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By 

Takao OZAWA*, Shigeharu HIRAO**, and Yoshio HATTORI*** 

(Received June 28, 1973) 

Abstract 

A multicolored-branch graph is such a linear graph that the branches of the graph 
are partitioned into several sets, and a certain color is assigned to the branches belonging 
to each of the sets. The assignment is called a coloring. The degree of interference of 
loops or cutsets in such a graph is deffned to be the minimum number of indenpedent 
loops or cutsets respectively containing all the colors. The maximum of the degree of 
interference taken over all the possible colorings is studied. Theorems concerning the 
colorings to give the maximum in a two-colored-branch graph are derived. Moreover, 
the maximum of the degree of interference is shown to be equal to the topological degree 
of freedom and to the maximum distance between a pair of trees in the graph. The 
degree of interference is also related to the rank of a certain submatrix of the funda­
mental loop or cutset matrix. An upper bound and a lower bound on the degree of 
interference in a three-colored-branch graph are given. 

1. Introduction 

381 

A multicolored-branch graph is such a linear graph that the branches of the 

graph are partitioned into several sets, and a certain color is assigned to the branches 

belonging to each of the sets to signify the nature of the branches. For instance, if 

the graph represents an electrical network, the sets of branches may correspond to 

resistors, capacitors and inductors, or may correspond to passive elements and 

active elements. Two-colored-branch graphs were introduced by Reza1
) to in­

vestigate the order of complexity of electrical networks. Hattori2
)

3
) presented a 

theory of multicolored-branch graphs and used it in the derivation of the state 

equations of electrical networks. He introduced the concept of the degree of inter­

ference of loops or cutsets in a multi-colored-branch graph, as is defined below. 

The order of complexity of a linear passive or active network was given, using the 

degree of interference of loops or cutsets. 
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Let us first give some notations concerning multicolored-branch graphs. 

Given a graph G, we partition the branches of G into sets ai, a 2, • • •, a p· A coloring 

of the bran.ches of G or simply a coloring is an assignment of colors to the branches 

of G, or in other words, a specification of the partition of branches into sets a 1, a 2 , 

•··, aP. With a particular coloring, the graph is denoted by G (a1, a 2 , ···, ap). 

We regard a; (j=l, 2, ... ,p)as variables taking one of values a;, 0 and I. By 

a;= a P O or l, we mean all the branches in set a; are assigned color a P open­

circuited or short-circuited, respectively. The rank and the nullity of G (a1, a 2, ···, 

ap) are denoted by n (a1, a2 , •··, ap) and m (a1, a2, •··, ap) respectively. Now a 

loop in G (ai, a2, ... , ap) is called k-chromatic if the total number of colors assigned 

to its branches is exactly k. A k-chromatic cutset is defined similarly. We have 

the following definition. 

Defi,nition: The degree of interference of loops in G (a,, a2 , ... , ap), denoted 

by m (il1, il2, , .. ,11,p), is the minimum number ofp-chromatic loop in a set ofm (a1, 

a2 , ... , ap) independent loops, the minimum being taken over all possible sets of m 

(a1, a2, ... , ap) independent loops. The degree of interference of cutsets in G (au a2 , 

... , ap) is defined similarly and is denoted by n (il1, 11,2, ···, ap). 

By use of these notations and definitions, the order of complexity a of a passive 

LCR network represented by G (l, c, r) where l, c and r correspond to the inductors, 

capacitors and resistors in the network respectively, is given by2
)3) 

a=m (l, o, o) +m (l, c+r) +n (1, 1, c) +n (l+r, c). (1) 

Here c + r and l + r correspond to the joint set of capacitor branches and resistor 

branches, and to · the joint set of inductor branches · and resistor branches, 

respectively. The sum of th~ second and fourth terms in (1) gives the number of 

non-zero natural frequencies of the network. This number is equal· to the number 

of state variables, if the variables corresponding to the zero natural frequencies are 

omitted from the state equations. In many state variable approaches, the variables 

corresponding to the zero natural frequencies are treated separately from those corre-

sponding to the non-zero natural frequencies. 

giving the order of complexity of a network. 

Therefore, ( 1) is a convenient form 

From (I) we also see that the number 

of nori-zero natural frequencies of an LR or CR network is exactly the degree of 

interference of loops or cutsets respectively in the corresponding two-colored­

branch graph. 

