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Numerical Analyses on the Reflection of Ionizing Shocks 
on an End Wall of a Shock Tube 

By 

Yasunari TAKANO* and Teruaki AKAMATsu* 

(Rceived January 25, 1977) 

Abstract 

Numerical analyses have been made on the ionizing shock reflection on a closed end 
of a shock tube by the use of the finite difference method. It was found that very intere­
sting phenomena and complicated flowfields occur due to the interaction between inoiza­
tion relaxation and reflected shocks. The exact numerical solutions were compared 
with the results of some simplified models. Calculations were performed for argon. 

Nomenclature 

a: speed of sound 

c: degree of ionization 

c: net degree of ionization production rate 

301 

c,: net degree of ionization production rate due to electron-atom inelastic collisions 

c,q: equilibrium reference degree of ionization 

C: Courant number 

e: energy, electric charge 

E1 : ionization energy 

k: Boltzmann constant 

k,a, k,.: ionization rate constants 

m,: mass of an electron 

mh: mass of a heavy particle 

n,: number density of electron gas 

ii,: net rate of electron production 

(n,),: net rate of electron production due to electron-atom inelastic collisions 

p: pressure 

R: gas constant 

t: time after shock reflection 

* Department of Mechanical Engineering 
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T: temperature of heavy particle gas 

T,: temperature of electron gas 

TA1 : characteristic temperature of excitation 

Tian( =E1/ k): characteristic temperature of ionization 

u: velocity 

Us: speed of incident shock 

u R : speed of reflected shock 

uRF, uRFE, uRE: speeds of reflected shocks in simplified models 

x: distance from shock tube end wall 

1,1 eh: collision frequency for electron-heavy particle 

p: density 

Subscripts 

j: grid point of x-coordinate 

n: grid point oft-coordinate 

1 : initial region (Fig. 1) 

1. Introduction 

High-temperature stagnant gases and plasmas can be generated behind shock 

waves reflected from a closed end of a shock tube. These hot gas regions are 

used to study the ionization relaxationl.2) and the thermal boundary layer.3
•
4l 

Therefore, it is important to realize the situation in the flowfield behind the re­

flected shock. Several experimental investigations1•5•6l have indicated that in­

teractions between the reflected shocks and the ionization relaxation processes 

make flowfields very complex. Some explanations1•5l have been made about such 

phenomena, but there do not seem to be any detailed elucidations. 

The purpose of the present paper is to investigate, in more detail, the situa­

tion by numerical analyses with the use of the finite difference method. The 

present problem is concerned with the flowfields where ionizing shock waves 

reflect from the end wall of a shock tube and propagate back into the ionizing 

nonequilibrium argon gases, which incident shocks have left behind. Moreover, 

we assume some simplified models to get approximate estimations about flowfields 

behind the reflected shocks, and then compare them with the exact numerical 

results. 

2. Analysis 

A schematic distance-time diagram is shown in Fig. 1, where x is the dis­

tance from the shock-tube end-wall and t is the time elapsed after the reflection 
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Fig. 1. Schematic distance and time diagram for shock reflection 
on the end wall. 

of a shock. The problem to be solved is an initial value problem with some boun­

dary conditions at the shock tube end. 

2.1 Basic equations 

The basic equations used here are unsteady one-dimensional conservation 

equations for ionized and thermally nonequilibrium inviscid gases 

ap+a(pu)=O 
at ax 

a(pu) + a(pu2+p) = 0 
at ax 

and equations of state for monatomic gases. 

p = pR(T+cT,) 

e = ~ L+cRT. 2 p ,.,. 

