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By 
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Abstract 

This paper studies a new class of sequential unconstrained optimization methods, called 
the conjugate penalty method, for solving convex programming problems. The validity of 
the method is based on Fenchel's duality theorem. It is shown that, under certain condi­
tions, conjugate penalty founctins are uniformly bounded on a neighborhood of a point 
which is an optimum of Fenchel's dual problem. 

1. Introduction 

Recently, authors have reported a number of methods for solving nonlinear 

programming problems by transforming each constrained optimization problem into 

unconstrained optimization problems2•4 •5•7•14>. A characteristic underlying those 

methods is that a solution of the original problem can be obtained as a limit of sequential 

solutions to transformed unconstrained problems. Among those methods, the sequential 

unconstrained minimization techniques, 4> commonly abbreviated to SUMT, have 

been used in practice. They, sometimes called penalty methods, reduce the com­

putational process to unconstrained minimization of a transformed function, called a 

penalty function, combining the objective function, the constraint functions and one 

or more praameters. 

In this paper, we study a sequential unconstrained optimization method, proposed 

first in9 >, for solving convex programming problems. The method can be regarded 

as dual to the ordinary penalty methods. The theoretical validity of the method is 

based upon the well-known Fenchel's duality theorem3, 6 , 11, 12> in the theory of convex 

analysis. Since it utilizes conjugate convex and concave functions, we call it the 

conjugate prnalty method. 9> 
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Computational difficulties, such as ill-conditioning of matrices involved in ordinary 

penalty function methods, are caused by the fact that optimal solutions of the penalty 

functions lie in steep-sided valleys as the sequential minimizations proceed. Those 

circumstances seem unavoidable as long as ordinary penalty functions are concerned. 

On the other hand, one can exclude such unfavorable circumstances by employing 

conjugate penalty functions when some conditions on the problem are satisfied. Name­

ly, the behavior of the conjugate penalty functions near the solution is expected to be 

mild as sequential maximizations proceed. 

In section 2, we show a duality between two extremum problems derived from a 

general convex programming problem. In section 3, we define the conjugate penalty 

method and prove convergence. In section 4, several conditions are given, under which 

the conjugate penalty functions are well-behaved. 

In the remainder of this section, we summarize some notations in convex analysis 

that will be needed in the subsequent sections. The readers might refer to Rockafellar12> 

for the details. Some of them may also be found elsewhere.6 , 1s,15> 

For a convex set C in Rn, we denote the interior and the relative interior of C by 

int C and ri C, respectively. Throughout this paper all functions are understood to be 

extended-real-valued. Let/ be a convex (or concave) function on Rn. The epigraph 

and the effective domain off are denoted by epi f and dom /, respectively, and the 

subdifferential off at x, which is the set of all subgradients off at x, is denoted by of(x). 

In particular, if functions are differentiable in the ordinary sense, then the subgradients 

reduce, of course, to the gradients, and the usual notation 17/(x) is used. 

Asymptotic properties of convex sets and convex (concave) functions are particular­
ly important in the development of this paper. The notion of 'recession' will be useful 

in formulating various growth conditions that specify some behavior of sets and functions 

at infinity. A recession cone of a convex set C, denoted by o+c, is the set consisting 

of the zero vector and all directions of recession of C. The recession function of a 

convex (concave) function/is defined as a function whose epigraph is the recession cone 
of epif in Rn+i. We denote it as JO+. The set ofall vectors y, such that (JO+)(y);;i; 

(G)O for convex (concave) f, is called the recession cone off, and such vectors are 

called directions of recession off. 

Although we make no distinction about symbols, e.g.*, a, o+ etc., for convex 

functions nor for concave functions, the meanings will be clear from the context. 

A fundamental and beautiful duality theorem proved by Fenchel3> is one of the 

splendid results about the theory of convex analysis. This theorem plays a central 

role in the development of this paper. 

Fenchel's Duality Theorem Let f and g be a convex function and a concave 

function on Rn, respectively. If ri (dom/) n ri (dom g)-=l=cf,, then 
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inf {/(x)-g(x)} =sup {g*(y)-J*(y)}, 
zeRn IIERn 

where the supremum is attained at some y. 