In this paper the maximum of the degree of interference in a multicolored­

branch graph, the maximum being taken over all possible colorings of the graph, is 

studied. In Section II several fundamental theorems are given concerning the 

colorings for the case of two-colored-branch graghs. As is di~cussed in Section 
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III, the maximum is closely related to the topological degree of freedom4
)

5
) and 

also to the maximally distant trees of the graph6
). The theorems in Section II 

are, in a way, extensions of theorems in references4
~

5
) derived from a different 

point of view. In section IV, an upper bound and a lower bound on the degree of 

interference of loops or cutsets in a three-colored-bracnh graph are derived. 

2. Degree of Interference of Loops or Cutsets in a 

Two-Colored-Branch Graph 

We consider a two-colored-branch graph in this section. For a given graph 

G, colors a and b are assigned to sets a and /3 of branches respectively. With a 

particular coloring the graph is denoted by G ( a, (3). The degree of interference 

ofloops in G (a, b), denoted by m (tz, b), is the minimum number ofbichromatic loops 

in a set of m (a, b) independent loops. We can easily obtain that 

m (tz, b)=m (a, b)-m (a, 0)-m (0, b), (2) 

if we observe m (a, 0) +m (0, b) is the maximum number of independent mono­

chromatic loops. Dually, the degree of interference of cutsets is given by 

n (a, b)=n (a, b)-n (a, 1)-n (1, b). 

Using the formulas (a brief proof for which is given in Section III) 

m (a, b) =m(a, 0) +m (1, b) =m (a, 1) +m (0, b) 

n (a, b) =n (a, 0) +n (1, b) =n (a, 1) +n (0, b) 

and a relation such as 

n (a, 0) +m (a, 0) +n (0, b) +m(0, b) =n (a, b) +m (a, b), 

(3) 

(4) 

(5) 

we obtain that the degree of interference of loops in G ( a, b) is equal to the degree of 

interference of cutsets in G (a, b). Hence, we simply call them the degree of inter­

ference in G (a, b) and denote it by Ii (tz, b), that is, 

m (a, b) =n (11, b) =Ii (tz, b) . (6) 

Now for a given graph G, the degree of interference varies depending on the 

coloring of branches of G. There must be a maximum of the degree taken over 

all possible colorings. We denote the maximum by Ii m and now investigate colorings 

to give lim. From (2) and (3)' we get the following theorem. 

Theorem I 

Given a coloring P of the branches of G. P is a coloring to give vm, if there 
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exists no monochromatic loop in G (a, b), or if there exists no monochromatic cut­

set in G (a, b). 

Proof: If there exists no monochromatic loop, m (a, 0) = m (0, a)= 0 and thus 

m(a,b)=m(a,b), the maximum number of independent loops in G(a,b). A dual 

proof to the above can be shown if the condition is given in terms of cutsets. 

Moreover we have 

Theorem 2 
If coloring P gives 11,., there is no branch belonging to a monochromatic loop 

and to a monochromatic cutset at the same time. 

Proof: If there were such a branch, the degree of interference could be 

increased by changing its color. 

If there are monochromatic loops for a coloring, let us consider a series of 

sets of branches determined by the following procedure. 

Procedure 1 

L0 = { all the branches belonging to all the monochromatic loops} 

L; = {all the branches belonging to all the loops which consist of one of the branches 

in L;-i and of the branches of the color different from that of the branch} U L;-i 

(j= 1, 2,···), 

There must be an integer l such that L 0 cL1 C•••cL1 =L1+1 =•••or JL;c:t=<I> for 

j-5:,, l, and JLj = </> for j > l. Sets L0, L 1, ••• and L 1 are called the series of sets of 

branches associated with monochromatic loops. For examples of the sets, see Fig. 

I shown later in this section. Suppose l > 0 for coloring P, and there is a mono-
, 

chromatic cutset S which intersects U JL . but not L0• Then, choose a branch be-
;::1111 J 

lonbing to Sand at the same time to JL,., k being as small as possible (k~ 1). The 

branch is denoted by e,.. Change the color of e,., and obtain a new coloring P'. 

Furthermore, construct the new series of sets of branches associated with monochro­

matic loops L/(j=0, I, 2, •··). We have thefollowinglemmaconcerningP andP'. 