Next, conservation equations of mass and energy of the electron gas7•8> are 

a ( 3 ) a ( 3 ) au - -n,kT, +- -n,kT,u +n,kT,-ru 2 ~ 2 ~ 

= 3 m, n,k(T-T,)11,h-E1(n,). 
mh 

( I ) 

( 2) 

( 3) 

( 4) 

( 5) 

( 6) 

( 7 ) 
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The following equation can be written in terms of the degree of ionization 

( 8) 

where c is the degree of ionization production rate, which will be described in 

the next section. The electron gas is assumed to be in a local steady state: each 

term on the left hand side of Eq. (7) is much smaller than either of the terms on the 

right hand side. Thus, the following equations) is used instead of Eq. (7). 

( 9) 

The local steady state approximation is known to be valid in almost all the parts of 

the relaxation zone, except the initial stage of the ionization relaxation immediately 

behind an incident shock. 

The above-mentioned differential equations are to be solved with the following 

initial and boundary conditions. Concerning the boundary conditions at x=O, 

we assume that the surface of the shock-tube end-wall is impermeable and thermally 

insulated. This means that two shock waves with equal strength collide with 

each other at the symmetric plane (x=O). The initial conditions are given by the 

profiles of the ionization relaxation behind the incident shock propagating into 

the stationary region. The scheme determining these profiles is given in the 

Appendix. 

2.2 Ionization production rates and collision frequencies 

The net degree of the ionization production rates) c consists of two processes. 

One is the production due to atom-atom inelastic collisions 

(IO) 

The other is the production due to electron-atom collisions 

(11) 

Therefore, the net rate is written as follows 

(12) 

c,q(T) and c,q(T,) in Eqs. (10) and (11) are the equilibrium reference degrees of 

ionization which are written as 
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where K,q(TM) is the equilibrium constant (TM=T or T,) 

K ( T ) = 2Z; ( 211:m,k T M)3/2 ex (- Tion) 
eq M Z h2 p T 

a M 

(14) 

Z 0 and Z; in Eq. (14) are the electronic partition functions of atoms and ions, and 

their ratio for argon can be approximated by ZJZ
0
=6. The rate constants of 

argon used in the numerical analysis are 

k,0 (T) = 5.80 X 10-31 (7;1+2)exp(Tion; TA1) 

k,,(T,) = 1.29 X 10-32 (1j1+2)exp(Tion;:-TA1) 
e e 

where Tion = 183100°K and TA1 = 135300°K. 

cm6 

s 

cm6 

s 

( 15) 

(16) 

The elastic collision frequency 8l between electrons and 'heavy particles Jl,h is 

the sum of electron-ion collision frequency JI,; and electron-atom collision fre­

quency J1,0 • 

JI . = cp (8kT,)
1
t
2Q . 

11 e, 
mh 11:m, 

= (I-c)p(8kT,) 1
1
2Q 

Jl,a ~-~ ea 
mh 11:m, 

(17) 

(18) 

(19) 

The elastic collision cross section between electrons and atoms9l adopted in the. 

present numerical calculations is 

Q,. = (-0.35+0.775 X 10-•T,) X 10-16 cm2
, 104°K< T,<5 X 104°K 

= (0.39-0.551 X 10-4 T,+0.595 X 10-8 T,2) X 10-16 cm2, T,< 104°K (20) 

and the elastic collision cross section for electrons and ions9l can be expressed as 

3. Finite difference method 

3.1 Finite difference equations 

On writing 

(21) 
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, u 
u =-, 

Us 

t' = _!_' 
'C' 

, e 
e =­

uz s 

I X 
X =-

TU5 

and dismissing primes, the basic equations are reduced to 

p 

pu 

pc pcu 

0 

0 

0 

,pc 

(22) 

(23) 

(24) 

where , is the characteristic time of the ionization relaxation5> which is written as 

torr-µs (25) 

and T 2F is the frozen temperature just behind an incident shock. 