2. A general convex program and Fenchel duality 

Consider the following general convex programming problem: 

(P) minimize/(x) over x E C, 

where f is a closed convex function on R•, and C is a non-empty closed convex set in 

R•. The convex programming problem (P) is equivalent to the following 'uncon­

strained' problem: 

(1) m1mm1ze U(x) 6- f(x)-ye(x) over x ER•, 

where ye is the indicator function of C defined by 

ye(x)=O if x E C,=-oo if x $. C.t 

Obviously, ye is a closed concave function on R•. 

Throughout this paper, we assume the following: 

A-1. The finite minimum of U is uniquely attained at x. Namely x is the unique 

minimum of problem (P); 

A-2. ri(dom/) and ri C have a point in common. 

In order to guarantee the existence of a minimum (possibly not unique), we may 

suppose that f and C have no direction of recession in common [12, Th. 27.3]. Some 

other conditions for the existence of minima are found in [1]. The latter assumption 

is automatically satisfied when f is finite everywhere, i.e. <lorn f =R•, and ri C is non­

empty, as is almost the case in practical problems. 

Let V be a closed concave function defined by 

(2) V(y) 6- ye*(y)-f*(y), 

where f* and ye* are conjugates off and ye, respectively. The function ye* is the 

negative of the support function of C [12, p. 28] and, hence, a positively homogeneous 

closed concave function. 

The following lemma is derived from Fenchel's duality theorem. 

Lemma 1. Let U and V be defined by (1) and (2), respectively. If assumptions 

A-1 and A-2 are satisfied, then 

/(x)=min U(x)=sup V(y), 
zeRn 11eRn 

t 'Ye is the negative of the indicator function in [12, p. 28]. 
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where the supremum is attained. Moreover, the maximum set of Vis 8/(x) n c)yc(x), 

and conversely, for each maximum j of V, the set 8/*(j) n c)yc*(j) is a singleton {x} . 

Proof. The first part is immediate from Fenchel's duality theorem with g(x)=yc(x). 

Now prove the latter half. We can show that the following conditions are equivalent; 

(i) f (x)-yc(x) =yc*(j)-f*(j); 

(ii) f(x)+f*(j)=<x,j)=yc(x)+yc*(j); 

(iii) y E aJ (x) n c)yc(x); 

(iv) x E 8/*(j) n 8yc*(j). (see [12, Th. 23.5]) 

Let x' be an arbitrary point in 8/*(j) n c)yc*(j), then obviously /(x')-yc (x')=/(x) 

-yc(x). Thus, 8/*(j) n 8yc*(j) must be a singleton {x} by the uniqueness. 

The minimum set 8/ (x) n c)yc(x) of V is clearly a closed convex set. In particular, 

when f is difierentiable, the maximum set of Vis fairly simplified by the following. 

Lemma 2. Let all requirements in Lemma 1 be satisfied. In addition, if f is differ­

entiable at x, then the supremum of Vis uniquely attained at j=P f(x). 

Proof. Since 8/(x)= {P /(x)} and the maximum set of Vis non-empty by Lemma 1, 

it is necessarily {Pf (x)}. 

3. A conjugate penalty method 

There are a number of methods that solve problem (P) by transforming it into a 

sequence of unconstrained problems of the form: 

(P.1) minimize U .1(x) c,,. f(x)-h.1(x) over x E R•. 

For k=l, 2, ... , each auxiliary problem (P.1) is solved and the optimal solution to 

problem (P) is obtained as a limit of a sequence of the optimal solutions to problems 

(PA), According to the types of h.1, functions Uk are classified into several classes, 

e.g. barrier functions, loss functions, etc. 4, 5, 7 , 14> Here, we call those functions generi­

cally penalty functions. The peanlty functions U _. should be constructed so that: 

(i) for every k, there exists a (unique) x.1 that minimizes U • over R•; 

(ii) Xk converges to x as k-+oo, and the limit of U k(Xk) is the minimum value of (P). 

