

AUTHOR(S):

# KIYONO, Takeshi; MURASHIMA, Sadayuki

CITATION:

KIYONO, Takeshi ...[et al]. A Method of Evaluation of the Function K(x). Memoirs of the Faculty of Engineering, Kyoto University 1973, 35(2): 102-127

**ISSUE DATE:** 1973-07-31

URL: http://hdl.handle.net/2433/280911 RIGHT:



By

Takeshi Kiyono\* and Sadayuki MURASHIMA\*\*

(Received December 11, 1972)

The modified Bessel function of the second kind with imaginary order, which is important in the potential theory, is considered from the stand point of numerical computation.

A computing method based on the integral representation of this function is proposed. The accuracy and the computing time are also discussed.

A short table and a graphical representation of this function are given.

### Introduction

A special form of the modified Bessel function  $K_{\nu}(x)$  when  $\nu$  is imaginary, plays important roles in the analysis of some kinds of boundary value problems in the potential theory<sup>1</sup>).

Some works have been done to transform the infinite integrals involving the function  $K_{is}(x)$  into computable forms. An example can be seen in K. Maeda's paper<sup>2)</sup> in which a series expression for the integral

$$\int_{0}^{\infty} \frac{\sinh s\pi}{\sinh s\pi - k \sinh s(\pi - 2\alpha)} \left[ \cosh s(\pi - \varphi) + k \cosh s(\pi - 2\alpha + \varphi) \right] K_{is}(\mu c) K_{is}(\mu r) ds$$

is obtained by the use of Cauchy's theorem.

However, the method to evaluate the function  $K_{is}(x)$  itself has not been established yet. In this paper the authors discuss the possibilities of computing the values of  $K_{is}(x)$  starting from an integral representation for this function. Then they propose a procedure based on such an algorithm.

# 1. Integral Representations of the Function $K_{is}(x)$

It is well known that the modified Bessel function of the second kind  $K_{\nu}(x)$  can be expressed in the following forms<sup>3</sup>:

<sup>\*</sup> Department of Information Science.

<sup>\*\*</sup> Department of Electronics, Faculty of Engineering, Kagoshima University (studying at Kyoto University as a visiting researcher for the period from May 1972 to February 1973).

$$K_{\nu}(x) = \frac{1}{\cos \frac{\nu \pi}{2}} \int_{0}^{\infty} \cos \left(x \sinh t\right) \cosh \left(\nu t\right) dt , \qquad (1.1)$$

and

$$K_{\nu}(x) = \int_{0}^{\infty} e^{-x \cosh t} \cosh \left(\nu t\right) dt , \qquad (1.2)$$

where x < 0 and  $-1 < R(\nu) < 1$ .

When  $\nu = is$ , where s is real, these two become as follows:

$$K_{is}(x) = \frac{1}{\cosh \frac{\pi s}{2}} \int_0^\infty \cos \left(x \sinh t\right) \cos \left(st\right) dt , \qquad (1.3)$$

and

$$K_{is}(x) = \int_{0}^{\infty} e^{-x \cosh t} \cos (st) dt \,. \tag{1.4}$$

If we put s=0, we get

$$K_0(x) = \int_0^\infty \cos{(x \sinh t)} dt = \int_0^\infty \frac{\cos{(xu)}}{\sqrt{u^2 + 1}} du, \qquad (u = \sinh t)$$
(1.5)

and

$$K_0(x) = \int_0^\infty e^{-x \cosh t} dt \,. \tag{1.6}$$

# 2. Numerical Computation of the Function $K_{is}(x)$

It is clear that the representation (1.4) is easier to compute than (1.3), since the integrand of the latter oscillates rapidly as t increases and does not decay when t approaches infinity.

