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By 

Yoshikazu NISHIKA w A* and Masashi 0KUDAIRA * 

(Received December 27, 1977) 

Abstract 

An algorithm for solving the nonlinear optimal control problem whose system 
equation contains discontinuities is proposed. The boundary conditions are specified 
at several corner times as well as at the initial and the final times. Assuming that 
the corner times are known, by using the variational principle, the problem is re­
duced to a nonlinear multipoint boundary-value problem (MPBVP), which is further 
reduced to a linear one by use of an interaction-coordination algorithm. The linear 
MPBVP is solved by a discontinuous version of a time-decomposition algorithm, 
which decomposes the problem into a number of subinterval TPBVP's. The exact 
boundary conditions of these TPBVP's are determined by an algebraic method which 
utilizes the solution obtained with arbitrarily chosen boundary conditions. After 
solving the nonlinear MPBVP, the assumed corner times are corrected by a gradient 
method. Correction 1s iterated until the optimum is attained. The solution in each 
iteration satisfies the boundary conditions exactly. 

In order to verify the effectiveness of the present algorithm, a linear and a non­
linear problem are solved numerically and the solution to the linear problem is com­
pared with the analytical one. 

1. Introduction 

A multiple-target problem, or an optimal control problem with discontinuities, 

has been investigated by several authors1-s>. The system equation of the problem 

has discontinuities at the 'corner times' of the control duration. Some of the state 

variables, as well as the initial state (and possibly the final state), are specified at 

the corner times. Swiger1> and Tomizuka & Tsujioka2> solved this problem by using 

the orthogonal projection theorem. Also, the problem was solved by use of the 

gradient methods in Refs. 3-5. However, the former algorithm is restricted to a 

problem which does not contain nonlinearities in each subinterval between adjacent 

corner times. The latter, though they can deal with nonlinearities, suffers from an 

* Department of Electrical Engineering. 
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unsatisfactory accuracy in satisfying the boundary conditions, because they employ 

a penalty function method. 

Recently, the present authors have proposed algorithms for solving nonlinear 

optimal control problems6-s>. The interaction-coordination algorithm (ICA) 6• 
7> is one 

which decomposes the overall problem into a number of smaller linear subproblems 

described by a two-point boundary-value problem (TPBVP), and then coordinates 

them. The time-decomposition algorithm (TDA) s> decomposes a linear TPBVP into 

a number of TPBVP's defined in the subintervals, and then determines algebraically 

the exact boundary conditions for each subinterval problem. 

In this paper, the TDA is extended to the solution of the linear MPBVP with 

discontinuities. Together with use of the ICA, the nonlinear MPBVP with fixed 

corner times is solved, and then the corner times are corrected by a gradient 

method until the optimum is attained. 

In Section 2, the problem considered in this paper is formulated and the neces­

sary conditions for optimality are derived. Section 3 sketches the ICA briefly, and 

Section 4 discusses the details of the discontinuous version of the TDA. The 

algorithm including optimal correction of the corner times is summarized in Section 

5, and the applications to two physical problems are illustrated in Section 6. 

2. Problem Statement 

In this paper, we discuss a solution of the following multiple-target problem. 

The system equation is described by 

(i=l. 2, ... , N) ············( 1) 

where x(t) is an n-dimensional state vector, u(t) an m-dimensional control vector. 

A; and B; are n X n- and n X m-dimensional matrices, respectively, and f; is an 

n-dimensional vector function of the class C2 with respect to x, and these are 

continuous in ts[t;-i, t;). The boundary conditions are given by 

(i=O, 1. 2, ... , N) ............ ( 2) 

where 7r; is an r;-dimensional prescribed vector and L; 1s an r; x n-dimensional 

matrix containing only one nonzero element in each row, and it is assumed that 

t,(i=l, 2, ... , N-1) is not specified. 

The objective is to minimize the following performance index of the quadratic 

type: 

]= ~ C (x'Q(t)x+u'R(t)u) dt ............ ( 3) 

with respect to u and t,(i = 1, 2, ... , N-1), where Q is an n X n-dimensional symmet-
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ric positive semidefinite matrix and R an m X m-dimensional symmetric positive 

definite matrix. 