In the following, let appropriate conditions be implicitly assumed so that the properties 

(i) and (ii) above are fulfilled. Such conditions can be found, for example, in 8>. More­

over we assume the following: 

A-3. Each h.1 is a closed concave function with ri(dom/) n ri(dom h•) =I=- <f,; 

A-4. int( <lorn/) =I=- <p and/ is differentiable on int( dom /); 

A-5. Every x.1, a minimum of Uk, belongs to int(dom/). 
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Define the conjugate penalty functions V,, on Rn by 

V 1r(y) ~ h1,*(y)-f*(y), 

where/* and h,,* are the conjugates off and h1r, respectively. Now consider a sequences 

of problems; 

(Q1,) maximize V1r(y) over y E Rn. 

Since f* and h1r * are convex and concave respectively, each problem (Q1r) is to find an 

unconstrained maximum of the concave function V 1,. 

It is now possible to define a conjugate penalty method for solving problem (P) 

in a manner quite similar to that in ordinary penalty methods. Specifically, we try to 

solve problem (P) by successive maximizations of the conjugate penalty functions 

V 1r, k=l, 2, ...... Therefore, the method may be regarded as one of the SUMT 

procedures. 

The following theorem proves convergence of the conjugate penalty method. 

Theorem 1. Let V,, be defined by (3). If assumptions A-1 through A-5 are satisfied, 

then there exists for every k a unique maximum y1, of V 1r and y1r=P f (x1r), where x1r 

is a minimum of problem (P1r). Moreover the y1r and V1r(y1r) converge to P j(x) and 

f(x), respectively, as k-oo. 

Proof. By A-3, the existence of a maximum y1r of V,, follows from Fenchel's duality 

theorem. By the differentiability off, it follows from a similar argument in Lemma 

2 that the y1r is unique and is equal to P j(x1r). As x1, converges to x and the mapping 

P /is continuous on int(domf), y1r also converges to P f(x). Since U1r(x1,) converges 

to j(x), the convergence of V 1r(y1r) to f(x) follows immediately from the relation 

u,,(x1r)=min U1r(x)=max V1r(y)=V1r(y1r). 
" g 

It may be remarked that the conjugate penalty functions are really defined on the 

dual space of Rn, which is identified with Rn. Thus for optimization problems in more 

general spaces, it may be possible to consider conjugate penalty functions on the dual 

spaces. 

4. Advantage of the conjugate penalty method 

Difficulties in computing ordinary penalty functions result mainly from the fact 

that the penalty function U,. grows extremely steep-valleyed near the minimum of the 

problem as k increases.1 4> Since U,. should converge in a certain sense to the function 

U, the reason for such irregularity may be that the minimum x generally lies on the 

boundary of dom U. A convergence property of ordinary penalty functions for general 

convex programs is studied in 8>. 
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As regards the function V, however, the maxima of V may be in int(dom.f) even 

when the minimum of U is on the boundary of dom U. In fact, this is true for a certain 

class of problems. In those problems the conjugate penalty functions VII are expected 

to be uniformly bounded on a neighborhood of the maxima of V. Therefore, we may 

bypass the difficulty inherent to ordinary penalty methods by employing the conjugate 

penalty functions VII to solve problem (P). 

In this section, we study conditions on problem (P) for the maxima of V interior 

to dom V. The necessary and sufficient condition for ji E int(dom V) is stated in 

the following 

Theorem 2. Assume that assumptions A-1 and A-2 are satisfied and that f is differ­

entiable at x. Then, ji E int(dom V), if and only if the following two conditions are 

simultaneously satisfied: 

(a) 

(b) 

(jo+)(x) > (P /(x), x> for every x * 0; 

<r f (x), x) > 0 for every X E o+c and X * O; 

where x is the minimum of U and y is the maximum of V. 