The finite difference method used in the present numerical analysis is the 

two-step Lax-Wendroff scheme10>, shown as follows: 

Un+l un A { 1 (Fn pn ) + (f':'n+l F-n+l )} +cn+(l/2) At j = j - 2 2 j+l - j-1 I' j+(l/2)- j-(1/2) j ;, 

G n+(l/2) - c[ l (2un+on+l + on+l )] j - 4 j j+(l/2) j-(1/2) 

Pj!h1z> = F[Oj!h/2)] 

Oj!h/2) = J__ (Ui+i +Uj)-J(Fj+i-Fj) +Gj+(l/2) Jt 
2 

Gj+<iiz> = c[ ! (Uj+i+Ui)] 

(26) 

(27) 

(28) 

where subscripts j and n refer to the grid points of the x and t coordinates, Jx and 

Jt are stepsizes of them and A=Jt/Jx, which must satisfy the Courant-Friedrich­

Lewy condition, 

Jt = C 1 
Jx Max(a+lul) 

O<C<l 

where a is the speed of sound given by 

(29) 

(30) 
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a2 = 2- p_ (31) 
3 p 

and C is the Courant number. 

3.2 Boundary Conditions and Initial Conditions 

In the previous section, the conditions ofsymmetricity have been shown to hold 

at the shock tube end wall (x=O). These conditions are made use of in the pre­

sent finite difference scheme. The grid pointj=O is located at x=O. U'.: 1at the 

grid point j= -1 is determined in such a way that 

(32) 

(33) 

If Uj(j=O, •··, N) is known, U'.: 1 is given by Eqs. (32) and (33), and then 

U'/ 1(j=0, ···, N-1) is evaluated by Eq. (26). When Uj is in the equilibrium 

state behind the incident shock, U'/ 1 can be determined by the relation Uj+ 1= Uj. 

Initial data at the grid points are given by the ionization relaxation profiles 

(Appendix). 

It takes a very long time to begin the difference scheme with the above-men­

tioned initial data which consist of three main regions: a cold stationary region in 

front of a shock, a frozen hot region and an equilibrium region behind a shock. 

Therefore, we start the difference scheme within a smaller domain, shown in Fig. 2. 

The computation domain spreads zigzagingly according to the propagation of the 

reflected shock. The zigzag boundary conditions are evaluated by the relation 

Comptation Region 

C: 

X 

Fig. 2. Schematic diagram of the computation region for the 
shock reflection problem. 



308 Yasunari TAKANO and Teruaki AKAMATSU 

U(x, t+,;) = U(x+,;, t). Considering that the normalized velocity of the incident 

shock is unity, the above-mentioned relation is valid for the region behind the 

incident shock. 

4. Results of Numerical Calculations 

Numerical calculations have been obtained on Kyoto University's Computor 

FACOM 230-75 for three cases, shown in Table 1, which are experimentally achi­

eved by our shock tube facilities. The Courant number defined in Eq. (29), is 0.9 

Table I. Conditions of numerical analyses: Incident shock Mach numbers, initial 
pressure and step sizes of finite difference scheme. 

Case Ms Pt (torr.) ,:It 

I 16 I 0.005 0.0034374 

2 14 3 0.004 0.0027426 

3 12 5 0.002 0.0013659 

for each case. The x- t diagrams of these three cases are shown in Figs. 3,4 and 5, 

where n indicates the number of computation steps. Figure 6 shows the profiles 

of T, u, T,, P, p and c behind the incident shock of Case 1. With reference to 

Fig 3, let us explain the flowfields across the reflected shocks. For a short time 

aftF the reflection of the incident shock, the region between the end wall and the 

reflected shock is in a frozen state (n=40,_,1Q0). Then, the ionization relaxation 

proceeds in the nonequilibrium region, and the reflected shock begins to move 

rather slowly (n=l00,_,150). Meanwhile, with ionization suddenly occurring, 

the gases in the nonequilibrium region turn out into an equilibrium state initiated 

at the end wall (n=200). In this equilibrium region adjacent to the end wall, the 

