) 

where, a= Uc/ Uo is (0.7......,0.8) according to the previous experiments. 17> 

Next, because the mechanism of the vortex-breakdown is not sufficiently evident, 

U2=(i12, ii2) is evaluated here by introducing a simplified idea. It is considered that 

f3=T2/T1 is infinitesimal, i.e. /3{::l, since the vortex-breakdown or the ejection motion 

occurs in very short time, as shown in figure 2. Then, i11(t=T1) is renewed into i11(t=T) 

=U1 (t=0) in a very short time. Consequently, the average of both i11 (t=T1) and 

i11 (t=T) can be represented as i12 (T1-.::;.t-.::;.T). We can also obtain ii2=-ii1//3 since 

the average velocity V="i=(Tii"i. +T2i;.)/T must always be zero in an open-channel 

flow. Furthermore, ii2 may be closely identified with ii2 for /3{::l. Then, 

(22) 

From the above simplification, the following relations can be obtained by using f3 {:: 1. 

I 
u'2=(i1-U)2=; i, lo~ i112d1-u2 

v'2=(ii-V)2=;--1-{-1- (Ti ii1 2dt+__!_(i1) 2} 
(1 +/3) T1 ) o /3 

UV= {(i11 - U)·ii1 +/3(i12- U)·ii2} /(l+/3) 

(23) 

l (24) 

(25) 

The second term of (25) is the Reynolds stress which is generated by an ejection motion, 

and is given by (i11(t=T1)-i11(t=T))·ii2 because this Reynolds stress is equal to the 
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momentum change of ii which is transferred by fia>0 during the period of breakdown. 

Then, 

uv= (1!,8) {(u1fi1-tfi·i1)+i1·(u1(t=T)-u1(t=T1))} 

Since U•1=v(ou/oy),=o, we can also obtain from (20) 

u, 2 .,__ 1 lcT ( ou1 ) ,J _ 2 U 1~ * -:-11T -,,- at-_ 1- o -
o ay r=o v.,,. T 

(26) 

(27) 

The above results represent the turbulent characteristics during one bursting period 

T. However, in order to obtain the actual turbulent characteristics, as compared with 

the experiments, the probability distribution of T should be taken into account. 

Then, the friction velocity (27) by using (10)-.,(12) becomes as follows: 

u.2 = -Uo _l:'.__ Pr(T)dT=~ Uo -·y-3✓ 4 !coo( 2 ✓-) 2 ✓JI 
o V7i T .J.,,. Ts 

(28) 

Also, by doing the variable transformation of s-=log (T/To)/uo, (23) becomes 

U+= Uo+<P(y+)= Uo+ ;:.. G(s)ds j/ erf (8)dT (29) 

where, G(s)= _, 1 exp (-s2/2), and e reads 
V 21r 

8=-y __ v-ii 1✓41- 1 
- 2& - 4 y Uo+ ./ lO'•'·T 

(30) 

In the same manner, we can obtain from (24) and (26): 

(
u')2 !co [1 u. = UoH _

00 
G(s)ds J

O 
{erf (8)} 2dT- U+2 (31) 

(32) 

-UV - ,,1✓ 4 [{!co G(s) ds 
u. 2 (1+,8)·2a -co./ 10'•• 

X J,1 (1-exp ( ~~2))·erf (€}}) dT-<P(y+)•lff(y+)} 

+lff(y+)•{l-erf(./f y1/ 4 {;:+ )}] (33) 

h ,rr( ,+)=j .. G(s)ds J:1(1-exp(-@2))d L l h b . . d Ts i's w ere, r J - _,-- _, T. ast y, t e urstmg per10 -co V 10'•• 0 VT 

obtained from (28), as follows: 
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(34) 

If the parameters a, {J, y (or if,) and Uo+ can be chosen suitably, the mean velocity 

U+, the turbulence intensities u' / u. and v' / u., the Reynolds stress -uvj u.2 and others 

will be able to be predicted quantitatively by the present renewal model, though this 

model is inherently quasi-two -dimensional. 