Now define the Hamiltonian of (1) and (3) as 

............ ( 4) 

Then, according to the variational principle, the necessary conditions for optimality 

are obtained as follows :9> 

( 0f~i) )' =R(t)u+B;(t)P=O 

............ (5) 

(i=l, 2, ... , N) ...... ( 6) 

g,, 4 H<0 (t"j")-H(i+l)(tt) =O 

with the boundary conditions 

(i=l. 2, ... , N-1) 

............ ( 7) 

............ ( 8) 

(i=O, 1, .. • ,N) 
... ( 9) 

(if X;(t1) is not specified; i=l, 2, ... , N-1) 

where P;(t1) denotes the j-th element of p(t;) and v; 1 is a Lagrange multiplier. 

Substitution of u = - R-•s; p into (5) yields the following multipoint boundary-value 

problem (MPBVP) : 

(i=l, 2, ... , N) 
............ (10) 

constrained by the boundary conditions (9) and the optimality condition for t, (8), 

where E1=B1R-1B;, h11 (t, x) =f;(t, x), and h21U, x, P) = -( {;f )p. 
Once the t;s are assumed, the problem is reduced to solving the MPBVP of (9) 

and (10) with discontinuities at the fixed corner times. This problem will be 

dealt with in the following sections. The solution, however, does not satisfy the 

optimality condition (8). Then the assumed values of the t;s are to be corrected 

by an appropriate algorithm. The problem is then solved by a three-level algorithm. 

The first and the second levels solve a nonlinear MPBVP. Using the solution thus 

obtained, the third level seeks the optimal corner times by a gradient method, 

that is, the corner times are corrected by 

( 
i:1. 2, ... , N-1) 
l-0, 1. .... . 

............ (11) 

until (8) is satisfied, where denotes the iteration number and Y/ is a positive 
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step size which is reduced according to the change of the sign of g,
1

• 

3. A Linearization Technique 

Once the problem is reduced to a nonlinear MPBVP with fixed corner times, 

conventional mathematical or computational means6- 12
> are available for the solution. 

Among them, the interaction-coordination algorithm8• 7> has proved to apply success­

fully to a problem whose system equation is a perturbed form as given by (1). 

The algorithm, like the quasilinearization method10>, reduces the problem to the linear 

MPBVP, and then the time-decomposition algorithm is applicable, as will be seen in 

the succeeding section. 

In the following, the ICA is briefly skecthed. Consider a nonlinear TPBVP 

whose differential equation is given, in the time interval te[t0, t1], by (10) without 

the subscript i. The boundary conditions are given by 

............ (12) 

Introducing the interaction variables y and q corresponding to x and p, respectively, 

we replace (10) by : 

d[x] [A -{3E ][x] [O ({3-l)E][y] [h1(t,y) ] 
di P = -,cQ -A' P + (,c-1) Q O q + h

2
(t, y, q) .. ,(l3) 

where f3 and ,c are scalar parameters to accelerate the convergence tendency of the 

iteration. Once y and q are given, (13) is linear in x and p, so that the linear 

TPBVP of (12) and (13) is solved easily by the superposition principle10>. If the 

solutions x and p thus obtained coincide with the assumed y and q, respectively, 

they are the solution to the original nonlinear TPBVP8• n. However, this is generally 

not the case. Therefore, the interaction variables y and q are corrected by 

[ 
Hly ]=[ "y ]+a[ "x-"y] 
Hlq "q "p-"q ............ (14) 

where k denotes the iteration number and a 1s a constant step size. The correc­

tion is iterated until the coordination error 

is reduced to zero or a sufficiently small enough unit. 

and 7. 

............ (15) 

For details see References 6 

4. A Time-Decomposition Algorithm for a Linear MPBVP 

As shown in the preceding section, the solution to the nonlinear MPBVP is 
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obtained by solving a sequence of the linear MPBVP's. Therefore, in this section 

we consider the solution of the linear MPBVP. 

Recently the authors have proposed a time-decomposition algorithm for solving 

a linear TPBVP8>. Here, we extend the algorithm to the solution of a linear MPBVP 

with discontinuities. 