temperature goes down and the density increases because the ionization reaction 

removes the ionization energy from the kinetic energy in gases. Therefore, an 

expansion wave propagates from the equilibrium region adjacent to the end wall, 

which weakens the reflected shock in velocity (n=300,_,500). Figure 7 shows the 

flowfield of Case 1 at n=300. The reflected shock is seen at x=0.41 and the gases 

upstream ofit are in a nonequilibrium state. In the neighborhood of the reflected 

shock, some vibrations are seen which often appear in results of the finite difference 

scheme. The gas near the end wall (0~x;::;;;:0.5) attains an equilibrium state and 

the expansion wave is seen which has the minimum of pressure at x=0.19. As 

gases in front of the reflected shock relax into an equilibrium state, the reflected 

shock slows down in velocity and at last goes back towards the end wall (n=500,_, 

700, Fig. 3). This phenomenon is caused by the fact that the increase in the density 
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Fig. 3. x-t diagram of the shock reflection process obtained by the numerical 
analysis of the case l ; Ms= I 6 and Pi= I torr. 

in front of the reflected shock weakens the reflected shock in strength. The reflec­

ted shock, propagating back to the end wall, interacts with the equilibrium region 

behind it. The typical profiles of the flowfields marked with <D, ®, ®, and © in 

Fig. 4 are shown in Fig. 8. The reflected shock is denoted by IR, 2R, etc and the 

onset of the equilibrium region is denoted by IE, 2E, etc. Profile I shows the 

flowfield where the reflected shock almost ceases moving, and its gas upstream is 

still in a nonequiiibrium state. In profile 2, the retiring shock decreases in 
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Fig. 4. x-t diagram of the shock reflection process obtained by the numerical analysis 
of the case 2; Ms=l4 andp1 =3 torr. 

strength, whereby the pressure and the temperature of the nonequilibrium region 

behind it become low. However, the pressure in the neighborhood of point 2E 

grows high, and the temperature of the relaxation region becomes higher at the last 

stage of relaxation because of the gas moving against the steep pressure gradient. 

In profile 3, from the high-pressure zone (3E) between the equilibrium region and 

the nonequilibrium region, a compression wave (3C) is generated, propagating to 
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analysis at n=300. 
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Fig. 8. Flowfields behind the reflected shock for the case 2 with the mark; Numbers 
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respectively and R, S, E and C mean reflected shock, newly generated shock, 
onset of equilibration and compression wave respectively. 
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Fig. 9. Variations of the pressure profile behind the reflected shock for case I at every 
10 computation steps from n=990 ton= 1500. 

the end wall. Simultaneously, a shock (3S) is also produced moving to the 

reflected shock. The colliding of this newly generated shock with the reflected 

shock gives rise to a contact surface where the density and the degree of ionization 

are discontinuous but the temperature is almost continuous. Figures 9 and 10 



314 

0 

~ 
0 

N 

"? 
0 

.... 
"! 
0 

u 
<D ... 
0 

a, 
~ 
0 

0 

~ 
0 

o.oo 

Yasunari TAKANO and Teruaki AKAMATSU 

0.10 0.20 0-30 0-40 0.50 
X 

o.so 0.70 

Fig. 10. Variations of the degree of ionization profile behind the reflected shock for case 
1 at every 10 computation steps from n=990 to n= 1500. 

show 52 profiles of the pressure and the degree of ionization of Case I (Fig. 3) 

plotted one above another with the values shifting from n=990 to n= 1500 at 

every 10 computation steps. The compression wave moving to the end wall 
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Fig. 11. Flowfield behind the reflected shock for case 1 at n=1900. 

(n=800,-.,950), reflects there, catches up with the reflected shock and strengthens 

it (n=l260). There is also generated another contact surface where the density 

and the degree of ionization are again discontinuous but the temperature is almost 

continuous. Figure 11 shows the profiles of the hot stagnant region where the 

reflected shock passed through (n= 1900). The pressure and temperature profiles 

are uniform there, but the profiles of the density and the degree of ionization are 

complicated due to interactions between the ionization relaxation phenomena and 

waves. 

