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Hysteresis Model of Structural Materials under Repeated 
Elasto-Plastic Deformation 

By 

Takeshi KOIKE*, Ryuji IzuNAMI** and Hiroyuki KAMEDA* 

(Received June 29, 1974) 

Synopsis 

This study has been attempted in order to simulate a plastic fatigue failure process 
and transition of hysteresis loops under a cyclic elasto-plastic deformation. 

The hysteresis model proposed herein consists of continuously distributed parallel 
elements. It can display the fatigue failure process of material which hardens in its 
initial stage, and deteriorates in the second stage unitil complete failure occurs. 

The numerical results based on the model are compared with the experimental 
results of a plastic bending fatigue test on SS 41 H-section steel beams. 

I. Introduction 
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Many hysteresis models have been proposed in order to simulate and actual 

response of structures under large amplitude cyclic loadings; for example, bi­

linear model, tri-linear model, Ramberg-Osgood model and so forth. 

As large amplitude cyclic loading is repeated, plastic flow is accumulated in 

the structural material, and it is gradually softened. It must be noted that such 

structural behvaior under large amplitude cyclic loading should be reflected in 

setting up hysteresis loop models. By doing so, the hysteresis loop model under 

large amplitude cyclic loading can be physically meaningful. 

There are a few macroscopic concepts in the fatigue failure mechanism, for 

example, that introduced by E. Orowan1
l in 1939. He proposed that fatigue occurs 

when the increasing local stress level due to strain hardening exceeds a certain level. 

This idea is efficient enough to deal with the failure criterion on the macroscopic 

scale, though it may not always represent the true internal mechanism of the 

material. 

Herein, the microscopic failure mechanism IS not considered, but it IS only 
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assumed that randomly distributed latent defects existing in the material are 

elementary sources of fatigue failure. It has been attempted to simulate the 

plastic fatigue failure process and transition of hysteresis loops under a cyclic elasto­

plastic deformation. 

2. Model of Failure Mechanism 

2.1. General remarks 

Under strong cyclic loading, the hysteresis loops may harden or soften pro­

gressively. It is necessary from the view point of cumulative fatigue failure to take 

account of this effect, for example, in the elasto-plastic response analysis of struc­

tures subjected to a strong earthquake motion. 

In the plastic fatigue failure process of engineering materials, strain-hardening 

takes place within the first few cycles of loading2
l•

3
l. Then, gradual deterioration 

follows until the fatigue failure occurs at a specific cycle, N. These characteristics 

are considered to arise from many complicated behaviors of various defects, such as 

dislocations, cracks, interstitial clusters or grain boundaries4
l. 

Now, we suppose that material containing many kinds of defects can be 

approximately regarded as a class of continuously distributed elements with their 

own ultimate strength, depending on their size and kind of defects. Then, the 

local failure of each element will occur when the increasing stress applied to it, due 

to cumulative strain-hardening, exceeds its ultimate strength. 

These considerations lead to the one dimensional model of materials, which 

consists of continuously distributed parallel fibre elements, each having a pair of 

yielding and ultimate strengths as described in 2.1. The abscissa in Fig. 1 repres­

sents strain e and the ordinate, stress s, in the element. 

Each element is specified by the yield strength sy, the ultimate strength su, and 

the stiffness k and µk in the elastic and plastic domains, respectively. 
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1/) 
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I 
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ey eu strain 

Fig. 1. Constitutive relation of a single element. 
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A local failure occurs when the applied stress s, reaches the ultimate stress level 

Su, so that the failure criterion of the element is given by the following equation . 

. . . . . . . . . . . . ( 1 ) 

It is noted that eq. ( 1) requires the ultimate strength be constant through the 

plastic fatig1;1e failure process. This assumption is said to be aceeptable5
l for a large 

amplitude plastic fatigue failure, which is the case dealt with herein. 

The sectional force of the material is given by the resultant stress of the surviv­

ing elements. 

2.3. Parameters 

The element is specified by the elastic modulus k, the hardening factor µ, the 

yield strength Sy and the ultimate strength Su· Since the failure process would not 

be sensitive to the material constants k and µ, these two parameters are assumed 

to have the same values through all elements. 

Other material constants, Sy and su, however, are considered to be affected 

by existing defects in the material. Then, we introduce a two dimensional distribu­

tion function </J (su, sy) satifsying the following conditions; 

(i) <p(su, Sy) = <p( -Su, - Sy) 

(ii) Su~Sy 

(iii) Ha <p(su, sy)dsudsy = 1 

The equality in eq. (3) represents brittle materials. 