Proof. First, note thatji E int(dom V) if and only if ji E int(dom/*) andji E int(dom 

ye*) simultaneously. It follows from [12, Cor. 13.3.4.(c)] that ji E int (dom ye*) if and 

only if (/Q+)(x)-(ji, x)>0 for every x=l=O. This is exactly the condition (a) sinceji= 

r f (x) by Lemma 2. On the other hand, taking account of the concavity of ye, the 

necessary and sufficient condition for ji E int(dom ye*) is 

(ye0+) (x)-(ji, x) < 0 for every x=l=O, 

which reduces to 

<Y, x> > 0 for every nonzero x E o+c, 

because (ye0+) (x)=O when XE o+c, =-00 otherwise. 

Condition (a) in Theorem 2 can be geometrically interpreted as follows; The 

hyperplane z=<r f(x), x-x>+J(x) in Rn+i supports epi/ at .f but the set of points at 

which the hyperplane contacts with epi/ is bounded. On the other hand, condition (b) 

says that either C is compact, i.e. Q+C= {0}, or there is no halfline orthogonal to J7 f (x), 

which emanates from x and is contained in C. 

In general, the negative of the polar of the convex cone generated by <lorn ye* is the 

recession cone of ye. Dually, the negative of the polar of the recession cone of ye 

is the closure of the convex cone generated by <lorn ye*[12, Th. 14.2]. While the recession 

cone of ye is Q+C and the convex cone generated by dom ye* is dom ye* itself, because 

ye* is a positively homogeneous closed concave function. Consequently, dom ye* is the 

negative of the polar of the cone Q+C. 
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In particular, if Vis finite everywhere, i.e. dom V=Rn, then of course j E int(dom 

V) holds. The following theorem states a necessary and sufficient condition for V 

everywhere finite. 

Theorem 3. V is finite everywhere if and only if the following conditions are simul­

taneously satisfied: 

(a) f is co-finite, i.e. (JO+) (x)=+= for every x =I= 0; 

(b) C is compact, i.e. Q+C= {O}. 

Proof. Note that Vis finite everywhere if and only ifbothf* and ye* are finite every­

where. From [12, Cors. 13.3.1 and 13.3.2], the theorem follows immediately. The 

co-finiteness off implies that epi f contains no non-vertical halflines. This condition 

is satisfied, of course, if dom f is compact. 

Inequality constraints 
(P') minimize f (x) 

Now consider the problem 

subject to g;(x) G 0, t" E I, 

where/ and -g;, t" EI, are closed convex functions on Rn, and Iis an arbitrary index 

set. The convex programming problem (P') frequently encountered in practice is a 

typical case of the (abstract) program (P), in which the constraint set C is specified by 

the system of inequalities C= {x ERn; g;(x)GO, t"E I}. Note that C may be rewritten 

as C= {x E Rn; g(x) GO}, where g is a closed concave function defined by g(x)= 

inf g;(x). 
ie/ 

In order to state the results obtained in the earlier part of this section, we should 

represent the function ye* in terms of the constraint functions g;. By virtue of [12, 

Ths. 13.5 and 16.5], ye* is the closure of the positively homogeneous concave function 

generated by g* or cl(conv g;*), where cl of a function is a function whose epigraph is 
ie/ · 

the closure of the function, and conv of functions is a function whose epigraph is the 

convex hull of the functions. Namely, 

yc*(y)=cl {sup g*,,\} (y) 
l.:;o 

=cl {sup cl(conv g;*,,\)} (y). 
l.:o ie/ 

However, such expressions are somewhat complicated and impractical. 

In the following, we derive a simple sufficient condition onf and g; that assures 

condition (b) in Theorem 2. Then such a condition, if it exists, together with con­

dition (a) in Theorem 2 will imply ji E int(dom V). 

For simplicity, we make the following assumption on (P'): 

A-6. I= {1, 2, ... , m} and/, g1, ... , gm are differentiable at x, the unique minimum 
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of (P'), 
m m 

Then it is easy to see that o+C= n o+C;, since C= n C;, where C;= {x; g;(x) ~ 
i=l i=l 

O}. In general, for any concave function g, the direction of recession z satisfies the 

inequality 

<r g(x), z> ~ O 

for every x at which g is differentiable [10, p. 383]. Therefore, since each constraint 

function g; is differentiable at x, X E o+c = n o+c j implies 
i=l 

i=l, ... ,m. 