Lemma I 

(i) L/=L; and JL/=JL; (i=0, 1, ... , k-1). 

(ii) There is a monochromatic cutset containing e,. and e,._" where e,._ 1 is a 

branch contained in JL,._ 1 and thus in JL~-i-

Proof: (i) We prove by induction with respect to t. For P' there is no 

monochromatic loop containing e,., since if there were such a loop, it could have 

only one branch e,. in common with cutset S, which is impossible for a loop. Thus 

Lo'=L0 • Assume L~_ 1=L,_1 (i<k). L/ (i<k) is determined by finding a loop 
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which consists of one of the branches in L; _1 and branches of the color different 

from the branch. Since only the color of e,. is changed to get P' from P, we 

investigate the existence of a loop which contains e,. and which also meets the 

above condition. Before changing the color of e,., such a loop consists of e,., one 

branch of the same color as e,. and contained in L;_1, and branches of the color 

different from e,.. But there is no such a loop for P, since it would have e,. and 

the branch of the same color as e,. and contained in L;_ 1 in common with S, con­

tradicting the choice of e ,.. Thus L/ = L; ( i < k). 

(ii) For P there is no monochromatic loop containing e,.. Therefore, every loop 

containing e,. contains at least one branch of the color different from e,., and is 

dissected by removing the branch and e,.. Thus, there is a cutset consisting of e,. 
and the branches of the color different from e,.. Besides, since e,., E JL,. there is a 

loop consisting of e,., one branch of the color different from e,., say e,._1EJL,._1, 

and branches of the same color as e,.. Thus, the cutset should contain e,._i- By 

changing the color of e,. we get a monochromatic cutset containing e,. and e,._i-

Now let Gs be a subgraph of G obtained from G by open-circuitring one or 

more branches. For a coloring of G, let the color of each remaining branch in Gs 

be the same as that of ·the corresponding branch in G. Denote the nullity of 

Gs (a, /3) by ms (a, /3). Then the following lemma is obvious. 

Lemma 2 

m (a, 0) + m (0, b) ?:.ms (a, 0) +m8 (0, a) (7) 

and if all the monochromatic loops in G (a, b) are also included in Gs (a, b), the 

equality in (7) holds. 

With the preparation of Lemma l and 2 we have Theorem 3 which is the main 

result concerning colorings to give ,.., m· 

Theorem 3 

If L 1 (l?::. 0) exists for coloring P of G, a necessary and sufficient condition for 

P to give ,..,m is that there is no monochromatic cutset intersecting L 1 in G (a, b). 

Proof: Necessity: If l=0 this condition is the same as that in Theorem 2. 

For l?::. l, assume that there were such a cutset. From Theorem 2, the cutset 

cannot intersect L0• Choosing a branch which belongs to the cutset and also to 

JL,., k being as small as possible, and changing the color of the branch, we get a 

monochromatic cutset intersecting JL~_ 1 ( = JL,._ 1) by Lemma 1. Repeating the 

process we get a monochromatic cutset intersecting L0, which contradicts Theorem 

2. 
Sufficiency: Consider the subgraph of G consisting of all the branches in L1• 

Since there is no monochromatic cutset in the subgraph, the degree of interference 
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9 
dO 14 

16 

,12 15 
(b) 

9 
14 10 14 

16 16 

5 12 15 5 12 15 
(c) (d} 

Fig. 1. Procedure to get a coloring to give llm• 

(a) Lo={l, 2, 3, 6, 7, 8}, dL1 ={9, 10, 11}, d~={l2, 13} 
(b) Lo={l, 3, 6, 7, 8}, dL1 ={2, 9, 10, 11} 
(c) Lo={l, 3, 6, 7, 8}, dL1 ={2, 9} 
(d) A coloring to give 11.,. 

of loops in the subgraph takes the maximum by Theorem 1. Thus, from Lemma 2 

we seem (a, 0) +m (0, b) takes the minimum value over all possible colorings. 

From Theorem 2, Lemma I and Theorem 3, we can get an algorithm to get a 

coloring giving llm. Since its presentation is almost same as repeating the proofs 

of the theorems and lemma, we here omit writing it down, but give an example as 

illustrated in Fig. 1. The colors of the branches are indicated by the thickness of 

the lines. The monochromatic cutsets intersecting L 1 are shown by the dotted 

lines. 