4.3 Turbulent characteristics evaluated by the present renewal model 

We here discuss the turbulent characteristics only in the wall region of y+<50, 

where the bursting phenomenon is observed most clearly, as mentioned earlier. 

(a) Mean velocity distribution 

It has been confirmed by many experiments that the mean velocity distribution U+ 

in the wall region can be fairly well given by 

dU+ 
dy+ 

where/+ is the mixing length proposed by van Driest.sa> It is represented by 

(35)) 

f+=I'·,cy+, I'-= 1-exp (-y+/A) (36) 

in which I' is the damping factor, and ,c and A are experimental constants, i.e. ,c=0.4 

and A=27. 

Now, (29) was nwnerically solved with a zero variance, i.e. if,=0 and various values 

of the main stream velocity Uo+. From the results, it was concluded that (29) showed a 

good agreement with (35), for R.=500 when Uo+=15. 

Next, on condition that Uo+=15 and if, varied up to 2.0, the mean velocity distri­

butions were obtained from (29) and are shown in figure 12. Although U+ decreases a 

little as if, becomes larger, the curves of the present renewal model have a good agreement 

with those of van Driest, when Uo+=15 and i/,=(0--1.5). Certainly, Black's model 

shows a better agreement with (35) than the present model, for Black's model has an 

initial condition closer to the actual phenomenon, as pointed out previously. As y+ 

becomes larger than 30, (29) gradually approaches the well-known logarithmic law of 

Prandtl. On the other hand, as y+ becomes smaller than 10, (29) gradually approaches 

the velocity distribution of the viscous sublayer, i.e. U+=y+, since erf e-2e;..J""-ir at 

y+-o. 

(b) Turbulent intensities 

The distribution of u' / U* can be calculated easily by using (31) if the values of Uo+ 

and if, are given. The curves of u'/U., calculated under the conditions that Uo+=15 

and i/,=0.0--1.5, are shown in figure 13, together with the experimental values. 3>, 27>, 28> 
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Fig. 12. Mean velocity distributions by the present renewal model 
(Uo+=15 and ,f, is varied). 

As if, becomes larger, u' / U* of (31) increases in the region of y+> 10, and the experimental 

values seem to exist between the curves of if,=0.5 and 1.0, whose results are fairly reason­

able as seen in figure 10. The quantitative differences between the calculated and the 

observed values, however, are fairly large. This difference in the region of y+>20 

may indicate that the nonlinear coupling effect and the pressure fluctuation effect can­

not be neglected even in the built-up duration. This is because there does'nt actually 

exist such an idealized bursting phenomenon as described here, and also because the 

fluctuation of the main stream velocity Uo+ should be considered in connection with the 

behaviours in the equilibrium region. Wheny+-+0, (31) approaches 

(37) 

and B becomes about 0.9, which corresponds to three times the experimental value, 

i.e. B=0.3, as seen in figure 13. 

Next, in order to calculate (32) for v' / U*, the parameters a and fJ must be determined 

beforehand. It was here decided tentatively that a=0.7 and /J=0.01, because a is the 

order of (0.7"-0.8) and fJ is a very small value. Therefore, the calculated curves of 

v'/ U* with Uo+=l5, a=0.7, ,8=0.01 and a parameter of if, are also described in figure 13. 

It should be noticed that the effect of if, on v' / U* is very small, and that the calculated 

curves agree very well with the experimental values, in contrast to u' / U*. Though this 

quantitative agreement might be fortuitous, since ii was derived logically from ii, one of 

the reasons for this agreement might be due to the integral operation of (21). As y+ 



3.0 
u' 

TI' 

2.0 

v· 
u: 

Bursting Phenomenon near the Wall in Open-channel Flows 
and its Simple Mathematical Model 

l.,. [lt.;15□ 
oc =0.7 

0 fl =0.01 

~ 
u'/U*=0.3,y+ 

10 20 30 y• 

R* 
142} Eckelmann{1974) 

m Grass{1971) 
1000 Laufer{ 1954 l 
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becomes larger, u has a weaker relationship with the coherent motion, but v always 

contains all of this motion on an average, that is, the accumulation effect from the wall 

up to y+ might give a good result for v' / u •. 