4. 1. A Time-Decomposition Algorithm for Solution of the Linear TPBVP To begin 

with, we consider a solution of a linear TPBVP : 

············ (16) 

with the boundary conditions 

............ (17) 

Both x and p are n-dimensional vectors, D(t) is a 2n X 2n-dimensional matrix, and 

h(t) is a 2n-dimensional vector function. Both ir0 and irN are prescribed n-dimen­

sional vectors. The inital time t0 and the final time tN are assumed to be specified. 

Let (/)(t, t0) denote the transition matrix of the homogeneous part of (16) with 

(/)(t0, t0) =l2., 2n X2n-dimensional identity matrix. Then the general solution to (16) 

is written as 

where 

x(t) =(/)11 (t, s)x(s) +<P12 (t, s)p(s) +v,(t, s) 

p(t) =<P2,Ct, s)x(s) +<P22(t, s)p(s) +v2(t, s) 

............ (18) 

... ········· (19) 

............ (20) 

From (18) and (19), it is seen that the solution to (16) in the subinterval 

[t;, t;+i] with the boundary conditions x (t;) =x (t;) and x (t;+,) =x (t;+i) satisfies 

............ (21) 

p Ct1+1) =</>21 (i+ 1, i) X (t;) +¢22(i+ 1, i)p(tt) + V2(tm, t;) ··· ··· ··· ··· (22) 

(i=O, 1. ... , N-1) 

where '));;()., µ) denotes <P;;(t;, tP). If ¢12 (i+l. i) 1s nonsingular, we can rewrite 

(21) as follows : 

P(tt) =¢ii'(i+l. i){x(t;+1)-¢11(i+1, i)x(t;)-v,Ctm,t;)} 

Substitution of (23) into (22) yields 

············(23) 
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PU1+1J =qi21(i+1, i)x(t;) +qi22(i+l, i)qiii1(i+l. i){x(t;+i) 

-qiu(i+l. i)x(t,)-v1U1+1, t,)}+v2U1+1• t,) ············(24) 

By replacing i in (23) by i + 1 and subtracting it from (24), we obtain 

where 

S;=qi21<i+l. i) -qi22(i+l. i)qiii1(i+l, i)qiu(i+l, i) 

T;=qi22(i+l. i)qi121(i+l. i) +qiii1(i+2, i+l)qiu(i+2, i+l) 

U;= -qiii1(i+2, i+l) 

V;=-qi22(i+l. i)qiii1(i+1, i)v1Ct1+1, t;)+v2<t1+1, t;) 

+ qiii1 (i + 2, i + 1) V1 (tl+2• f1+1) 

············(25) 

············ (26) 

(i=O. 1. ... N-2) 

67 

Taking (25) and (26) for all i (i=O, 1, ..• , N-2) into account, we can establish 

the following theorem. 

Theorem 1. 

Let p be the solution to (16) in the interval [t1, t1+J with the boundary condi­

tions x(t;) =x(t1) and x(t;+1) =x(t;+1) (i=O, 1. ... , N-1; x(t0) =n0, x(tN) =nN). Let 

p(tt) and PCt"i+1) be the value of p at t=tt and t=t,+1, respectively. Then the 

following relation holds : 

where 

P=I'X+v 

To Uo 0 

s. r. u. 

I'= 
SN-3 TN-3 UN-3 

0 SN-2 TN-2 

X=[x'(t.). x'(t2), .. . , x'CtN-i)J' 

P=[{P(ti")-p(tt))', ...• <PU-ii-,)-PU.t-,))'J' 

············(27) 

············(28) 

············ (29) 

···•········ (30) 

············(31) 

Note that I' and V are independent of the choice of the boundary conditions 

x(t;) (i=l. 2, ... , N-1). Hence we have the following corollary. 
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Corollary 1. 1. 

Suppose I' of (28) be nonsingular. Let X=[x'(t,), x'(t2), ••• , x'(tN_,)]', where 

x (t;) is the value of the exact solution to ( 16) at t = t; ( i = 1. 2, ... , N-1) . Then 

X and X of (29) are related by the following algebraic equation: 

············(32) 

Proof. 

For the exact solution x(t;), obviously p is continuous in t .[t0, tN]. Hence, 

O=I'X+ V ············(33) 

Subtract (27) from (33). Then the nonsingularity of I' proves the validity of (32) 

Q. E. D. 

Remark 1. 