One of the methods based on (1.4) will be to use a quadrature formula of Gauss-Laguerre type, i.e.

$$\int_{0}^{\infty} e^{-t} f(t) dt = \sum_{i=1}^{n} a_{i} f(t_{i}) .$$
(2.1)

In order to apply this formula to (1.4), it is necessary to write

$$K_{is}(x) = \int_0^\infty e^{-t} \left( e^{-x \cosh t + t} \cos (st) \right) dt , \qquad (2.2)$$

or, substituting  $x \cosh t = v + x$ ,

Takeshi Kiyono and Sadayuki MURASHIMA

$$K_{is}(x) = e^{-x} \int_{0}^{\infty} e^{-v} f(v) dv,$$
  
$$f(v) = \cos\left(s \log\left(\frac{1}{x} (v + x + \sqrt{v(v + 2x)})\right) \frac{1}{\sqrt{v(v + 2x)}}.$$
 (2.3)

The results obtained by these methods combined with the 10-point Gauss-Laguerre quadrature formula are shown in Table 1.

| x   | $K_0(x)$ by (2.2) | $K_0(x)$ by (2.3) | $K_0(x)$ exact (4) |
|-----|-------------------|-------------------|--------------------|
| 0.1 | 2.4395            | 1.8566            | 2.42707            |
| 0.2 | 1.7370            | 1.3943            | 1.75270            |
| 0.3 | 1.3689            | 1.1095            | 1.37246            |
| 0.4 | 1.1120            | 0.9092            | 1.11452            |
| 0.5 | 0.9316            | 0.7585            | 0.92442            |
| 1.0 | 0.4188            | 0.3501            | 0.42102            |
| 1.5 | 0.2123            | 0.1787            | 0.21381            |
| 2.0 | 0.1141            | 0.0955            | 0.11389            |

Table 1.  $K_0(x)$  computed by (2.2) and (2.3).

According to these results, the method using (2.2) yields much higher accuracy than (2.3) in the case of s=0. However, both methods yield very large errors when s is large and x is small. For example, when s=2.00, (2.2) gives the following values:

for x = 0.1, 0.2, 0.3, 0.4,  $K_{is}(x) = -0.11508$ , -0.20108, -0.12946, -0.050795;

while the exact values are:

 $K_{is}(x) = -0.01229$ , -0.07672, -0.05473, -0.01707.

One of the reasons which cause such large errors is the fact that the "envelope" of the integrand of (1.4)

$$g(t) = e^{-x\cosh t} \tag{2.4}$$

decays so rapidly that some of the pivots  $t_i$  in the Gaussian formula (2.1) do not contribute to the quadrature. Therefore a considerable improvement should be expected if we apply the Gauss-Legendre or an adequate formula to a finite interval (0,b), where b is the value of t for which g(t) vanishes in the sense that

$$g(t)/g(0) = 10^{-N}$$
. (2.5)

The root of this equation can be obtained easily:

$$b = \log_{e} (u + \sqrt{u^{2} - 1}),$$
  

$$u = (N/M)/x + 1, \quad 1/M = \log_{e} 10.$$
(2.6)

Thus the integral (1.4) becomes:

$$K_{is}(x) = \int_{0}^{b} e^{-x \cosh t} \cos (st) dt .$$
 (2.7)

Table 2 shows the values of  $K_0(x)$  computed by the Gauss-Legendre formula:

$$K_0(x) = \int_0^b e^{-x \cosh t} dt = b \left( 0.5 a_0 e^{-x} + \sum_{i=1}^m a_i \exp\left( -x \cosh\left(bt_i\right) \right) \right).$$
(2.8)