The mean value of the yield strength of the material is given by 

......... ··· ( 2) 

............ ( 3 ) 

............ ( 4) 

......... ··· ( 5) 

The non-dimensional stress a and the modified strain c can be defined using eq. 

( 5) as follows. 

a=s/sy ············(6) 

c = ke/sy · · · · · · · • • · .. ( 7 ) 

in which e is the applied strain, and k is the elastic modulus. c approximately 

represents the mean ductility factor of the material. In the same manner, the 

yield strain e y and the ultimate strain eu are redefined as follows: 

cy = key/sy 

cu= keu/Sy 

............ ( 8) 

......... ···( 9) 
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The constitutive relations shown in Fig. I are classified in the case of monotonic 

loading as follows. 

(i) 

(ii) 

(iii) 

Osesey ; a= e 

eyseseu; a= µ(e-ey)+ay 

; a= 0 

2.4. Hardening rate factor C 

............ (IQ) 

············(11) 

············(12) 

There are many conventional hysteresis models that can display stationary 

loops independent of loading history. But they are not adequate enough to repre­

sent the plastic fatigue failure process, which deteriorates depending upon the 

cycles until the fatigue failure takes place. 

In this study, a physically meaningful hysteresis model, including a macro­

scopic fatigue mechanism, is presented. 

It may be necessary to examine some possible paths in the n th cycle of the 

hysteresis loop as shown in Fig. 2. 

6 

f2n-1 ----------------- A 

8 

Fig. 2. Some possible paths of hystere5is loop. 

The path ABC corresponds to the stable bi-linear hystereis loop, where stress 

levels at points A, B and C are f 2n_1, X2n, and -f2n_1, respectively. 

The path AFG adopts -f2n+i as the yield stress level at point F, which is the 

same stress level as at point A. The path AFG makes the plastic fatigue failure 

process follow the monotonic tensile failure mechanism illustrated in Fig. I. 

The two paths discussed above are extreme cases of stable hysteresis and pro­

gressive strain hardening. In practical materials, the path would be somewhere 

between them. 



Hysteresis Mo<kl ef Structural Materials under Repeated Elasto-Plastic Deformation 477 

Actually, a path ADE could be introduced. To represent this path, a non­

dimensional parameter C:,. is defined as 

..... ·. · · ··· ( 13) 

in which a is the input strain amplitude,y2,. is the stress level at Din Fig. 2. The 

parameter (,. will be called the strain hardening rate factor in this sudy. 

This hardening rate factor, characterizing the development of plastic fatigue 

failure, represents the ascending rate of stress level per cycle of plastic strain in 

each element. 

Parameter (,. generally takes a value in the range [O, l]. The path BC 

in Fig. 2 corresponds to ( ,.=0, and the path FG, to ( ,.= 1. 

3. Monotonic loading curve 

The monotonic loading curve of a material with a finite section can be formu­

lated by using the element model introduced in the previous chapter. 

The material is treated as a parallel assembly of such elements with Sy and Su 

distributed in accordance with eqs. (2)-(4). Given the ductility factor e, each 

element is in the elastic range, the plastic range, or in complete fracture, depend­

ing upon the magnitude of e relative to <Iy and au; 

············(14) 

· · · .•..•. · · · (15) 

......... ···(16) 

By integrating all elements over the material, the nondimensional sectional 

force F(s) is obtained as follows: 

F(s) = f=f= {µ(s-s_,,)+1y}g,(au, ay)dauday 
Jo J P.Ce-e,,l+<T,, 

+ r=r
00 

sg,(au, ay)dauday JI! Jo-., .. · ... · · · ··· ( 17) 

If the ductility factor e increases infinity, F ( e) eventually shirinks to zero, which 

means the complete failure of the material. 

Eq. ( 1 7) simulates the nominal strain and stress relation in the tensile test 

of the material. Under the assumption that the shrinking rate of the cross section 

is proportional to the number of fractured elements, the real strain and stress 

relation is given as follows, 
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4. Hysteresis loop 

The hysteresis loop under a repeated constant strain amplitude is formulated. 

4.1. Behavior of a single element 

The first cycle of an element is shown in Fig. 3. The bold line in this figure 

represents an element in the plastic stage, with the yield level a y less than the applied 

strain amplitude a given in terms of the ductility factor. 

