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An Algorithm of Interaction Coordination m Multilevel 

Control of Nonlinear Systems 

By 

Yoshikazu NISHIKAWA*, Nobuo SANNOMIYA*, and Takeo OJIKA** 

(Received September 29, 1973) 

Abstract 

This paper proposes a coordination algorithm for a multilevel control of a large-scale 
dynamical system. The system considered consists of weakly interconnected nonlinear 
subsystems and the performance index is quadratic in states and controls. 

According to the variational principle, the optimal control is given by solving a non­
linear two-point boundary-value problem, of which analytical solution is generally im­
possible. The present technique is to solve the overall problem, first by solving decomposed 
problems of the subsystems, and secondly by coordinating interactions among the sub­

systems. Since each subsystem problem is a linear two-point boundary-value problem, 
it is relatively easy to solve. The present idea of coordination is to adjust directly the inter­

action variables by an iteration without using the conventional Lagrange multiplier. 
A sufficient condition for convergence of the iteration algorithm is presented in the paper. 

The algorithm is computationally simple and the convergence is quite rapid for the 
problem of weakly coupled systems with small nonlinearities. The effectiveness of the 

method is illustrated in two examples. 

1. Introduction 

Recently, several attempts have appeared in the optimal design and control of 

large, complex systems not only of an industrial but also of a social or an ecological 

nature. A basic idea for the study of large-sclae systems is to decompose the original 

problem into a number of smaller and simpler subproblems which can be dealt with 

by some conventional mathematical or computational tools. The subsystems have 

to be later coordinated to reconstruct the original system, then the decomposition­

coordination algorithm inevitably involves a multilevel structure. 

Usually a difficulty arises in deciding interconnection variables and a coordination 
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policy. A common technique is to introduce the Lagrange multipliers corresponding 

to interconnection constraints1-4>. However, the Lagrange multiplier method does 

not offer an efficient means for nonlinear dynamical systems. The so-called feasible 

method 4> always guarantees satisfaction of the interconnection constraint even when 

the iterative procedure does not converge. But, unfortunately, the method is applicable 

only to output-controllable systems. 

The purpose of this paper is to present another coordination algorithm for the 

multilevel control of a large-scale dynamical system. The system considered here 

consists of weakly interconnected nonlinear subsystems. The algorithm is an extension 

of the one previously proposed for a linear dynamical system 5). The performance 

index is taken to be quadratic in states and controls. 

According to the variational principle, a nonlinear two-point boundary-value 

problem is derived, the solution of which gives the optimal control. Since the overall 

problem can not be solved analytically, it is decomposed into subsystem problems. 

Each subsystem problem is a linear two-point boundary-value problem of relatively 

low dimension. The present idea of the coordination is to adjust directly the inter­

connection variables by iterations without using the Lagrange multiplier. A sufficient 

condition for convergence of the iteration procedure is presented in the paper. 

The algorithm is computationally simple and the convergence is quite rapid for 

the problem of weakly coupled systems with small nonlinearities. The effectiveness 

of the method is illustrated in two examples. 

2. Notation 

In the identity matrix of dimension n 

x' (t) : vector transpose 

II x(t) 11 6 max (x'x)l/ 2 
IE[lo, 11] 

A'(t, ,.) : matrix transpose 

II A(t, T) II 6 max (trace AA')l/ 2 
t, -rE[to, ff] 

, (A 0) diag(A, B)::: O B 

kz : the value of z at the k-th iteration step 

3. Problem Statement 

Consider dynamical systems governed by the differential equation 
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x = A(t; .)x+B(t)u+.V(t, x; .), x(to) = xo 

with the associated performance index 

1 (ti 
.f = '2Jt, [x'Q(t; .)x+u'R(t)u] dt 

(1) 

(2) 

where xis then-dimensional state vector, u the m-dimensional control vector; A and 

B are n X n- and n X m-matrices, respectively, continuous in time t. f is a nonlinear 

vector function of the class C2. The matrices Q and R, both continuous in t, are 

positive semidefinite and positive definite, respectively. The initial time to and the 

final time If are assumed to be fixed. 

