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Abstract 

By extending an ordinary admittance expression, the simplified equation for an 
oscillator has been obtained, which as yet is in the most general form within the first order 
approximation. Then, this equation has been transformed into the amplitude and the 
phase equations suitable for analyzing a microwave circuit involving oscillators. It has 
been found that the amplitude equation can be ignored when the oscillator is adjusted 
to produce the maximum output power. An example of application has also been given. 

Introduction 

Recently many studies have been presented relevant to the locking phenomena 

of solid-state microwave oscillators. Although these oscillators are usually operated 

in distributed constant circuits, the analyses have been performed exclusively by the 

use of the so-called Adler equation1l, after the transformation of the associated 

microwave distributed circuits into the lumped equivalent. Since microwave 

circuits can not always be simply expressed in the lumped equivalent form, it is 

desirable to develop equations suitable to microwave circuitry. This will not only 

simplify the analytical treatment but also give a clear physical picture. 

Basic Equations 

We will first derive the lumped-constant locking equations by extending an 

ordinary admittance expression: 

[ef•t = Y(j(J))Ve1"''. ( 1 ) 

If the voltage Vis varied quasi-stationarily as 

( 2) 

the current I also varies with it and the admittance Y should be replaced by 

• Department of Electronics. 



Locking Equations for Microwave Circuits 123 

Y = Y{jw+d(a+jip)/dt}, ( 3) 

smce the instantaneous frequency is alter~d by the time derivative of the phase 

a+j<p. Here it should be noted that the :frequency is generalized to be complex. 

We expand the above equation in Taylor's series about the free-running angular 

frequency ai0 and retain only the first order term: 

( 3)' 

where L1w=w-w0 and Y' is the derivative of Y. The Y' can be set equal to 

BY/B(jw) i.,=.,o= Y;.,, since the Cauchy-Riemann condition 

Y'= BY BY BY 8Y 
B(a+jJ) = Ba = B(jJ) = 8(jw) 

holds for the regular function of frequency Y. The dots over a and <p denote the time 

derivatives. The free-running oscillation condition will be defined in Appendix I. 

Since the time derivative of Eq. (2) is 

dV/dt = Vd(a+jip)/dt, (4) 

we can write Eq. (1) as 

where the term associated with Yv( = 8Y/B \VI I v=v
0

) has been introduced in order to 

represent the first order nonlinearity of admittance*. The value L1 I VI = / VI - I V0 I 
is the increment of voltage amplitude from the free-running state. Within the first 

order approximation, Eq. (5) is of the most general form describing the behavior 

of the perturbation of an oscillator. 

We assume in Fig. 1 a van der Pol type oscillator** as 

Y = -G(I VI )+jc-,,C+I/jCt)L, ( 6) 

so that we have 

( 7) 

where Ct.)0= 1/v LC, Y0 is the characteristic admittance of the transmission line, 

and Qex=Ct)0C/Y0 is the external Q. of the oscillator. Inserting Eqs. (4), (7) and 

(A2) into Eq. (5) and separating it into real and imaginary parts, we find 

* The time derivative of o is not a function of the amplitude of voltage, as seen from Eq. (4); 

a=(I/V)dV/dt-j¢. Therefore the admittance ofEq (3) is linear. 
** The van der Pol equation is referred to as the nonlinear differential equation of the seconrl 

order having a damping term proportional to\ V\ 2 • Consequently, the admittance of Eq. (6) will 
lead to a more generalized van der Pol equation. 
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20_y__ = Re - +G(I VI), d ( J) 
dt V 

(8a) 

2C- = Im - -2CJw, d</J ( /) 
dt V 

(8b) 

where G ( I V0 I ) + Gv 'J I V I has been replaced by G ( I V I ) . These are the simplified 

equations determining the amplitude and phase of an oscillator. Ifwe set l= I/ I ei9, 

the phase equation (8b) is reduced to 

( 9) 

which is the Adler equation1
' expressed in our symbols. 

If we consider the voltage dependence also for the susceptance terms in Eq. 

(6), we may obtain more general equations. 

Microwave Locking Equations 

We define 

a(t) = I a(t) I eidCtl, b(t) = I b(t) I eiflCtJ (10) 

to be the emergent wave from the oscillator and the incident wave into it, respec­

tively. We have then the relations 

V = (b+a)/vY0 , I= (b-a)vY0 • 

T 
-G(IVI) C 

oscillator 

A 
I 

B 

circulator 

Yo 

1 Yo 
b signal 

- generator 

Fig. l. Locking oscillator model in microwave circuitry. 

Substituting them into Eq. (5) yields 

{ Y0 + Y(jw0 ) + Y;.,j.:1w+ Y;., d/dt+ Yv.:1 IV I }a(t) 

(11) 

= {Y0 -Y(jw0 )-Y;.,j.:1w-Y;.,d/dt-Yv.:11Vl}b(t). (12) 

Since the increment of the voltage JI VI due to the small injection signal b is 

approximated to, as shown in Appendix III, 
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JI VI ~{Jlal + lblcos (P-a)}/v'Y0 • (13) 

Eq. ( 12) becomes, ignoring the second higher order terms, 

where the free-running condition (Al) has been used in order to simplify 

the equation. Inserting Eq. (7) into the above equation and splitting it into real 

and imaginary parts, we obtain 

These are the simplified equations in terms of traveling waves. When the oscillator 

is adjusted to generate the maximum power, the first term on the right-hand side of 

Eq. (14) vanishes, as verified in Appendix II. Under this condition, the amplitude 

I a I of the output wave becomes independent of the incident wave b. Such a situation 

never occurs in the lumped circuit equation Eq. (8a), because the voltage continues 

to increase as the incident power increases. (See Appendix IV.) Consequently, 

for a microwave oscillator, as long as the maximum output power condition is 

satisfied, it is sufficient for us to consider only the phase equation (15), which is also 

written as 

da = -5"L(.!!.___b*)-w+ 0 
dt J2Q.6 ,, a a* 

0 

= - 00 \.!!.__isin (a-;9)-0+0O. 
Q.ez a 

(16) 

This equation bears close resemblance in form to the Adler equation (9), but the 

meaning is different. 