The maximum stress .fi and the yield stress y 1 (which are nondimensional) 

of this element are given by 

Yi= ay 

............ (19) 

...... ······(20) 

Another element in the elastic stage with a higher yield level ay than the 

amplitude a behaves as shown by the thin line, where any hysteresis loop does not 

appear and the element repeats the elastic response. The maximum stress .Ii' in 

this case is given by 

c5 

a --------------- (. 
I I 

Fig. 3. Behavior of the first cycle. 

c5 

-0 

Fig. 4. Behavior of then th cycle. 
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fr'= a · ..... · · · ... (21) 

In the general case, the hysteresis loop of the n th cycle is shown in Fig. 4. 

From geometrical relations indicated in this figure, we have 

1 
(x2,s+1-hn) +-(-j,,.-X2n+1) = 2a 

µ 

1 
(Y2n+1-fu,) +-(hn+1-J2n+1) = 2a 

µ 

......... ···(22) 

......... ···(23) 

Now with an assumption of a constant(,. during the nth cycle, eq. (13) can 

be rewritten as 

......... ···(24) 

From eqs. (22), (23) and (24), the following relations in the ascending branch 

of the hystersis loop are obtained: 

hn+1 = µJ,,.+(l-µ)Y2n+1 +2µa 

Y2n+1 = (l-(,.)X2n+1-(,.J,,. 

Likewise, the n th cycle of descending branch is represented by 

j,,. = µj,,._1+(l-µ)y 2,.-2µa 

Y2n = (l-(,.)x2,.-(,.j,,._1 

......... ··· (25) 

......... ···(26) 

......... ···(27) 

......... ···(28) 

......•..... (29) 

............ (30) 

Eliminating y 2,., y 2,.+1, x2,., x2,.+1 from these six equations, we obtain 

hn+i = -(1-2µ(,.)J,,.+2µ(,.a 

hn = -(1-2µ(,.)f,,._l-2µ(,.a 

which reduce further to the following relation. 

n-1 

. · · · .. · .... · (31) 

......... ···(32) 

j,,. = -(l-µ)(a.,,-a)(l-2µ(,.) IT (l-2µ( 11)2+a ············(34) 
k-1 

n-1 

Y2n+1 = (l+µ-2µ(,.)(1-2µ(,.)(7.,,-a) IT (l-2µ( 11)
2 ·········(35) 

k-1 
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n-2 

Yu,= -(l+µ-2µ(,.)(ay-a) II (l-2µ(,.) 2-a ...•........ (36) 
k~l 

4.2. The behavior of an assembly of elements 

The hysteresis response of a materail subjected to a cyclic strain amplitude is 

represented as the sum of the contribution of each element. The elements of the 

material at a certain instant, when the strain is e in the n th cycle, are classified into 

three groups as shown in Fig. 5. The first group (AB) remains in the elastic stage. 

Although displaying the elasto-plastic behavior during the whole n th cycle, the se­

cond (FGH) is still in the elastic range at this instant. The third (CDE) groups is al­

ready plastic at the level e. These three groups are called e-type, p-e type and p-p 
type, respectively. 

-{] 

I 
I 
I 

I 
I 

I 

C, 
I 

F, 
I 
I 

A 

6 

Fig. 5. Behavior of three groups; e type, p-e type and p-p type. 

Apparently this classification depends on the yield level. For a given e, the 

elements are divided into a p-e type and a p-p type, and the minimum yield level 

of the p-e type elements coincides with the maximum yield level of the p-p type ele­

ments. Let this level be denoted by r 2 ,.+i-

For the p-e type elements, it holds that 

......... ···(37) 

Substitution from eqs. (34) and (35) leads to 

a-e 
n-1 

......... ···(38) 
2(1-µ(,.)(l-2µ(,.) II (1-2µ(,,) 2 

k=l 
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in which the right hand side conicides with r2,.+1 ; i.e., 

a-e 
T2n+1 = a- n-Z ...•.. ······ (39) 

2(1-µ(,.)(l-2µ(,.) II (1-2µ(,.) 2 

l•l 

The ranges of a,, outside that defined by eq. (38) specify e type and p-p type 

elements. 

(i) e type ; a= e 

(ii) p-e type r2,.+1 <a,,<a; a= (e+a)+./2,. 

(i!i) P-P type 0<a,,<r2,.+1; a= µ(e-a)+./2,.+1 

···········•(40) 

............ (41) 

···········•(42) 

The lower brach can also be treated in a similar way, and we obtain 

(iv) e type 

(v) p-e type 

(vi) p-p type 

-a,,<-a ; a= e 

-r2,.<a,,<a; a= (e-a)+J;,._ 1 

0<a,,<-r2,.; a= µ(e+a)+./2,. 