The scalar parameter,\ is associated with the system nonlinearities. The parameter 

• inf, A, and Q represents interconnection among the subsystems; that is, when c =0 

the problem of (1) and (2) is decomposed into several independent subproblems. The 

partitioned form of a system consisting of two subsystems is 

J(t, x; .) = (fi'(t, x1, x2; .), /2'(t, x1, x2; .))' 

B(t) = diag(Bu, B22), R(t) == diag(Ru, R22), Q(t; .) = (QQu , 
c 12 

where x1 and x2 are n1 - and n2-dimensional substates, n1 +n2 =n, and u1 and u2 are 

m1- and m2-dimensional subcontrols, m1 +m2=m. In the following, two subsystems 

are considered for simplicity. Generalization to an arbitrary number of subsystems 

is straightforward. 

4. Necessary Condition for the Optimality 

A necessary condition for optimality of the problem is derived by using the var­

iational principle. Define the Hamiltonian: 

H = -f-(x'Qx+u'Ru)+p'(Ax+Bu+Af) 

where p is the n-dimensional costate vector satisfying the differential equation 

The optimal control which minimizes the Hamiltonian of ( 4) is given by 

u = -R-IB'p 

(4) 

(5) 

(6) 

Substituting (6) into (1) and thereupon combining (1) and (5) yields the following 
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nonlinear two-point boundary-value problem: 

Zi = Du(t)zt+cDij(t)zj+Ahi(t, z1, z2; c) 

Li1Zi(to)+Li2Zi(lt)=li (i,j = 1, 2; i -=f=.j) 

where 

6 ( , ')' h 6 ( ,, ,.,, ,.,, " .,, 6 B./:i 
Zi - Xt ,Pi. , t - Ji, -Pt '!'ii-Pi '!'it/, '!'Ji - ilxi 

DiJ 6 (AiJQ. -EA't1,), E 6 BR-1B' = diag(En, E22) 
- tj - Ji 

l 
r 

Lil'.=:: diag(I.;, 0), Liz 6 diag(0, In;), lt '.=:: (xw', 0')' (i,j = 1, 2) ) 

(7) 

(8) 

(9) 

By putting A=0 in (7), the problem is reduced to the linear two-point boundary-value 

problem. Further, when s=O the problem is decomposed into two individual sub­

problems. The system of (7) with s=A=0 is called the unperturbed system. 

5. Multilevel Solution Procedure 

A multilevel technique is used to solve the problem of (7) and (8). Our procedure 

is essentially to solve linear two-point boundary-value problems of lower dimensions 

iteratively until the coordination of interconnections among the subsystems is achieved. 

An iteration algorithm for the coordination is proposed. 

5.1 The First-Level Calculation 

Rewriting Zi and ZJ in the terms containing c and',\ in (7) into Wt and WJ, respectively, 

leads to 

(10) 

Henceforth c in h and/ will be omitted. The vector Wt 6 (yt', q/)' (t." = 1, 2), called the 

interaction vector, is to be given from the second level. At the first level, equation (10) 

is solved regarding Wt as pseudoinputs, under the boundary condition (8). Since the 

problem is linear and of lower dimension, it is relatively easy to solve. We have the 

following lemma. 

Lemma 1 

Let <l>t(t) be the fundamental matrix of the unperturbed system 

Zi(t) = Dtt(t) Zt(t) (11) 

satisfying the initial condition <l>i(to) = I2n;- If the matrix 

1s nonsingular, then equation (10) has the unique solution satisfying the boundary 
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condition (8) for arbitrary vectors Wt(t) and w1(t). The solution can be written in terms 

of the fundamental matrix as 

where I't(t, T) is the Green function given by 

I't(t, T) = {<l>t(t)[I2.;-Lc1Lt2<l>i(t1)]<l>c1(T), 
-<1>1,(t) Lt-1 Li2 <l>t(t1) <I>c1( T), 

As to the proof of Lemma 1, refer to 6). 