| r      | m = 7          | <i>m</i> = 12    | BASS (4)         |
|--------|----------------|------------------|------------------|
| 0.01   | 4 7210         | A 7010 AA67 0    | 4 7010 447       |
| 0.01   | 4.7210         | 4.7212 4407 3    | 4./212 44/       |
| .02    | 3 6 2 3 5      | 4.0284 3/34 9    | 4.0284 373       |
| .05    | 3 3 3 6 5 9    | 3.0255 2955 4    | 2 2265 415       |
| 0.5    | 3 1142 8       | 3.1142 3403 2    | 3 1142 340       |
| 0.5    | 5.11+2 0       | 5.1142 5405 2    | 5.1142 540       |
| .06    | 2.9329 2       | 2.9328 7953 7    | 2.9328 795       |
| .07    | 2.7798.6       | 2.7798 1776 5    | 2.7798 178       |
| .08    | 2.6475 2       | 2.6474 8946 6    | 2.6474 895       |
| .09    | 2.5310 4       | 2.5310 1710 0    | 2.5310 171       |
| 0.10   | 2.4270 9       | 2.4270 6902 3    | 2,4270 6902 47   |
| .20    | 1.7526 98      | 1.7527 0385 6    | 1.7527 0385 57   |
| .30    | 1.3724 56      | 1.3724 6006 1    | 1.3724 6006 05   |
| .40    | 1.1145 28      | 1.1145 2913 5    | 1.1145 2913 45   |
| .50    | 0.9244 1903    | 0.9244 1907 12   | 0.9244 1907 12   |
| .60    | 0.7775 227     | 0.7775 2209 19   | 0.7775 2209 19   |
| .70    | 0.6605 205     | 0.6605 1985 99   | 0.6605 1985 99   |
| .80    | 0.5653 447     | 0.5653 4710 53   | 0.5653 4710 53   |
| .90    | 0.4867 307     | 0.4867 3030 82   | 0.4867 3030 82   |
| 1.00   | 0.4210 247     | 0.4210 2443 82   | 0.4210 2443 82   |
| 1.50   | 0.2138 0550    | 0.2138 0556 26   | 0.2138 0556 265  |
| . 2.00 | 0.1138 9383    | 0.1138 9387 27   | 0.1138 9387 275  |
| 2.50   | 0.0623 4755 1  | 0.0623 4755 320  | 0.0623 4755 320  |
| 3.00   | 0.0347 3951    | 0.0347 3950 439  | 0.0347 3950 439  |
| 3.50   |                | 0.0195 9889 717  | 0.0195 9889 7170 |
| 4.00   | 0.0111 5667 8  | 0.0111 5967 609  | 0.0111 5967 6086 |
| 4.50   |                | 0.0063 9985 7243 | 0.0063 9985 7243 |
| 5.00   | 0.0036 9109 77 | 0.0036 9109 8334 | 0.0036 9109 8334 |
|        | · · ·          |                  | 1 d              |

Table 2. Values of  $K_0(x)$  computed by quadrature formula (2.8).

# 3 An Exact Table of the Function $K_{is}(x)$

To make an exact table of a function, it is preferable to start directly from a formula which defines the function. In our case, the integral representation (2.7) which is equivalent to (1.4) seems to be most appropriate, because of its simplicity.

The difficulties expected here are:

- (i) the cancellation of significant digits due to the oscillation of the integrand, and
- (ii) the computing time necessary to obtain exact values of the integral.
- In order to estimate the amount of cancellation, we write

$$K_{is}(x) = \sum_{n=0}^{n_c} (-1)^n G_n(x, s) , \qquad (3.1)$$

where

$$G_{0}(s, x) = \frac{1}{2} \int_{-\pi/(2s)}^{\pi/(2s)} f(t) dt ,$$
  

$$G_{n}(s, x) = \int_{(2n-1)\pi/(2s)}^{(2n+1)\pi/(2s)} f(t) dt ,$$
  

$$f(t) = e^{-x \cosh t} \cos(st) ,$$
(3.2)

and

$$n_c = [[2sb/\pi]/2 + 0.5] \tag{3.3}$$

means the number of zeros of f(t) between 0 < t < b.