Corollary 1. 1 means that the solution to the given TPBVP can be obtained by 

solving several numbers of the subinterval TPBVP's. Hence, it is suggested that 

the TDA is also applicable to the problem, having discontinuities in the system 

equation. 

Now let us consider the nonsingularity of I'. 

Theorem 2. 

Suppose that tp12 ()., 0) ().=1. 2, ... , N) and tfi,.().+1. .<) (.<=1. 2, ... , N-1) be 

nonsingular. Then, I' is nonsingular. 

Before proceeding to the proof of Theorem 2, we prove the following two 

lemmas. 

Lemma 1. 

For arbitrary .<, µ, and 11, the following relation holds : 

(i, j=l. 2) ............ (34) 

Proof. 

From the transition property of (/), 

············(35) 

Hence, expansion of (35) proves (34). 

Q. E. D. 

Lemma 2. 

Assert the hypothesis of Theorem 2. Then the following sequence of matrices 

T, is well-defined: 
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(i=0, 1. ... , N-2) ············(36) 

where S0 4 0, and T=I and U_1 are arbitrary matrices. Furthermore T, is given by 

T,= r/>il(i+2, i+ 1) ¢12(i+2. 0) ¢ii1(i+ 1. 0) ··· ··· ··· ··· (37) 

Proof. 

Clearly, it suffices to prove (37). We prove (37) inductively. 

First, by the definition of T, in (26) and Lemma 1. we have 

To=To=¢22(l. 0)¢ii1(1. 0)+¢ii1(2, 1)¢11(2, 1) 

=¢121 (2, 1) [¢12(2, 1) ¢22(1. 0) +¢11(2, 1) ¢12(1. 0) ]¢1210, 0) 

=¢ii1(2, 1)¢12(2, 0)¢ii1 (l. 0) ············(38) 

(38) shows that (37) holds for i=0. 

Second, we show that the relation (37) holds for i=k+l. if it holds for i=k. 

From (36) and (37), 

T,,+l-TH1 = -sH1T,1 u,, 
=[¢21(k+2, k+l)-¢22(k+2, k+l)¢ii1(k+2, k+1)111(k+2, k+l)] 

l612(k+l ,0)¢ii1(k+2, 0) ············(39) 

Substituting 

l621(k+2, k+l)¢12(k+l. 0) =¢22(k+2, 0)-¢22(k+2, k+l)¢22(k+l. 0) 

············(40) 

into (39), we obtain 

T,,+l=TH1+¢22(k+2. 0)¢ii1(k+2, 0) 

-¢22(k+2, k+1)[¢22 (k+l. 0) +¢121(k+2, k+1)¢u(k+2, k+l)¢12(k+l. 0)] 

¢ii1(k+2. 0) 

=TH1+¢22(k+2. 0)¢ii1(k+2, 0)-¢22(k+2. k+1)¢ii1(k+2, k+l) 

=¢ii1(k+3, k+2)¢11 (k+3, k+2) +¢22 (k+2, 0)¢ii1(k+2, 0) 

=¢ii(k+3, k+2)¢u(k+3, 0)¢ii1(k+2, 0) ············(41) 

(41) implies that (37) holds for i=k+l. Thus, the proof is completed. 

Q. E. D. 

Now we can proceed to prove Theorem 2. 

Proof of Theorem 2. 

Let A, be the nonsingular matrix defined by 

(( 
I. 0 

A,= · -T;.:.1U1-1 

n(N-1) I. 
(i=l. 2, ... , N-2) ······ ... · .. (42) 

~ 0 I. 
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Multiplying A1 to I' from the right successively (i=l. 2, ... , N-2) transforms I' 

into 

... ······ ... (43) 

* 

Due to Lemma 2 the matrix of (43) is nonsingular. Hence, Theorem 2 is proved. 

Q. E. D. 

4. 2. Extension of the TDA to the Linear MPBVP with Discontinuities 

As mentioned in Remark 1, the TDA can be extended to solving the linear 

MPBVP with discontinuities in the system equation. Hereafter, for simplicity, the 

discontinuity is assumed to occur only once during the overall control duration. 