5. 2 The Second-Level Calculation 

fQ-:::;,T-:::;,f 

t-:::;.T-:::;,ff 
(14) 

After the first-level calculation, the subproblem solutions do not necessarily satisfy 

the interconnection constraints: 

(i = 1, 2) (15) 

The task of the second level is to correct the interaction vector Wt(!) so as to satisfy the 

constraint (15). The coordination method which uses the Lagrange multiplier as an 

adjustable variable is well known1- 4>. However, the Lagrange multiplier method 

does not offer an efficient means for coordinating interconnected nonlinear subsystems. 

The present idea is to correct directly the interaction vector by an iteration. To 

this end, corresponding to (15), the cost function at the second level is introduced: 

(16) 

The goal is to adjust the interaction vector Wt(t) to reduce (16) to zero. A nearly 

steepest-descent algorithm is adopted to obtain k+lwt(t), the (k+ 1)-th iterate, as follows: 

k+lwt(t) = kwi(t)+k+lakrt(t) } 

lk+lal-:::;.a (i=l,2;k=0,1,2, .. ,) 
(17) 

where k+la is the step size along the search direction kri, k+ 1a is determined by a one­

dimensional search so as to minimize the coordination error (16). a is a constant such 

thata;:::: 1. The initial guess 0w,(t) of w1,(t) is chosen to be the solution of the unperturbed 

system, i.e., 

(18) 

5. 3 Convergence Proof of the Iteration Algorithm 

In this section the convergency of the proposed iteration is examined. Define the 
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closed region of w1(t) and w2(t) as follows: 

2 

Q 6 
{ (w1, w2) IL II Wi(t)-zW) II :s;; 2s}, 

i=l 

(19) 

Under the assumption on the matrices A, B, Q, R and the function fin (1) and (2), 

the following quantities are introduced: 

a1 6 max IIDtJ(t)II, 
£,J;l=t=-j 

a3 6 max II :Zt(t) II, bi 6 max II.ft [t, z1(t), z2(t)]II 
i i 

h 6 max 11 i/iii[t, w1(t), w2(t)] 11 for(w1, w2) E !J 
i,J 

11/i(t, w11, w2 1)-/i(t, w1 2, w22)11 :s;; bn II w11-w12ll+bt2II w21-w22II 

for(w11, w21) E Q 

llipiJ(t, w11, w21)-ipiJ(t, w12, w22)11 :s;; bmllw11-w1211 

+bi12llw21-w22II for(w11, w21) E !J 

b3 6 max [b1t+b2t+2(a3+8) (brn+b12t+b2u+b22t)] 
i 

µ, 6 a2[I. I a1 +IA I (2b2+b3)] 

u 6 a2[I • I a1 a3+I ,\ I (2a3 b2+b1)] (i,j, l = 1, 2) 

Owing to (13), the difference between kzi and k+lzt is given by 

k+lzi(t)-kzi(t) = 1e:1I'1(t, T) {•Dtk)[k+1wj(T)-kwj(r)] 

+A[ht(T, k+lw1, k+lwz)-ht(T, kw1, kwz)]} dT 

(20) 

(i,j = 1, 2; i =I= j) (21) 

On taking (9) into account, we have 

II ht(!, k+lw1, k+lwz)-ht(t, kw1, kwz)II :s;; llft(t, k+1w1, k+lw2) 

-.ft(t, kw1, kw2)II + lldiag[0, -i/iu'(t, k+lw1, k+lw2)]k+lwi 

-diag[0, -i/i1t'(t, kw1, kw2)]kwi 11 + lldiag[0,-i/i1/(t, k+lw1, 

k+l w2)]k+l w1-diag[0, -i/i1t'(t, kw1, kw2)]kwi 11 (22) 

For (kw1, kw2) E Q and (k+lw1, k+lw2) E !J, the second term m the right side of 

(22) is bounded by 

II diag[0, -i/iii'(t, k+lw1, k+Iw2)]k+lwi -diag[0, -i/iu'(t, kw1, kw2)]kw1 II 

= lldiag[0, i/itt'(t, kw1, kwz) -i/iii'(t, k+Iw1, k+Iw2)]kwi 

+"+1 a diag[0, -i/itt'(t, k+lw1, k+lw2)]"rt II 

:s;; I k+la I [b2 II "rt II+ 2(a3+8)(bm II "r1 II+ bm II "r2 II)] 