The cancellation between two adjacent terms in the series of (3.1) can be roughly estimated by computing the values of the integrand at  $t=n\pi/s$ ,  $n=0, 1, \cdots$ , or

$$g(n) = f(n\pi/s) = \exp(-x \cosh(n\pi/s))$$
. (3.4)

Table 3. The values of g(n).  $(s=5\pi, x=0.01)$ 

| n            | 0      | 1      | 2      | 3       | 4          | 5      | 6      |
|--------------|--------|--------|--------|---------|------------|--------|--------|
| <b>g</b> (n) | 0.9900 | 0.9899 | 0.9893 | 0.9882  | 0.9867     | 0.9847 | 0.9821 |
|              |        |        |        |         |            |        |        |
| n            | 7      | 8      | 9      | 10      | 11         | 12     | 13     |
| g(n)         | 0.9787 | 0.9746 | 0.9694 | 0.9631  | 0.9554     | 0.9460 | 0.9436 |
|              |        |        |        |         |            |        |        |
| n            | 14     | 15     | 16     | 17      | 18         | 19     | 20     |
| g(n)         | 0.9208 | 0.9042 | 0.8793 | 0.8607  | 0.8327     | 0.7996 | 0.7610 |
|              | r      |        |        | <u></u> |            |        |        |
| n            | 21     | 22     | 23     | 24      | 25         | 26     | 27     |
| g(n)         | 0.7164 | 0.6654 | 0.6081 | 0.5447  | 0.4761     | 0.4040 | 0.3304 |
|              |        |        |        | ···     |            | -      |        |
| n            | 28     | 29     | 30     | 35      | 40         |        |        |
| g(n)         | 0.2587 | 0.1918 | 0.1330 | 0.00416 | 0.00000034 |        |        |

In Table 3, the values of g(n) are shown for the case where  $s=5\pi$  and x=0.01. It can be seen from this table that considerable cancellations between  $G_n$  and  $G_{n+1}$  will occur when n<20. The number of decimal places lost in the computation of the series (3.1), however, will not exceed three in case  $s \leq 15$  and  $x \geq 0.01$ .

The amount of computation strongly depends on the values of x and s, since the former determines the upper bound of the integral and the latter changes the shape of the integrand or the number of zeros of the integrand included in the interval (0, b).

In the procedure Kitc(s, x) shown in Appendix 1, the trapezoidal rule

$$K_{is}(x) \simeq K(n) = h_n(0.5e^{-x} + \sum_{j=1}^{p} \exp(-x \cosh(jh_n) \cos(sjh_n)), \qquad (3.5)$$

where

$$ph_n \leq b$$
 and  $h_n = 2^{-n} h_0$ ,

is used, and n is increased until the condition

$$|K(n) - K(n+1)| / |K(n+1)| < 10^{-11} \text{ if } |K(n+1)| \ge 0.5 \times 10^{-3},$$
  
or  $|K(n) - K(n+1)| < 10^{-14} \text{ if } s < x \text{ and } |K(n+1)| < 0.5 \times 10^{-3}$  (3.6)

is satisfied.

A very large number of iterations was observed in case s is large and x is small. But the results obtained here seem to be accurate to ten decimal places excluding the case where  $K_{is}(x)$  is very small.

In Appendix 3, a part of the numerical results is shown, being rounded to eight decimal places.

Fig. 1 illustrates the behavior of the function  $K_{is}(x)$  in a perspective form.

It should be noted that the function  $K_{is}(x)$ , s < 0, oscillates very rapidly when x approaches zero, keeping its amplitude nearly constant (see Fig. 2).

In spite of the property of  $K_0(x)$ :

$$\lim_{x\to 0} K_0(x) = \infty, \quad \lim_{x\to 0} K_0'(x) = -\infty,$$

the values of  $K_{is}(x)$ , where s is positive and x is nearly zero, are finite but indeterminate, although it can be shown from (1.3) and (1.4) that  $K_{is}(0)=0$ .