In other words, o+C is contained by the negative of the polar of the cone generated by 

{r gi(x), ... , P gm(x)}. From this, we have a sufficient condition that guarantees con­

dition (b) in Theorem 2. 

Theorem 4. Suppose assumption A-6 is satisfied. If every non-zero vector x such 

that 

i=l, ... , m, 

satisfies the inequality 

<rf(x), x) > 0, 

then the same inequality holds for any non-zero vector x E o+C. 

Proof. Immediate from 

o+c c {x; <r g;(x), x> ~ o, i=l, ... , m} 

It may be noted that the condition in Theorem 4 is fairly strong. In fact, there 

are problems in which some vector x, such that <r g;(x), x) ~ 0 for all z", does not 

satisfy <r J(x), x) > 0, while condition (b) in Theorem 2 is satisfied. For instance, 

consider the problem 

minimize (x1+1) 2+x22 

subject to xi -x22 ~ 0 

and l-x1-x2 ~ 0. 

Obviously, the solution is x=(x1, x2)=(0, 0) and P f(x)=(2, 0), r g1(x)=(l, 0), P g2(x)= 

(-1, -1). Taking x=(0, -1), we see that the condition in Theorem 4 is not met. 

However, this problem satisfies condition (b) in Theorem 2, because the constraint set 

is compact. 
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5. Example 

Let us consider the problem 

(4) minimize 

subject to g(x)=r-(x, Dx) ~ 0, 

where A and D are positive definite n X n matrices, b is an n vector and r is a positive 

number. 

The logarithmic penalty method4> is to solve a sequence of problems of the form 

(5) minimize U1,(x)=f(x)-t1, log g(x) over x E Rn, 

where {/1,} is a strictly decreasing sequence of positive numbers converging to zero. 

Put 

h(x)=log g(x) 

and for k=l, 2, ... , 

(6) 

Corresponding to (5), we can define the conjugate penalty function as 

V k(y)=h1,*(y)-f*(y) 

=t1,h*(y/lk)-j*(y). 

For problem (4), by direct calculation, we have 

and 

Substituting (7) and (8) into (6), we have 

V 1,(y)=log[t,,+(1,,+r(y, n-1y))1✓2J-(1,, 2+r(y, D-1y))1✓ 2 

1 - 2 (y-b, A-1(y-b))+h(l-log 2rlk). 

Finally, we mention briefly the convergence rate of the conjugate penalty functions. 

It is known5> that for logarithmic penalty functions 

Since 

r j(x)-r f(z)=A(x-z) for all x and z, 
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we have by Theorem 1 

Similarly, 

lly,-Jill=IIP J(x,)-P /(x)II 
~IIAll•llx,-xll-

llx,-xll=IIP J*(y,)-P /*(y)II 
~ IIA-1ll •lly,-Jill-

Therefore we, can conclude that x, and y, converge at the same rate, namely, 

In fact, a similar statement is valid for more general problems under assumption of the 

Lipschitz continuity of Pf and P /* on neighborhoods of x and ji, respectively, (see9>.) 

6. Conclusion 

We have presented a new class of sequential unconstrained optimization techniques 

for the solution of convex programming problems. The method has an advantage over 

ordinary penalty function methods in that it will circumvent unfavorable boundary 

properties of ordinary penalty functions, as far as the conditions in Theorem 2 are 

satisfied. Those conditions are met for some classes of problems that are often en­

countered in practice. For example, a strictly convex objective function and strictly 

concave constraint functions will form a problem which satisfies both conditions. How­

ever, we mention that the present method has a drawback in its practical implementation, 

because it is not an easy matter to obtain a terse expression of conjugates for any convex 

and concave functions. This approach may be particularly attractive for the type of 

problems such as problem (4), in which functions have their conjugates in a simple 

closed form. 
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