Substituting (17), (22) and (23) into (21) yields 

(23) 
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llk+lzi-kztll:::; 1i:111ri11 {1.1 l1Dt1II l\k+lw1-kw1II 

+I.\ 111 hi(r, k+lw1, k+lw2)-h,(r, kw1, kw2) II} dr 

:::; I k+la\a2 {!-\! b2 II k,-i II+ (I• la1 + !-\! b2) II k,-1 II 

+!-\! [bn +2(bm +bJH) (aa+8)] II krill 

+I.\ I [bt2+2(bit2+bm) (aa+8)] II kr2 II } 

Hence we obtain 

2 2 

L l\k+lz1(t)-kzt(t) II S: lk+lal µ l llkr,(t) II 
i=l i=l 

On the other hand, the difference between kzt and kwt is 

krt(t) = kzt(t)-kwt(t) 

(24) 

(25) 

= Zt(t)+ Je:1 
I't(t, r){eDtJ(r)kwJ(r)+.\h,[r, kw1(r), kw2(T)] }dr-kwt(I) 

= (1-ka)k-lrt(t)+ 1e:1 I't(t, -r) ( .D,J(-r)[kwJ(-r)-k-lwJ(-r)) 

+-\{ hi[r, kw1(-r), kw2(T)]-ht[T, k-1w1(-r), k-lw2(-r)] }) dr (26) 

Therefore 

2 2 

L llkrt(t)II S: <p(ka) L 11 k-lr,(t) II (27) 
i=l i=l 

where 

(28) 

Now the following lemma is established: 

Lemma 2 

Assume that µ<l and 11:::; 8(1-µ)/a. Further choose the step size ka of each 

iteration so as to minimize the norm 

2 

L 11 krt(t) II 
i=l 

or equivalently kG. Then the following relations are obtained: 

2 

L llkri(t)II :::; 211µk 
i=l 

(29) 
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2 

_l 11 k+lzt(t)-kzt(t) II :s;; 2a. J.Jµ,k+l (30) 

Proo./ 

i=l 

2 

_l llk+lwt(t)-Zt(t)II:,;; 28 
i=l 

(k = 0, 1, 2,-··) (31) 

The lemma is proved inductively. First, since 0wt(t) = Zt(t), evidently (0w1, 0w2) 

E Q. Since (13) with k = 0 reads 

we have 

which, upon substitution into (17) with k = 0, gives 

(34) 

Thereupon using (25) with k = 0 gives 

2 2 

_l I I 1zt(t)-0zt(t) 11 :s;; 11a Iµ, .l I I 0rt(t) 11 :,;; 2aJ.Jµ, (35) 
i=l i=l 

Thus the relations (29),...._,(31) are proved for k = 0. 

Secondly, we show that the relations (29),...._,(31) hold fork if they hold up to k-1. 

Since min <p(a) = <p(l) = µ,, ka can be chosen to derive 
1«1s;;a 

2 2 

_l 11 kri(t) II :s;; µ, _l II k-lrt(t) II (36) 
i=l i=l 

from (27). In fact, ka minimizing kG suffices to give (36). This implies that (29) 

holds for k. We also obtain, from (17) and (29), the relation 

2 2 2 k 

_l 11 k+1w1(t)-z1(t)II = _l 11 k+lwt(t)-0wt(t) II :s;; _l _l lli+lwt(t)-1w1(t) II 
i=l i=l i=l j=O 

2 k k 

= .l _l I 1+ 1 a I 11 irt(t) 11 :s;; 2J.Ja. .l ,-,,1 :s;; t:_ci __ :s;; 20 (37) 
i=l J=O J=O µ, 

Inequality (37) implies that (k+1w1, k+lw2) E fJ. Then substituting (29) into (25) 

gives 
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2 

L llk+lz,(t)-kzi(t) II ~ 2ci1.1µk+1 (38) 
i=l 

Q.E.D. 