5. Contparison with sonte sintplified ntodels 

Some methods to estimate the actual states in the regions behind the reflected 

shocks are necessary for experimental investigation. Therefore, we estimate them 

by simplified models and compare them with the numerical exact solutions. As 

shown in the present numerical analyses, the region behind the incident or the 

reflected shock is not straightforward. However, simplifications are made so that 

the region behind the incident shock or the reflected shock is uniform and is in 

a frozen or equilibrium state. The following simplified models are treated as shown 

in Fig. 12: 

(I) The frozen incident shock reflects on the end wall and propagates back into 

the frozen region (2F) with the frozen velocity of uRF· These conditions are 

realized in the shock reflection of perfect gases, or immediately behind the 

reflected shock of real gases. 
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(2) The reflected shock moves into the frozen region (2F) with the ideal velocity 

of uRFE, while the whole region behind the reflected shock is assumed to be 

in an equilibrium state. 

(3) The equilibrium incident shock reflects at the end wall and propagates 

back into the equilibrium region (2E) with the equilibrium velocity of uRE· 

Namely, the regions in front of and behind the reflected shock are both in 

an equilibrium state. 

Case 

l 

2 
3 

Case 

l 

2 
3 

Case 

1 

2 

3 

Case 

l 

2 

3 

~ 
"O 
C 
w 
OJ 
.0 

~ 
.x 
u 
0 
.c 
1./) 

Model 1 Model 2 Model 3 

Fig. 12. Schematic diagarm for simplified models. 

Table 2. Conditions offlowfield obtained by the simplified models shown in Fig. 12 
schematically. ( T 1 =300°K) 

Ms I P1 (torr.) \ P1 (g/cm3
) \ P2F/P1 I P2E/P1 I PsF/P1 P3FE/P1 

16 l 2.13xl0- 6 3.95 8.15 9.84 22.8 

14 3 6.40 X I0- 6 3.94 6.53 9.79 19.4 

12 5 l.07x 10- 5 3.92 5.21 9.71 16.5 

P3E/P1 I T2E (°K) I T2F/T2E I T3F/T2E I T3FJ1J/T2E I T3E/T2E 

48.4 11913 2.04 4.85 1.20 1.32 

33.3 11690 1.59 3.79 1.21 1.32 

22.6 10798 1.27 3.01 1.21 1.32 

I C2E I C3FE C3Jg I us (Km/s) UzF{Us UzE/us URF/us 

0.160 0.346 0.422 5.16 0.747 0.877 -0.502 

0.0913 0.238 0.283 4.52 0.746 0.847 -0.503 

0.0401 0.150 0.171 3.87 0.745 0.808 -0.503 

URFE/us URB/us 

-0.157 -0.178 

-0.190 -0.207 

-0.232 -0.242 
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Table 2 shows the gas quantities for the three cases obtained by the simplified models. 

Some comparisons between the simplified models and the numerical analyses will 

be made. In the region behind the reflected shock where the rapid ionization 

reaction has not yet occurred, the gas quantities are nearly equal to the data of 
the 3F region. After a while, this gas ionizes and then becomes an equilibrium 

state. The pressure and the temperature are nearly equal to those of the 3FE region 

respectively, but the density is lower and the degree of ionization is higher than 

those of the 3FE region. Processes of the ionization relaxation and the interaction 

of waves occur, and finally a hot stagnant equilibrium gas is produced. The 

pressure and the temperature of this region are nearly equal to the data of the 

3E region, but the profiles of the density and the degree of ionization shown in 

Fig. 11 are too complicated to compare with the data of the simplified models. 