Then, let N = 2 and let the corner time t = t1• 

We restrict our discussion to the case where the boundary conditions are given 

in the form: 

[ 

xl(i,(t'i") -xl(i,(tt) 

ef,,[x(t'i"), x(tt)]= X2wCt,)-11:, 

X3w(t'i") -XswCti) 

············(44) 

where x 1m is an r1Cl,-dimensional vector with rw,+r2cn+r3cn=n (i=O, 1, 2). (44) 

means that some elements of the state variable x are specified at t=t1 and that x 

is continuous in t. 

In this case, the necessary conditions for optimality (5) ~(9) can be written as :61 

Subarc 1: te[t0, ti] 

i=A1x+B1u+.fi(t, x) 

Ji= -Qx-A;p-(f )'p 

( 
oHO> )' , au =Ru+B1P=0 

} ···(45-11 

X(to) =11:0 } 

X2(t1)=11:1 •••(46-1) 
P1Ct1) =1111 

PsCt1) =11s1 

g,, 4 H<1> Ct1) - H<2> Ct1) = 0 

Subarc 2: te[ti, t2] 

i=A2x+B2u+h(t, x) 

Ji=-Qx-A;p-(~~ )'p 

( 
0H<2> )' , au =Ru+B2P=0 

(i=l, 2) 

......... ··· (46-2) 

············(47) 

Therefore, the problem is reduced to finding the boundary conditions x1 (t1) and x3 (t1) 
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which guarantee the continuity of p1(t) and p3 (t) at t=t1, and also to finding the 

optimal corner time t1 which satisfies (47). 

Once t1 is assumed, the MPBVP of (45) and (46) can be solved with use of both ----the ICA and the TDA. Suppose that ( 45) is linearized as (10). Let p1 Ctr) and ----PsCtr) be the values of the solutions p1 and Ps at t=tr, respectively, to the TPBVP's 
,___-, -----with the boundary conditions xCto)=iro, x 1(t1)=x1Ct1), X2Ct1)=ir1o XsCt1)=xaCt1), and 

x(t2) =ir2. Then from Theorem 1, 

············(48) 

where 

I'u I'12 I'13 l 
I'21 I'22 I'2a =I', 

I's1 I' 32 I' 33 

f = r I'n I'13 )· 
l rs1 r 33 

cw;, w;, w;]'=V 

············(49) 

Hence, similarly to Corollary 1. 1, the exact solution X = [x; (t1). x;(t1) ]' is given by 

X=X-f-1P ············(50) 

- ~ ---- ~ ~ ~ ~ ____... 
where X=[x;Ct1), x;Ct1)]', P=[(P1Ct,)-p1(tt))

1
, (PaUn-PsCtt))'J'. Then, the linear 

TPBVP's are solved again with the exact boundary conditions. The ICA is iterated 

until the solution reduces (15) to zero or a sufficiently small enough unit. 

After the first- and the second-level calculations, the corner time t1 is corrected 

by (11). The third-level calculation is carried out until g,
1 

is reduced to zero or 

a sufficiently small enough unit. 

5. Summary of the Algorithm 

In this section, we summarize the results obtained above into the form of an 

algorithm. 

------ -----Step 1: Set l =O, k=O. Assume 0t1. Let 0x1(0t1) = 0x3(0t1) =O, 0y(t) =0q(t) =O, te[to, t2J. 
Choose appropriate values of /3, IC, a, and Y/· 

Step 2: Solve the homogeneous part of (45) with the boundary conditions X=e., 
the Ii-th unit vector, x(t0) =O, x 2(t1) =O, and x(t2) =O. Then the difference P 
represents the J.1-th column of f. Calculate f-1• 

Step 3 : Solve each linear TPBVP of the subarcs with the boundary conditions 

Subarc 1: 

............ (51) 

------ .._...--
X 1 Cl1) = "x 1 Ct1), X2Ct1)=ir1, XsU1)="xsCt1). x(f2)=ir2 
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Step 4: By (50), determine the exact solution x(t1). Solve the subarc TPBVP's 

again with use of x(t1) and ir0 and ir2. Let us denote the solution as 1x and 1p. 
Step 5: If 1 G of (15) is small enough, proceed to Step 6. Otherwise, correct 1y -- --and ,,q by (14), replace 1 x1 (t1) and ,.x3(t1) by 1x1 (t1) and ,.x3 (t1), respectively, and 

replace k by k + I. Then return to Step 3, 

Step 6: Compute 1g,
1 

by (47). If 1g,
1 

is small enough, the optimum is attained and 

the calculation is terminated. Otherwise, correct 1/ 1 by (11), replace l by l + 1, 

and return to Step 2. 