Lemma 2 is sufficient to establish the following theorem. 

Theorem 

If all the conditions of Lemmas 1 and 2 are satisfied, the sequences {kzi(t)) and 

(kwt(t)) (i=l, 2) converge uniformly to a same limit function zt*(t) as k---+=. The 

limit function zt*(t) is the unique solution to the problem of (7) and (8). 

Proof 

Since O<µ< 1 in Lemma 2, it follows that 

Jim 11 kr,(t) 11 = lim II k+1z1(t)-kzi(t) II = 0 
k+oo k+oo 

(z' = 1, 2) (39) 

This implies that, as k---+=, kzt(I) coincides with kwt(I) for all t E [to, It]. Moreover, 

the solution Zi(t) to the problem (7) and (8) is continuous int E [to, t1J. Then the space 

of the functions zt(t) with the definition of the norm II Zi II is complete. Therefore 

the sequences {kzt(I)) and (kwi(t)} have zt*(t) as a limit. From (31) evidently (z1*, 

z2*) E Q. By substituting the limit z1*(t) into (13), it is readily observed that z1*(t) is 

a solution to the problem of (7) and (8). The uniqueness of the solut1on is obvious 

due to the principle of contraction mapping. This completes the convergence proof. 

Q.E.D. 

Remark l 

The theorem guarantees the convergence of the iteration algorithm for the problem 

of weakly interconnected systems with small nonlinearities. 

Remark 2 

In this paper our consideration is confined to the problem of large systems composed 

of nonlinear subsystems interconnected through state vectors. By adding appropriate 

conditions, the algorithm applies also to systems with linear and nonlinear intercon­

nections through state and control vectors, 1.e., 

B = B(t; s), R = R(t; s) 

f = (f1'(t, x1, x2, u1, u2; s), /2'(t, x1, x2, u1, u2; s))' (40) 

In Section 7 an example of such a system will be examined. 

6. Computational Algorithm 

The computational procedure of the proposed algorithm is summarized as follows: 

Step O (Initial guess of Wt(I)) 
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Set k=O. Find the solution zi(t) to the problem (7) and (8) with c=A=O. Then 

choose Zt(t) as an initial estimate 0wt(t) of the interaction vector. 

Step 1 (Level 1) 

Given the interaction vector kwi(t), find the solution kzt(t) to the problem (8) and 

(10). 

Step 2 (Level 2) 

Given kzt(t) from Level 1, calculate the coordination error kG defined by (16). 

If kG ~ a (a: small positive number prescribed), compute the optimal control u and 

the associated performance index./ from (6) and (2), respectively. Then the calculation 

is terminated. If kG> a, proceed to Step 3. 

Step 3 (Level 2) 

Correct the interaction vector kwt(t) to k+lwt(t) by (17). The step size k+la is 

determined by a one-dimensional search to minimize the coordination error k+lG. 

Replace k by k+l and return to Step 1. 

Remark 3 

If the step size ka is always chosen as unity without the one-dimensional search, 

the present algorithm coincides with that proposed by Mesarovic et al. 1>. However, 

the one-dimensional search is often efficient for accelerating the convergence rate. 

7. Illustrative Examples 

Example 1 (Three-axis attitude control) 

The following equations approximately describe a three-axis attitude control system 

of an orbiting space vehicle 7>: 

) Subsystem 1 

X4 = -£X2-cx2x6-£X1 us+u2 ) 
Subsystem 2 (41) 

) X5 = X6 

X6 = cx2x4+cx1u2+us 
Subsystem 3 

The quantities x1, x3 and x5 represent the roll, yaw and pitch motion, respectively, of 

the body about its principal axes. For convenience, the parameter ,\ is set equal to 

c in (41). The index of performance is 

(42) 

Corresponding to (8) and (10), the following two-point boundary-value problem 
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is obtained for Subsystem 1: 

X'l = Xz 

X2 = -Pz+ 0 [y4(l+y5)-y3(0 y3q2- 0 y1y4+q5)] 

Pr= -x1+s2[-yaq2q4+y1(q42+q52)] 

P2 = -x2-Pi + 0 [q4(l+Y6)-y4q5] 

x1(O) = x10, x2(O) = x20, ji(t1) = }2(11) = 0 

(43) 

Yi (i=l, 3, 4, 6) and qi (i=2, 4, 6) are interaction variables corresponding to Xi and pi, 
respectively. Similar problem obtained for Subsystem 2 and 3 are omitted here. 