# 4. A More Practical Procedure

Although the procedure Kitc(s, x) yields very accurate values of the function  $K_{is}(x)$ , it is too time-consuming to be used for some practical purposes. In order



Fig. 2. Oscillation of  $K_{is}(x)$  near x=0,

| S    | x    | m       | ethod          | P  | abs. error            | rel. error                                |
|------|------|---------|----------------|----|-----------------------|-------------------------------------------|
| 0.01 | 0.01 | trapez. | h = 0.4        | 22 | .24×10 <sup>-10</sup> | <10-11                                    |
|      |      |         | 0.5            | 18 | .37×10 <sup>-8</sup>  | .78×10 <sup>-9</sup>                      |
|      |      | Gauss   | m = 17         | 18 | .17×10 <sup>-10</sup> | < 10 <sup>-11</sup>                       |
|      |      |         | 12             | 13 | .51×10 <sup>-7</sup>  | <u>.11x10<sup>-7</sup></u>                |
|      | 0.05 | trapez. | h = 0.4        | 18 | .24×10 <sup>-10</sup> | < 10 <sup>-11</sup>                       |
|      |      |         | 0.5            | 14 | .15×10 <sup>-8</sup>  | .47x10 <sup>-9</sup>                      |
|      |      | Gauss   | m= 17          | 18 | $< 10^{-11}$          | < 10 <sup>-11</sup>                       |
|      |      |         | 12             | 13 | .24×10 <sup>-8</sup>  | .77×10 <sup>-9</sup>                      |
|      | 0.10 | trapez. | h = 0.4        | 16 | $< 10^{-11}$          | $< 10^{-12}$                              |
|      |      |         | 0.5            | 13 | .34×10 <sup>-8</sup>  | .14×10 <sup>-8</sup>                      |
|      |      | Gauss   | <i>m</i> = 17  | 18 | < 10 <sup>-11</sup>   | $< 10^{-12}$                              |
|      |      |         | 12             | 13 | .19×10**              | .79x10 <sup>-9</sup>                      |
|      | 0.50 | trapez. | h = 0.4        | 12 | $< 10^{-11}$          | < 10 <sup>-11</sup>                       |
|      |      | ····    | 0.5            | 10 | .96×10-9              | .10x10 <sup>-</sup> °                     |
|      |      | Gauss   | <i>m</i> = 17  | 18 | $< 10^{-12}$          | $< 10^{-12}$                              |
|      |      |         | 12             | 13 | .17×10-10             | .18×10-10                                 |
|      | 1.00 | trapez. | h = 0.3        | 14 | $< 10^{-12}$          | $< 10^{-12}$                              |
|      |      |         | 0.4            | 10 | .24×10 <sup>-10</sup> | .57×10 <sup>-10</sup>                     |
|      |      |         | 0.5            | 8  | .1/x10 °              | .33×10 °                                  |
|      |      | Gauss   | m=17           | 18 | $< 10^{-12}$          | $< 10^{-12}$                              |
|      |      |         | 12             | 13 | < 10 **               | < 10 **                                   |
| 0.05 | 0.01 | trapez. | h = 0.4        | 22 | .22x10 <sup>-10</sup> | < 10 <sup>-11</sup>                       |
|      |      |         | 0.5            | 10 | .54×10 °              | ./3X10                                    |
|      |      | Gauss   | m = 17         | 18 | .15×10 <sup>-7</sup>  | < 10 <sup>11</sup><br>94~10 <sup>-8</sup> |
|      | 0.05 | tranan  | <i>k = 0.4</i> | 10 | 2210-10               |                                           |
|      | 0.05 | trapez. | n = 0.4        | 10 | .22x10 <sup>9</sup>   | 22×10 <sup>-9</sup>                       |
|      |      | Course  | m = 17         | 19 |                       | 10-12                                     |
|      |      | Gauss   | 12             | 13 | .11x10 <sup>-8</sup>  | .36x10 <sup>-9</sup>                      |
|      | 0.10 | trapez  | h = 0.4        | 16 | < 10 <sup>-11</sup>   | < 10 <sup>-12</sup>                       |
|      |      |         | 0.5            | 13 | .32×10 <sup>-8</sup>  | .13x10 <sup>-8</sup>                      |
|      | l. İ | Gauss   | <i>m</i> = 17  | 18 | < 10 <sup>-11</sup>   | < 10 <sup>-12</sup>                       |
|      |      |         | 12             | 13 | .19×10 <sup>-8</sup>  | .77×10 <sup>-9</sup>                      |
|      | 0.50 | trapez. | h = 0.4        | 12 | < 10 <sup>-11</sup>   | < 10 <sup>-11</sup>                       |
|      |      |         | 0.5            | 10 | .10x10 <sup>-8</sup>  | .11x10 <sup>-8</sup>                      |
|      |      | Gauss   | <i>m</i> = 17  | 18 | < 10 <sup>-12</sup>   | < 10 <sup>-12</sup>                       |
|      |      |         | 12             | 13 | .17×10                | .18×10 <sup>-10</sup>                     |
|      | 1.00 | trapez. | h = 0.3        | 14 | $< 10^{-12}$          | < 10 <sup>-12</sup>                       |
|      |      |         | 0.4            | 10 | .24×10 <sup>-10</sup> | .57x10 <sup>-10</sup>                     |
|      |      |         | 0.5            | 8  | .17×10**              | .40x10**                                  |
|      |      | Gauss   | <b>m=</b> 17   | 18 | $  < 10^{-12}$        | < 10 <sup>-1 2</sup>                      |
|      |      |         | 12             | 13 | < 10 <sup>-12</sup>   | < 10 <sup>-11</sup>                       |