To sum up, it may be concluded that the present renewal model can describe fairly 

well, even quantitatively, the turbulence intensities in the region of y+<30, though its 

model has several inherent defects. In particular, this model can satisfactorily explain 

the remarkable characteristic that u' / u. has a maximum value at y+=(l0,.._,20), although 

v' / U * increases monotonously. 

(c) Reynolds stress distribution 

Since the parameters have been determined so that Uo+=15, a=0.7, ,8=0.01 and 

if,=(0.5--1.0), the Reynolds stress distribution can be also obtained easily from (33). 

These calculated results showed a qualitative agreement with the experimental data 

obtained by Eckelmann, 28> although some quantitative differences as seen in u' / u. also 

appeared for y+>30, because this Reynolds stress was evaluated directly from the time­

average of u(t) X v(t). 

The mean Reynolds stress -uv is also evaluated indirectlj from the equation of 

motion. That is, since 

(38) 

in an open-channel flow, it becomes from (29) as follows: 
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-uv = (l- y+ )- y 1
/ 

4 
;

00 G(s)ds (1 exp (-82
) dT 

u. 2 R* 2 -oo .J 10'•' Jo /; 

50 

(39) 

Figure 14 shows the results of (39), van Driest's curve being calculated by using 

(35) and (38), and Eckelmann's experimental values. The quantitative agreements 

among them are fairly good. 

Also, the correlation coefficients R=-uv/u'v', calculated from (31), (32) and (39), 

are shown in figure 14, compared with Eckelmann's experimental values. This model 

with if,=(0.5--1.0) gives nearly constant values of R in the buffer layer, i.e. R=(0.3,_, 

0.4), which agree fairly well with the observed results. 

4.4 Explanation of the burstin~ process by the renewal model 

The most outstanding point of the present model is that the instantaneous velocity 

profiles u(t) and v(t) can be approximately estimated, and thus the bursting process can 

be explained quantitatively, as follows. 

Firstly, figure 15 shows the instantaneous velocity profiles U=(u, v) at each time 

T=t/T in one bursting period, which have been calculated from (20)--,(22) on the 

conditions that Uo+=15, a=0.7 and/:1=0.01, as decided in the previous section. In the 

early stage when T is small, the sweep motion occurs and the acceleration flow (u>0) 

penetrates the buffer layer (v<0). The profile of u(T) is gradually strained with the time 

elapsed, and it nearly coincides with the mean velocity distribution at T=0.5, which 

corresponds to a half of the bursting period. Then, ii(T) turns into the deceleration flow 

(u<O) and is further strained. Immediately after the velocity-strain has reached the 

critical maximum value, the coherent motion or the horseshoe vortex breaks down in a 

short time (/:1=0.01), and then the stress-relieved mechanism or the turbulence production 

occurs. Consequently, the high turbulent stressed energy is released outwards (v2>0) 
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16 

by this ejection motion. After this breakdown period, a new build-up stage starts again. 

Such a sequent behavior of the instantaneous velocity profile may coincide very well 

with Corino & Brodkey's observation (figure 1) or Hinze's conceptual model (figure 11). 

Next, the distributions of instantaneous Reynolds stress obtained as w(t) = u(t) X v(t) 

are shown in figure 16. We can discuss here the characteristics of w(t) at least up to the 

buffer layer, because the present model is not fully applicable to the region of y+>30, as 

mentioned previously. In the duration up to T:::::0.1, the sweep event exists and the 

positive Reynolds stress is generated. The horseshoe vortex during 0.l<T<l.0 contri­

butes little to the production of Reynolds stress, and especially, the interaction event 

appears when T>0.5. During the period of the vortex-breakdown, i.e. (1+,B)-1<T<l, 

the ejection motion generates the positive Reynolds stress enormously and violently. 

It should be noted that the maximum production of the Reynolds stress occurs at y+= 

(10--20), which corresponds closely to the position of the maximum turbulence intensity 

u' / u., as shown in figure 13. 