As an example, let It= 10 and the initial state x1(O) = xa(O) = x5(O) = 1, x2(O) 

= x4(O) = x6(O) = 0. Figure 1 shows the convergence rates of the performance index 

.f and the coordination error G for various values of.. A rapid convergence is observed 

for small •. Figure 2 shows the step size obtained by the one-dimensional search at 

each iteration. Figure 3 illustrates the optimal trajectories of Subsystem 1 for various 

•· 
Example 2 (Minimum-fuel orbit transfer) 

The second example deals with the minimum-fuel transfer of a low-thrust pro­

pulsion system between circular orbits 8>. The system dynamics is described by 

2.65 

2.60 

-, 2.55 

2.50 

I 
I 

V 
·\ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

J 

__ _{ __ _ 
\ 
\ 

------- : f. = 0. I 
·-·-·: f. = 0.5 
--: f.= 1.0 

J 

\G 

0 

I 
I 
I 
I 
I 

2 4 6 8 

iteration number-

Fig. 1. Convergence rates of J and G. 

10 
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N 
X 

E = 0. I 
E= 0.5 
E = 1.0 

1.2 

·"·, / ·-.... 
1.0 --✓ 

/ 
I 

0.8 
'IS 

0.6 

0.4 
I 3 5 7 9 

iteration number --

Fig. 2. Variations of the step size a. 
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0 
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------- : E = 0. I 
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Fig. 3. Trajectories on the x1x2 plane. 

XI= X2 

i2 = x1-•{2x4+ (x12+x;1+xs2)3/2 }+u1 

X3 = X4 

X4 = xa+•{2x2 xa }+u" (xi 2+xa2+x52)3/2 ~ 

is =xo 

io = -•hx12+x;5+-xs2)3/2 }+ua 

) 

) 

) 

0.8 1.0 

Subsystem 1 

Subsystem 2 

Subsystem 3 

(44) 

The quantities x1, xa and xs represent three components of the vehicle displacement 
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in a reference frame. The parameter • introduced for convenience is equal to unity. 

The performance index is 

(45) 

By way of example, let t f = TT and x1(0) = x2(0) = x4(0) = xs(O) = x6(0) = 0, x3(0) 

= 1, x2(TT) = -0. 75, x3(TT) = 1.5, x4(TT) = x5(TT) = O, x6(1T) = -TT/90, and x1(7r) be free. 

Figure 4 shows the variations of J, G and a with computing time. 

G 

10- 1 

r 
1.2 

(.'.) 

10- 1 10-2 1.0 

0.8 

06 

04 

0 10 20 30 

Computing t,me [ sec I ~-

Fig. 4. Variations of J, G, and a with computing time. 

8. Conclusion 

A coordination algorithm is proposed for a multilevel control of nonlinear dynamical 

systems. The system considered consists of weakly interconnected nonlinear subsystems 

and the performance index is quadratic in states and controls. 

Due to the variational principle, the optimal control is given by solving a nonlinear 

two-point boundary-value problem. The present technique is to solve the overall 

problem, first by solving linear problems of the subsystems, and secondly by coordinating 

interactions among the subsystems. The idea of coordination is to adjust directly the 

interaction vectors by an iteration without using the conventional Lagrange multiplier. 

The one-dimensional search to determine the step size a is often effective for accelerating 
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the convergence rate. 

The effectiveness of the method is illustrated in two examples. All the numerical 

computations were made by FACOM 230-75 at the Data Processing Center of Kyoto 

University. 
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