............ (43) 

............ (44) 

............ (45) 

............ (46) 

From the foregoing discussions the hysteresis loop in the n th cycle is represented 

by 

F:(e) = B6 +Bp8 +Bpp 

for the upper branch, and 

for the lower branch, in which 

Be = r'°r'° erp(a,,, a,,)da,,da,, Ja Ju, 

Bp = r J00 

{(e+a)+J;,.}<p(a,,, a,,)da,,da,, 
r2.+1 -h. 

Cpe = ra r00 

{(e-a)+J;,._1}<p(a,,, a,,)da,,da,, 
j_,.2Jh.-1 

Cpp = i_,.2•r 00 

{µ(e+a)+f;,.}<p(au, a,,)da,.da,, 
Jo Lf2. 

.•• · .. · ..... (47) 

............ (48) 

............ (49) 

............ (50) 

.. .......... (51) 

............ (52) 

............ (53) 
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Therefore the stress amplitudes~ and L; at the strain amplitude ± a are 

then given by 

~ = f
00

f
00 

-a<p(u,,, a.,,)du,,du,.+ ("(- .hn<p(u,,, u,.)du,,du,. ...... (54) J,.J~ JoJ-h. 

L;; = r-r= a<p(u,,, u,.)du,,du,.+ r•r 00 

.f.in_1<p(u,,, u,.)du,,du,. •·· ··· (53) JaJa-, JoJh.-1 
The hysteresis area ( dissipated energy per cycle) E,. is obtained as 

......... ··•(56) 

The survival ratios Rt and R;; of the elements under repeated loads are defined 

as follows: 

il:. = f
00

f
00 

<p(u,,, u,.)du,,du,.+ faf
00 

<p. (a,,, u,.)du,,du.,, ••·•·· •·· •·· (57) JaJ.,., JoJ-fa. 

R;; = f
00

f
00 

<p(u,., o,.)du,.du,.+ faf= <p(u,,, u,.)du,.du,. ••·••·••·••· (58) JaJa-., JoJf2n-1 

5. NUJDerical results and discussion 

Plastic bending fatigue tests on H-section SS 41 steel element were carried out 

in order to verify the applicability of the hysteresis model proposed in this study. 

The detail of this test is shown in reference (6). 

In the numerical computations in this chapter, the following data are adopted 

from the test results; that is, the ultimate ductility fator =50, and the hardening 

factor µ;= 0.0 I . 

It must be noted that the hardening rate factor ( which should be determined 

as a function of the strain amplitude a and the number ofload cycles N through the 

micro_s_copic :p:iechanism. For simplicity, two different values are assigned to (; 

namely ( a and ( b, which control the initial strain hardening process and the deterio­

rating process to failure, respectively. 

The parameters ( a and ( b are determined from the number of cycles needed to 

finish strain hardening and the number of cycles to the fatigue failure; 

l 0.3 + 0.
333

; a~ 1.54 l 
'" = a-1 ; nsn* 

I ; a< 1.54 

...•......•. (59) 

.......•.•.. (60) 
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Eqs. (59) and (60) are illustrated in Fig. (6). 

The two dimensional desnity function ¢(au, a,,) related by au and a,, is assumed 

to have a form shown in Fig. 7 . 

... 
0 
0 
C -
~ 
C ... 
C> 
C: 

·2 
Q) 

"C ... 
C 
I 

2.0 

1.5 

1.0-

101 

162 

-3 
10 

0 

(a) 

0.5 / 

/ 
/ 

/ 

/ 
/ 

/ 

2 

/ 

1.0 

4 6 8 10 12 14 
Ductility factor a 

Fig. 6. Hardening rate factor. 

-~ 

16 

g (b) 
& oy=I.0 

13: CJu=Q990g+050 'P2=31.762 ________ _ 

30 
12:0"u=0.9~0.465 

11:0"u=0 
+01 

/O"u=O"y . 

1.5 
15y 

20 

10 

<1>1=1.762 

0 o 1.0 

Fig. 7. Density function <p(a., a,). 

5.1. Monotonic loading curve 

1.5 
OIJ 

Numerical computation of eq. (17) gives the monotonic loading curve F(e) 

shown in Fig. 8. A round corener near the yield point is due to a result of the two 
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(I) 

o.__ ____ ,__ ___ ___JL_ ___ __, ____ ___,_ ____ __.__ 

0 10 20 30 

Fig. 8. Monotonic loading curve. 