Interesting examples of colorings to give the maximum of the degree of inter­

ference are the realizations of LC, CR or LR networks in Foster's or Cauer's form, 

as are discussed later. If a coloring gives 11m, the subgraph of G corresponding to set 

L1 obtained from the coloring is called the principal subgraph associated with 

monochromatic loops, and is denoted G 1• 

With the discussions dual to the above we can get a procedure, a lemma and 

a theorem concerning cutsets corresponding to Procedure I, Lemma I and Theorem 

3 respectively. The principal subgraph associated with monochromatic cutsets can 

also be defined, and is denoted G c· 

3. Degree of Interference Distance between a Pair of 

Trees and Topological Degree of Freedom 

A principal partition of a linear graph introduced by Kishi and Kajitani6
) in 

connection with maximally distant trees is a partition of a graph into three principal 

subgraphs, G1, G~ and G0, called the principal subgraph with respect to common 



Some Properties of Multicolored-Branch Graphs 387 

chords, with respect to common tree-branches and of disjoint trees respectively. If 

the branches belonging to the subgraphs are painted with color x,y and z respective­

ly, graphs G/=G(x, 0, 0) G/=G (l,y, 1) and Go'= (G (1, 0, z) are uniquely determin­

ed regardless of a pair of maximally distant trees used to obtain the subgraphs. 

It has been shown7
) that Go' can be further partitioned into a certain partially 

ordered set of subgraphs. The partial ordering of the subgraphs together with 

the subgraphs of G/ and G/ is called the structure of the graph. The structure of 

a graph is useful for the mixed analysis of electrical networks. In connection with 

the number of equilibrium equations necessary in the mixed analysis, the topological 

degree of freedom was defined4
)

5
)_ It can be written as, in our terms, 

d= mzn 
all colorings of G 

{n (u, 0) +m (1, v)} 

where u and v indicate the colors of branches, different notations being used to 

distinguish them from colors a and b. Among the colorings to give d, the colorings 

with a minimum number of branches of color u and those of color v, respectively, 

define subgraphs Gt=G(u,0) and G:/:=G(l,v). It can be shown that Gt=G/ 
and G:/: = G/ from references4

)
5
)&). 

In order to derive the relation between the degree of interference and the dis­

tance between a pair of trees, we consider the following pair of trees of G ( a, b) . 

Let Ta(Tb) be a tree of G (a, b) containing a maximum of branches of color a (b) 

and a minimum of branches of color b (a). The number of branches of color a and 

b.in Ta is n(a, 0) and n(l, b) respectively. From this fact the first half of (5) follows 

immediately. The other ~quations in (4) and (5) can be proved similarly. In 

general, there are many choices for Ta and Ta of G (a, b), but we choose a special 

pair T! and Tf, which has as many common branches as possible. Such a pair 

can be obtained as follows. Let a tree of G ( 1, b) and G ( a, 1) be T lb and T al 

respectively. Then choose a tree of G (a, 0) which contains Ta1, and denote it 

Tao· Likewise let T 0b be a tree of G (0, b) containing T 1b. Construct T!= T 1b 

U Tao and Tt= Ta 1 U Tob· Since Tf and Tf have Ta 1 and T 1b in common, the 

distance between T! and Tt is 

D (T!, Tt) =n (a, 0)-n (a, 1) =n (0, b)-n (1, b) =n (a, b) =v (a, b). (8) 

In general 

(9) 

Considering all the colorings of branches, we see the maximum of the degree of 

interference is not more than the maximum of the distance between a pair of trees 

in G. In fact, if a pair TA and TB, of maximally distant trees is given, a coloring to 
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give Ym can be obtained by assigning color a to the branches of TA-TB, and color 

b to those of TB-TA- and II m is equal to the maximum distance, denoted by D m• 

between the pair of trees. The coloring of the common tree-branches of TA and 

TB and that of the common chords are arbitrary, but the coloring of the common 

tree-branches determines the monochromatic cutsets; and the coloring of the 

common chords determines the monochromatic loops in G (a, b). All the mono­

chromatic loops and cutsets are included in G1 and G2 respectively. G0 consists 

of a pair of trees of different colors. Conversely, if a coloring to give Ym is given, a 

pair of maximally distant trees can be obtained by a procedure to get Ta and Tb. 