6. Examples 

Two physical problems are examined to illustrate the applications of the present 

algorithm. For the numerical integration of the differential equations, the fourth­

order Runge-Kutta-Gill scheme is employed, where use is made of one hundred 

grid-points in the overall interval. 

Example 12> 

Let us consider the problem of minimizing the functional : 

with respect to the control u( •) and the corner time t1• The state equations gov­

erning the system are 

and the boundary conditions are 

x,(0)=l} .. , .. ,(54-1) 
X2(0) =1 

x1(2) =0} 
X2(2) =0 

...... (54-2) 

............ (55) 

(53) implies that the mass of the article 1s reduced by half at the corner time t1• 

For this problem, the necessary conditions for optimality are written as follows: 

...... (56-1) 

x,(0) =x2(0) =1 ...... (57-1) X1(2) =X2(2) =0 ...... (57-2) 

............ (58) 
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Pz(t,) =PaCtt) ............ (59) 

u=-0. 5Pa ······(60--1) u=-Pz ······(60-2) 

g,1=u(ti) 2+P1Unx2U1) +P2Ui)u(ti)-u(tt) 1-P1Ut)x2U1)-2P2Ut)u(tt) =0 

············ (61) 

It is easily shown that the general solutions to (56) are given by 

Xi (t) =[cit3-3cat2+ 12cst+ 12c,]/12 

X2(t) =[c1t2-2cat+4ca]/4 

P1(t) =C1 

Pa(t) = -c1t+c2 

X1(t) =[dit3-3dat2+3dat+3d,]/3 

X2(t) =difl-2dat+da 

P1(t) =d1 

Pz(t) = -d1t+d2 

where c1~c, and d1~d, are constants. 

} 

} 
Now let us follow the algorithm of Section 5. 

...... ······ (62-1) 

············(62-2) 

Step 1 : Let 0t1 = t1• Since the problem is linear, it is unnecessary to utilize the ICA. 

Step 2: f is obtained as follows: solve (56) with the boundary conditions x1 (0) = 
x2(0) =x1(t1) =x1(2) =x2(2) =0, and X2(t1) =1. The coefficients c, and d; are obtained 

as follows: 

C1=12/fi, C2=4/t1, Ca=c,=0 

d1=3/ Ui-2) 2
, d2= Ct1 +4) / Cti-2) 2, ds=4U1 + 1) / Ui-2) 2 

d,= -4tJ(ti-2) 2 

Hence, 

..__... 

············(63) 

Step 3: Let x2 (t1) =0. The solutions to (56) with boundary conditions x1(0) =Xa(0) = --1. X1U1) =0. 5, X2Ct1) =x2U1), and X1(2) =x2(2) =0 yield 

C1=12(t1+l)/~. C2=2(4t1+3)/t~, Ca=c,=1 

d1= -3/(ti-2) 3
, d2= -3(t1+2)/2U1-2) 3

, d3= -6t1/Ct1-2) 3 
•••••• •••••• (65) 

d,= (6t1-4)/(t1-2) 3 

Hence, 

----------P2(ti)-P2Ctt> = -c1t1+c2+d1t1-d2 

= c-st~+17Fi+16t1-48)/2tW1-2) 2 

Step 4: Substitution of (64) and (66) into (50) yields 

............ (66) 
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----- - ---- -----X2Ui) =x2Ui)-r-1[p2(ti'")-P2Ctt)] 

= (-8t~+17Fi+l6ti-48)/4tiCti-2) (3ti-8) ............ (67) 

Again solve the TPBVP's (56) with the boundary conditions thus obtained. Then 

the constants are obtained as follows : 

Ci= (12f.-81tf +72ti +48) /tWi -2) (3ti -8) 

C2= (1M-77tf+60ti+48)/fi(ti-2) (3ti-8) 

Ca=c,=1 

di =3( -Bf.+5tf +48ti -48) I 4t1 U1-2) 3(3ti-8) 

d2= C-8lt-33t~+9M+ 112ti -192) I 4t1Ct1-2) 3(3t1-8) 

da= (-8tt-9f.+81tf-32ti-48) /t1Ct1-2) 3 (3t1-8) 

d,= (8f.+tf-76t1+8)/(ti-2) 3(3ti-8) 

············(68) 

Step 5: This step is skipped since the ICA is not utilized. 