In the above-mentioned simplified models 2 and 3, the gases behind the re­

flected shock are assumed to be in a uniformly equilibrium state, even immediately 

behind the reflected shock. Also, the ionization relaxation behind the reflected 

shock is neglected and the flowfield is over-simplified. Then, taking into account 

the ionization relaxation behind the reflected shock, let us deal with the following 

two modified models shown in Fig. 13; (a) the reflected shock with the constant 

/.-~ 
3FE / ; 

~ / 
; 

; 

'U 
C 

/; 

w 
a, 
..c 
~ 
~ u 
0 
.c 
1/) 

(a) (b) 

Fig. 13. Schematic diagram for modified reflected shock. 

velocity of uRFE moves into the 2F region; (b) the reflected shock with the constant 

velocity of uRE moves into the 2E region. The profiles of the ionization relaxation 

behind the reflected shocks can be determined by the procedures given in the Ap­

pendix. When t >4 in Fig. 3, the velocity of the reflected shock does not seem to 

change, and the gas in front of this reflected shock is in an equilibrium state. Hence, 
it may be worth while to compare the profiles of the ionization relaxation behind 

the reflected shock specified with the velocity of uRE (Model b) with the exact nu­

merical results of Case 1. Figure 14 shows that there is a good agreement between 
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the results by the modified model and the exact numerical results at n= 1980, except 

for some vibrations inherent to the finite difference schemes. When 0.5 < t < 1 in 

Case 3, the velocity uR, as shown in Fig. 5, varies extremely slowly and the gas in 

front of the reflected shock seems to be in a frozen state. The profiles for the modi­

fied model a are shown in Fig. 15. The relaxation distance of the exact numerical 

result at n=700 (t=0.856) is shorter than that of the modified model by 25 %­
This shortening is because the gas upstream of the reflected shock is not really in a 

frozen state, but already has some degree of ionization of about 0.1 % at n= 700. 

6. Conclusion 

Numerical analyses about the ionizing shock reflection on a closed end of a 

shock tube have been performed with the use of the finite difference method. Some 

interesting phenomena and complicated flowfields have been found, which occur 

due to the interaction between ionization relaxation and reflected shocks. While 

several explanations have been made about the exact numerical analyses. The 

effects of the radiation energy loss have been neglected in this study. However, 

the present finite difference procedure may be applied to solve such problems, 

including the radiation effect. 

Appendix 

The flow across a normal standing shock 1s governed by the following 

equations8l 

PU= PoUo 

P+PU2 = Po+PoU5 

h + _l__ u2 = ho+ _l_ u5 
2 2 

p = pR(T+cT,), Po= p 0R(l+c0)T0 

h0 = ~ Po+c0RT-
2 

10n 

Po 

where the subscript O refers to upstream conditions. 

to the following relations: 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

These equations are derived 

(A6) 

(A7) 

(AS) 
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The degree of ionization is determined by the rate equation 

de = ca+c, 
ds u 

(A9) 

where the coordinate s is the distance from the shock front. The temperature of 

electron gas is assumed to be given by Eq. (9). The initial condition for Eq. (A9) 

is c=c0 at s=O, which is the degree of ionization immediately behind the shock. 

Therefore, the ionization relaxations behind the incident shock are represented as 

functions of the distance s measured from the travelling shock. Incorporating 

Eqs. (A6) "-'(A8) substituted with the upstream conditions of u0= Us, p0=p1, 

Po=P1, lzo=h1 and c0=c1 =0, the differential equation (A9) can be solved by using 

the Runge-Kutta-Gill method with the initial condition of c=O. 

The flow behind the reflected shock specified with a constant velocity and 

constant upstream conditions can be also similarly determined. The upstream 

conditions for the model (a) are Uo = u2F-uRFE, Po= P2F, Po= P2F, ho= h2F and 

c0=c2F=0, and the initial condition for Eq. (A9) is c=O. For the model (b), the 

upstream conditions are u0=u2E-uRE, p0=p2E, Po=P2E, h0=h2E and c0=c2E, and the 

initial condition is c=cm which is the degree of ionization immediately behind 

the reflected shock front. 
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