Now Theorem 5 of references''5' states that 

d=r(G)-rf (IO) 

where r(G) is the rank ofG and rf is equal to the number of common tree-branches 

of a pair of maximally distant trees. If a coloring to give 11m is given, T! and Tf 
obtained from the coloring are maximally distant trees, and the number of com­

mon tree-branches of the pair is n ( a, I) + n (I, b). Thus we have 

Theorem 4 

llm=Dm=d. ( l l) 

Examining Lemma I and Theorem 3 for the special cases where the branches 

of color a form a tree and the branches of color b, its co-tree, we also get 

(12) 

Thus G1 and Ge also have the known properties of G/ and G/ respectively. 

As an application of the above statements, let us consider an LC network. 

From (I) we see that the number of non-zero natural frequencies is twice the degree 

of interference. With the given network topology the maximum of the number of 

non-zero natural frequencies can be obtained by assigning inductors and capaci­

tors according to a coloring to give Ym. Moreover, after open-circuiting or short­

circuiting the branches corresponding to the zero natural frequency, the number 

of branches of the graph of the network is equal to the number of non-zero natural 

frequencies if, and only if, the graph consists of a pair of trees of an different color, 

that is, trees of inductors and of capacitors. This can be applied to the network 

topology to realize a rational reactance function with the minimum number of 

elements for the given degree. The realization in Foster's or Cauer's form satisfies 

the above condition, if the two terminals are properly open- or short-circuited. 

Similar discussion can be given for LR or CR networks. 

Next, let us consider the fundamental cutset matrix Qf defined by Ta. We 
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can write Q,f in the form 

(13) 

where U is a unit matrix and Q,c is called the characteristic part of Q,r U a and 

U b are unit matrices corresponding to the tree-branches of color a and b respective­

ly. Q,aa, Q,ab and Q,bb are the submatrices of Q,c corresponding to the tree-branches 

of color specified by the first subscript, and to the chords of color specified by the 

second subscript. The lower rows of (13) correspond to the monochromatic cut­

sets of color b, and thus we have a zero-submatri~ at the right-lower corner. 

Theorem 5 

The rank of Q,ab is equal to the degree of interference of cutsets in G (a, b). 

Proof: Consider a graph, Ga, obtained from G by short-circuiting all the 

tree-branches of color b. The fundamental cutset matrix of Ga corresponds to the 

upper rows of ( 13). Since there are n ( a, 1) independent monochromatic cutsets 

of color a in Ga, the upper rows of (13) can be converted to the form 

by proper additions or subtractions among the rows. The zero-submatrix above 

Q,'ab has n (a, 1) rows, and thus the rank of Q,ab is not more than n (a, 0)-n (1, b) 

=n (ll, b). Now open-circuiting the branches of color a in Ga leaves a graph con­

sisting of the chords of color b of Ta. A tree of such a graph contains n (0, b)­

n(l, b) =n(ll, b) branches. As the columns of Q,ab contain the columns correspond­

ing to the branches of such a tree, the rank of Q,ab is no less than n (ll, b). 
Corollary: The rank of the characteristics part of a fundamental cutset matrix 

is equal to the rank of the graph obtained by open-circuiting all the branches of 

the corresponding tree, or is equal to the nullity of the graph obtained by short­

circuiting all the chords. 

The rank of Q,ab is maximum if Ta is an extremal tree, one of the maximally 

distant trees, with a coloring to give 11 ,,,. 

Similar discussions concerning a fundamental loop matrix can be made. 

3. Degree of Interference of Loops or Cutsets in a 

Multicolored-Branch Graph 

The degree of interference of loops or cutsets in a multicolored-branch graph 

has not been sufficiently studied. We give only a few results for three-colored­

branch graphs. In general, the degree of interference of loops in G(a, b, c) may 
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or may not be equal to the degree of interference of cutsets. Moreover, it can not 

be given merely in terms of the ranks and nullities of the graphs obtained by short­

circuiting or open-circuiting all the branches belonging to some of the partitioned 

sets. The above statement can be verified by giving two graphs with different 

degrees of interference and showing all the ranks and nullities of the graphs as 

stated above are the same for the two graphs. We can, however, give an upper 

bound and a lower bound on the degree of interference of loops or cutsets in terms 

of these ranks and nullities as follows. 