Step 6: The gradient g,
1 

is given by 

g,1=H0 >(t1)-H''E>(t1) = ! [P2Ct1)J2+[p1(ti")-P1Ctt)]x2Cti) 

= ! (-c1t1+c2) 2 +(c1-d1)X2Ct1) ············(69) 

with (67) and (68). (69) is a rational function of t,. It is not difficult to solve 

g,
1
=0 with the aid of a digital computer. Figure 1 shows the dependence of g,i 

and J on ti. It can be read off the figure that the optimal ti is 1. 377 .... 

20 

1 15 
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~ 
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- iO 

,,, 

-~---''----''----'---'' 1.1 1.2 1.3 1.4 1.5 1.6 

1 

Fig. 1. Dependence of g, 1 and J on the 
corner time t1• 

i 
.:;-

1.6 

1.2 

0.8 

0.2 0.4 0.6 0.8 

T[sec]-. 

Fig. 2. Variations of ti, g, 1> and J with the 
computing time T. 
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1.0 

I o.s 

... t• 2.0 

-o.s 

• 1.0 

0.5 1.0 

Fig. 3. The optimal trajectory on the 
xi-x2 plane. 

3.0 

I 
2.0 

1.0 

Fig. 4. Time history of the optimal control 
u. 

The algorithm is also carried out on a digital computer. The initial estimate of 

ti is 1. 0 and the step size T/ in (11) is set to 0. 1. When the sign of g,1 is chan­

ged, T/ is reduced by a fifth. Figure 2 shows the variations of t1, g,1, J with the 

computing time T. After 16 iterations they converged. As seen from Fig. 2, a too 

severe criterion for the optimality with respect to t1 contributes only to the comput­

ing time. 

Figures 3 and 4 show the optimal trajectory on the Xi -x2 plane and the time 

history of the optimal control u, respectively. 

Example 213 > 

Next, we consider the problem whose system equation contains nonlinearities. 

The problem is a discontinuous version of the three-axis attitude-control problem. 

The system equations are described by 

.x,=x2, i2=e(x,+x,x&+xaua) +ui 

.X3=X,, .x,= -e(x2+X2X&+X1Us) +u2 

is=X&, i 6=e(xs.x,+x1u2) +ua 

......... ··· (70) 

Suppose that the parameter e changes discontinuously from 1. 0 to 2. 0 at t=t, at 

which Xi(ti) =0. 0, XaUi) =0. 15, and x5 Cti) =0. 055 are to be satisfied. The objective 

is to find the control u and the corner time ti which minimize 



76 A Time-Decomposition Algorithm for the Solution of Multiple-Target Problems 

············(71) 

starting from x(O) =[l. 0, 1, O, 1, OJ'. The problem is decomposed into the three 

subsystems of [x1, x2], [x3, x,], and [x5, x6]. For solving one of the subsystems, 

the variables of the other subsystems and those in the nonlinear terms are replaced 

by interaction vectors. The necessary condition for Subsystem 1 is described by'> 

i2=-f,P2+ (f,-1) q2+.[y,(l +ys) -ya(.ysq2-•Y,q,+qs)] 

fi, = -,ex,+ (,;;-l)Y1 +.2[ -yeq2q,+y1(if.+q~] 

Pz= -1CX2-P1+ (,;;-l)y2+ 0[q,(l +ys) -y,qs)J 

············(72) 

Similar problems obtained for subsystems 2 and 3 are omitted here. 

Figure 5 shows the variations of t1, g,
1

, and J with the iteration number l for 

correcting the corner time t1• 

parameters chosen are f, = ,;; = 1, 

the sign of g,
1 

is changed. 