In detailed discussion, the fraction of time occupied_by ejection and sweep motions 

becomes nearly equal to 0.1, according to the present model. This result coincides 

fairly well with the experimental data10> evaluated at the discrimination level H:::::5, 

where both of these motions may be detected in the hot-film signals as mentioned in 

chapter 3. Figure 16 also shows that the ejection motion in the buffer layer has such 

a pulse-like behaviour that uv/ u.2 attains to about 40 in the very short time of ,8=0.01, 

similar to the hot-film signals in figure 2. According to this model, the contribution to 
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Fig. 16. Instantaneous Reynolds-stress profiles near the wall in one bursting 
period evaluated by the present model. 

0 5 

-uv/ U*2 becomes close to 40,8=0.4 at the ejection, and 0.2 at the sweep. Consequently, 

RS2=w2(t)=,=0.67 and RS4=.W4(t)=,=0.33 are obtained since -uv/ U*2=0.6. Because 

the present model can't describe satisfactorily the interaction events which probably 

c0rrespond to the nonlinear effect, these estimated values show some differences from 

the experimental data of RS2=,:0.77 and RS4=,:0.57. 101 

Lastly, we discuss the bursting period TB evaluated by the renewal model. When 

Uo+=15 and ip=(0.5,-,1.0), (34) becomes TB u.2/11=(300,-,400), which corresponds to 

R*=(3500,-,5000), as judged from figure 8. The magnitude of this Reynolds number 

may not be so unreasonable, though it is a little large for the usual experiments. 

Now, assuming that an average strain in the a-distribution or its instability can be 

expressed by the average value 8* of its displacement thickness, we can obtain 

(40) 

(41) 

Since it is approximated that Re:::::::.8Uo/11=::.8·S*Uo/11 by making use of the 1/7-power 

velocity law, the Reynolds number Re becomes (1600,-,1800) when Uo+=15 and ip= 
(0.5,-,1.0). Consequently, this Reynolds number nearly corresponds to the critical 
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number which represents the instability of the sublayer or buffer layer. Then, we can 

also obtain a"* +=(13,_,15), which corresponds to the edge of the sublayer. These results 

may confirm more or less a previous suggestion that the occurrence of the bursting 

phenomenon may be due to an instability of the flow near the edge of the sublayer, where­

by the bursting phenomenon may have a strong resemblance to the mechanism of a 

laminar-turbulent transition. 

5. Conclusions 

In the present study, we firstly proposed a new evaluation method for the bursting 

period on the basis of the phenomenological consideration that the number of occurrences 

of interaction-like motions should be removed from those of the ejection or sweep events 

in the sorted Reynolds-stress fluctuating signals. The periodic characteristics of the 

bursting phenomenon in open-channel flows have been evaluated definitely by this 

method, and the effects of the Reynolds and the Froude numbers as well as the wall 

roughness upon the bursting period have been systematically investigated. Consequent­

ly, the following noticeable results have been confirmed even in open-channel flows, 

as well as in boundary layer flows. That is, the mean bursting period or the streamwise 

spatial scale of a horseshoe vortex may be universally expressed by outer rather than 

inner parameters, and its probability distribution becomes log-normal. On the other 

hand, the transverse spatial scale of this vortex may scale with inner rather than outer 

parameters. Thus, it has been suggested that the bursting phenomenon might be 

controlled self-consistently by both the inner and outer parameters. In other words, 

it might be closely related to the breakdown mechanism of both the macro- and micro­

scale eddies. 

Next, in order to explain even quantitatively the bursting process or the turbulent 

structure in the wall region, we proposed a simple simulated model which is called a 

renewal model, on the basis of the Einstein-Li model and also the knowledge of the 

bursting-period characteristics obtained above. Though the present model was in­

herently quasi-two-dimensional and quasi-linear, this model could describe fairly well, 

even quantitatively, some distributions of mean-velocity, turbulence intensities and the 

mean Reynolds stress in the wall region. In particular, we showed the noticeable result 

that the present model could satisfactorily explain a sequence of the bursting process or 

a mechanism of the turbulence-production near the wall, though its quantitative explana­

tion might be rough more or less. 
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