Application 

As an example, if we use the above-derived 

equation, the relation between the pulling figure 

and the external Q. of an oscillator will easily be 

obtained. In Fig. 2, the pulling figure is com­

monly defined to be the total frequency shift of the 

oscillator as a 1.5-VSWR load is moved through 

more than a half wavelength. Expressing by I' 

the reflection coefficient of the load at a proper 

reference plane 
1/ 

8 ----,.a ] 
---,-b____,.-------;] 

oscillator 
I 
r 

reflector 

Fig. 2. Relation between the pull­
ing figure and the external Q. 
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reference plane, we get 

b = I'a = II'ieNa. 

We assume that the oscillator is operated in the maximum output power state, and 

insert the above into Eq. (16), obtaining 

da = wa I Fl sin ifJ-w+w
0

• 

dt Qe., 

When the phase ifJ is varied quasi-statically (da/dtR:0) with I I' I held constant, the 

maximum angular frequency shift is 

(17) 

The pulling figure, therefore, becomes f rnax-f min=0.4fo/Qa, since I I' I =0.2 for a 

1.5-VSWR load. 

Conclusion 

In the beginning, the simplified equations which are general in the first order 

approximation have been developed, and the relationship of the so-called Adler 

equation to them has been clarified. By the aid of these, the locking equations 

appropriate to microwave circuitry have been derived. When the oscillator circuit 

is roughly adjusted to produce the highest power, we can disregard the amplitude 

equation and yet can obtain a good result by using only the phase equation. The 

utilization of this equation will make the analysis involving microwave oscillators 

more simple and comprehensive. Also it will make it possible to analyze the circuit 

which can not easily be expressed in a lumped equivalent form. 2
l 
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Appendix 

I. Free-Running Oscillation Condition 

When the oscillator is coupled to a load Y0 with no signal injected, the following 
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free-running equation holds: 

(Al) 

Substituting Eq. (6) into Eq. (Al), we get 

(A2) 

from which the free-running amplitude I V0 I and frequency w0/211: are determined. 

II. MaximUD1 Output Power Condition 

In Fig. l the free-running, steady-state power dissipated at the load Pout= I a0 I 2 

= Y0 I V0 I 2 is maximized when 

(A3) 

which is easily found by the differentiation of Pout with respect to Y0 and by use of 

Eq. (A2). The variation of the load admittance Y0 can be realized equivalently by 

adjusting the coupling of the oscillator to the transmission line. 

Under this condition, the first term on the right-hand side of Eq. (14) vanishes, 

indicating that the amplitude of the output wave I a I becomes independent of the 

incident wave b. Noting that I a I - I a0 i ::=LI I al, we can write the solution of Eq. 

(14) as 

In other words, the increment (or decrement) of the amplitude from the steady-state 

value always decreases with time. Under the maximum power .condition, therefore, 

we can conclude that the amplitude of the output wave I a I, after a certain period 

of time, is equal to the constant value I a0 1-

m. Voltage Increment due to Injection Small Signal b 

Assuming that I b I and I Lia I are small compared with I a0 I , we have 

2laol -Llla+bl 
= { I ao+Lla+b I+ I ao\ }•{ lao+Lla+bl - I ao\} 

= I aa+da+bl 2
- I aol 2 

= lao+ila! 2+2\ao+da\ • lblcos (a-,8)+\bl 2-la0 i 2 

= { I ao+ilao I+ I aol }{ \ao+ila 1-1 aol }+21 a0 ! • I bl cos (a-,8) 

= 2laol •illal +2laol • lblcos (a-,8). 

Since .:fl VI =.dla+bl/vYo by Eq. (11), we obtain Eq. (13), dividing the above 

equation by 2 I ao Iv Yo• 
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IV. On the LUD1ped-Constant Circuit Case 

We will show that, in the lumped-constant circuit case, the output power is 

not saturated with increasing input power. Consider the circuit of Fig. Al, in which 

a negative conductance oscillator (-G, C, L) is driven by a signal generator (Ga, lg) 

Fig. Al. Output power in the lumped circuit case. 

and the output power is dissipated at a load G1• Ifwe denote the voltage across 

the oscillator by V, the output power is written, 

(A4) 

Now, when the frequency of the generator is equal to the free-running frequency 

of the oscillator, we have the circuit equation, 

We can here assume the voltage V to be positive 

real without loss of generality. Noting that lg 

becomes necessarily real and that -G( I VI) is an 
increasing function of I VI, i.e. -G'( I VI )>0, we 
can express the relation (AS) graphically as in 

Fig. A2. The free-running condition has been 

defined as 

with lg=0. It should be noted that the total 

conductance { -G( IV I) +G,+Gg} is negative in 

(AS) 

lg 

0 '----- IVol V 

Fig. A2. Relation of the oscillstor 
voltage amplitude V to the cur­
rent of the signal generator [8 • 

the range 0< V < I V0 I, so that the generator can not work as such, since -lg/V>0. 
It can be shown from' the stability criterion3

l that the state corresponding to 

0< V < I V0 I is unstable in the circuit of Fig. Al. In other words, the range 

I VI < I V0 I corresponds to an ordinary operation of an oscillator with only a passive 

load conductance G,+ (-lg/V). It is therefore concluded that, ,when the current 

of signal lg is increased from zero, the voltage V and hence the output power of Eq. 

(A4) increases from the free-running state without limit. 