1 'f 
2.6 ~ 

r 
-0.1 

2.56 

-0.2 

2.52 

It takes 4. 8 seconds to attain convergence. The 

a= 1. O, 7J = 0. 5, 0t1 = 2. 5. 7J is reduced by half when 

3.5 

3.0 r 
., 

2.5 

·--Fig. 5. Variations of ti, g,1' and J with the iteration number l. 

7. Conclusion 

A multipoint boundary-value problem with discontinuities in system equations is 

solved by a combined use of the interaction-coordination algorithm (ICA) and the 

time-decomposition algorithm (TDA). The TDA is an extension of the original 

one for a linear TPBVP. 
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The algorithm can effectively deal with nonlinear problems and the convergence 

is quite rapid. The solution satisfies the specified boundary conditions exactly 

because the idea of a penalty function is not employed. 

Acknowledgement 

The authors would like to express their sincere appreciation to Dr. T. Ojika, 

Associate Professor of Osaka Kyoiku University, for invaluable discussions of all 

kinds, and to Mr. M. Adachi and Mr. H. Miyake for assistance in preparing the 

manuscript. 

All the numerical calculations were made on FACOM M-190 at the Data Proces­

sing Center of Kyoto University. 

References 

1) Swiger, J.M.: Application of the Theory of Minimum-Normed Operator to Optimum 
Control System Problems, in Advances in Control Systems, 3, 151/218, Academic Press, 
New York, 1966. 

2) Tomizuka, M. and Tsujioka, Y.: Formulation of a Multiple Targets Problem and Its 
Analysis, Trans. Soc. Instrument and Control Engineers, 6, No. 3, 228/233 (1970, in 
Japanese). 

3) Dyer, P. and McReynolds, S. P. : "The Computation and Theory of Optimal Control," 
Academic Press, New York, 1970. 

4) Tamura, K.: A Numerical Approach to the Optimal Control Problem with Discontinuity, 
Trans. Soc. Instrument and Control Engineers, 8, No. 5, 600/605 (1972, in Japanese). 

5) Bryson, A. E. and Denham, W. F. : A Steepest Ascent Method for Solving Optimum 
Programming Problems, J. Appl. Mech., Ser. E, 29, 247/257 (1962). 

6) Nishikawa, Y., Ojika, T., Shimazutsu, H., and Okudaira, M.: An Interaction-Coordina­
tion Algorithm with Modified Performance Index for Nonlinear Optimal Control Problems, 
JOTA, 25, No. 2, 229/245 (1978). 

7) Ojika, T., Nishikawa, Y., Shimazutsu, H., and Okudaira, M. : An Interaction-Coordina­
tion Algorithm with Modified Performance Index for Optimal Control of Coupled Nonlinear 
Systems, Trans. Soc. Instrument and Control Engineers, 13, No. 5, 463/469 (1977, in 
Japanese). 

8) Ojika, T., Nishikawa, Y., Okudaira, M., and Sera, T.: Decomposition and Coordination 
Algorithms for the Optimal Control of Nonlinear Systems II, Preprints of 14th Convention 
of Soc. Instrument and Control Engineers, 45/46 (1975, in Japanese). 

9) Bryson, A. E. and Ho, Y. C.: "Applied Optimal Control," Blaisdell Publishing Co., 1969. 
10) McGill, R. and Kenneth, P.: Solution of Variational Problems by Means of a Generalized 

Newton-Raphson Operator, AIAA J., 2, No. 10, 1761/1766 (1964). 
11) Baird, C. A., Jr.: Modified Quasilinearization Technique for the Solution of Boundary-Value 

Problems for Ordinary Differential Equations, JOT A, 3, No. 4, 227 /242 (1969). 
12) Matausek, M. R.: Direct Shooting Method for the Solution of Boundary-Value Problems, 

Ibid, 12, No. 2, 152/172 (1973). 
13) Nishikawa, Y., Hayashi, C., and Sannomiya, N.: Fuel and Energy Minimization in Three 

Dimensional Attitude Control of an Orbiting Satellite, Proc. IF AC Symp. on Peaceful Uses 
of Automation in Outer Space, Stravanger, Norway, 287/298 (1965). 