40 
£ 

50 

dimensional desnity function </>(a,,, a~) which is easily controlled by using the para­

meter din Fig. 7. 

This curve consists of the initial elastic part I, the hardening part II at 

I:s;;c<l5.0, the deteriorating part III at 15.0:s;;c<46.5 and the final state IV at 

c~46.5. 

5.2. Hysteresis loop 

As it is very complicated to make a numerical analysis for an exact flexible 

model of the H-shaped cross section on the basis of eqs. ( 4 7) and ( 48), some simpli­

fication was made to compare the numerical results to the experimental results. 

That is, the flange section is assumed to receive only the cyclic tensile or compressive 

stress by neglecting the web. 

This assumption may be questionable in the quantitative evaluation of the 

absolute stress amplitude. However, it may be sufficient to know the tendency of 

the fatigue failure process of the hysteresis loop. 

Fig. 9 shows examples of the hysteresis loop with the input amplitudes in duc­

tility factor a=2.02 and 2.37. 

The theoretical result shows a more obvious yield point and a thinner overall 

shape of the hysteresis loop than the experimental results. These differences 

are because the elements of the hysteresis model herein are distributed in parallel 

manner. This is because surviving elements after repeated loading display their 
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extreme characteristics. 

er 
n=5o 

I 

a =2.02 

a= 2.37 

Fig. 9. Hysteresis loops. 

er 
n=:350 

I 

(! 

n=250 
I 

5.3. Relation between nUD1ber of cycle, reaction and dissipated energy 
per cycle 

The variation of the hysteresis loop is investigated with the aid of the reaction 

amplitude and the dissipated energy per cycle in Fig. IO showing the theoretical 

curves and the experimental plots. The variation of the reaction shows good agree­

ment between the theoretical and the experimental results. However, in the 

theoretical results of the dissipated energy per cycle, the deterioration of the energy 

capactity begins about the time of the termination of the strain hardening, while 

in the experimental results, the deterioration proceeds from the beginning of load 

cycles. 

The theoretical values of dissipative energy per cycle in the deteriorating range 

are less than the experimental values, which might be related to the way of 

reducing the area of hysteresis loops in the theoretical model. 

The chain curve in this figure, which means the survival ratio of the material 

elements, shows that a part of relatively weak elements fails in its initial period 

n ::;:n*, but the other elements remain safe for a relative long period, n > n* and they 

fail at a very low rate until sudden rapture takes place. 
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C: 
w 

0 

Theoretical Experimental 
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o stress amplitude C: 
I ...J 

• dissipated energy per cycle 

+ residual element ratio 
n* 

0 '----------'------'-I -"'/ ___ ____J_ _ ____J_ ____ __[__ _ __[___ 

I 10 10
2 

1a3 
Number of cycle n 

Fig. JO. Relation between number of cycle, reaction and dissiplated energy 
per cycle (a=2.02) 

5.4. S-N curve 

The solid line in Fig. 11 shows the S-N curve obtained from the theoretical 

model, and the dotted line, from the experimental results. The theoretical curve 

shows that the number of cycles tends to infinity as the input ductility factor a 

Theoretical valie 

o Experimental value 
.EIO 

i 
u ::, 
0 

10 

Fig. 11. S-N relation. 

103 

Number of cycle n 
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approaches 1. This is a consequence dependent on neglecting the fatigue due to 

elastic strain amplitude. 

6. Conclusions 

A hysteresis model was presented which can represent the plastic fatigue 

failure process of the engineering materials. Numerical results based on this model 

were compared with the experimental results of a plastic bending fatigue test on SS 

41 H-section steel beams. 

The following results have been obtained. 

(I) The hysteresis model proposed herein can display the fatigue failure process 

of material which hardens in its initial stage, and deteriorates in the second 

stage until complete failure occurs. 

Its pattern can follow the basic features of experimental results. 

(2) Using this hysteresis model, any softening type materials can be dealt with. 

These materials will be carried out by an adequate selection of relevant para­

meters. 

(3) This hysteresis model includes the bi-linear model (7Jn=0, d=O) or Ramberg­

Osgood model ((n=O, d=!=O) in special case. 

(4) This hystereis model is formulated as a deterministic model. However, it 

may be developed to a stochastic model, with the hardening rate factor rede­

fined as a probabilistic parameter. 
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