First we have 

Lemma 3 

There is an independent set of loops of G(a, b, c) containing a minimum of 

trichromatic loops and a maximum of monochromatic loops, the minimum and the 

maximum being taken over all the independent sets of loops. 

Proof: Suppose there is an independent set S1 of loops containing a minimum 

of trichromatic loops but not a maximum of monochromatic loops, say, of color a. 

Then, there is a monochromatic loop in G(a, 0, 0) which cannot be a linear com­

bination of the monochromatic loops only in S1• Let the loop be l,. Thus, if loop 

l; is given as a linear combination of loops l1, l2 , ···; and lr in S 1, at least one of 

[ 1, l2 , •··, and lr is not monochromatic. Let the loop be l;- If we form a new set S2 

from S, by omitting l; and adding l;, S2 is also an independent set of loops. Note 

that l; can not be trichromatic, since S, contains a minimum of trichromatic loops, 

and so does S2 • S2 contains one more monochromatic loop than S 1 • Repeating 

the process we can get a set as stated in the lemma. 

By considering the independent sets of loops, each containing a minimum of 

trichromatic loops and a maximum of monochromatic loops, we get the following 

theorem. 

Theorem 6 

where 

m1=m(a, 1, l)+m(a,0,0)-m(a,0, 1)-m(a, 1,0) 

= m ( 1, b, 1) + m (0, b, 0)- m ( 1, b, 0) -m (0, b, 1) 

= m (1, 1, c) +m (0, 0, c)-m (0, 1, c)-m (1, 0, c) 

m.,,=m (a, 1, 1)-m (a, 0, l)=m (1, b, 1)-m (0, b, 1) 

m .. 2 =m (1, b, 1)-m (1, b, 0) =m (1, 1, c)-m (1, 0, c) 

m .. 3=m (1, 1, c)-m (0, 1, c)=m (a, 1, 1)-m (a, 1, 0) 

(14) 

(15) 

(16) 

(17) 

(18) 
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Proof: See Appendix. 

A theorem giving bounds on n(ll, b, r) can be obtained by taking the dual of 

Theorem 6. 

5. Conclusion 

In this paper some properties of the degree of interference in multicolored­

branch graphs are studied. Exposed are several theorems on the colorings to give 

its maximum for the two-colored case. An interesting fact revealed is that two kinds 

of degrees concerning electrical networks, namely the order of complexity and the 

topological degree of freedom, have intimate connections in the light of the two­

colored-branch graph theory, although they were introduced from different points 

of view in the past literatures. Especially, the maximum of the degree of inter• 

ference is equal to the topological degree of freedom, and the cloorings to give the 

maximum are closely related to the structure of the graph. It is hoped that new 

approaches in the network analysis or synthesis can be made using the relation. 

A future interest in the multicolored case may be concerned with what kinds 

of measures should be considered besides ranks and nullities in order to obtain an 

exact and explicit formula of the degree of interference. 
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Appendix 

Consider all the independent sets of loops containing a minimum of trichro­

matic loops and a maximum of monochromatic loops. Denote the number of mono­

chromatic, bichromatic and trichromatic loops in one of such sets by m,,, mb, me; 

m,,b, m,,c, mbc and mabc respectively, the colors of the branches contained in the 

loops being indicated by the subscripts. We have 

Let 

maa *=m (a, b, 0)-m (a, 0, 0)-m (0, b, 0) =max{mab} 

mac*=m (a, 0, c)-m (a, 0, 0)-m (0, 0, c)=max{mac} 

mbc*=m (0, b, c)-m (0, b, 0)-m (0, 0, c)=max{mbc}, 

(Al) 

(A2) 

(A3) 

(A4) 

(A5) 

(A6) 

where each of the maximums is independently taken over all the sets considered. 

Since the loops corresponding to mab * and those to mac* are independent, 

and similarly 

Obviously 

From (A7), (A8) and (A9) we have 

But 

(A7) 

(A8) 

(A9) 

(AIO) 

(Al 1) 

(Al2) 

From (AIO) and (All), therefore, we have an upper bound and a lower bound on 

mabc· Into these bounds we substitute (Al), (A2),···, and (A6), and then using 

the extended forms of (4) and (5) to three-colored-branch graphs, we have the 

theorem. 