Table 4. Comparison of trapezoidal and Gauss-Legendre quadratures.

| S    | x    | met     | thod                  | p             | abs. error                                    | rel. error                                                           |
|------|------|---------|-----------------------|---------------|-----------------------------------------------|----------------------------------------------------------------------|
| 0.10 | 0.01 | trapez. | h = 0.4<br>0.5        | 22<br>18      | .17×10 <sup>-10</sup><br>.23×10 <sup>-8</sup> | < 10 <sup>-11</sup><br>.51×10 <sup>-9</sup>                          |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | .11×10 <sup>-10</sup><br>.25×10 <sup>-7</sup> | < 10 <sup>-11</sup><br>.55×10 <sup>-8</sup>                          |
|      | 0.05 | trapez. | h = 0.4<br>0.5        | 18<br>14      | .18×10 <sup>-10</sup><br>.89×10 <sup>-9</sup> | < 10 <sup>-11</sup><br>.29x10 <sup>-9</sup>                          |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | $< 10^{-11}$<br>.25×10 <sup>-7</sup>          | < 10 <sup>-12</sup><br>.82×10 <sup>-10</sup>                         |
|      | 0.10 | trapez. | h= 0.4<br>0.5         | 16<br>13      | $< 10^{-11}$ .28×10 <sup>-8</sup>             | < 10 <sup>-11</sup><br>.12×10 <sup>-8</sup>                          |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | < 10 <sup>-11</sup><br>.17x10 <sup>-8</sup>   | < 10 <sup>-12</sup><br>.70x10 <sup>-9</sup>                          |
|      | 0.50 | trapez. | h = 0.4<br>0.5        | 12<br>10      | < 10 <sup>-11</sup><br>.11x10 <sup>-9</sup>   | < 10 <sup>-11</sup><br>.12×10 <sup>-9</sup>                          |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | $< 10^{-12}$ .16x10 <sup>-10</sup>            | < 10 <sup>-12</sup><br>.18x10 <sup>-10</sup>                         |
|      | 1.00 | trapez. | h = 0.3<br>0.4<br>0.5 | 14<br>10<br>8 | $< 10^{-12}$<br>.23x10^{-10}<br>.15x10^{-8}   | < 10 <sup>-12</sup><br>.55×10 <sup>-10</sup><br>.36×10 <sup>-8</sup> |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | $< 10^{-12} < 10^{-12}$                       | $< 10^{-12} < 10^{-11}$                                              |
| 0.50 | 0.01 | trapez. | h = 0.4<br>0.5        | 22<br>18      | .21×10 <sup>-10</sup><br>.41×10 <sup>-8</sup> | .19x10 <sup>-10</sup><br>.36x10 <sup>-8</sup>                        |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | .10x10 <sup>-10</sup><br>.57x10 <sup>-8</sup> | $< 10^{-11}$<br>.51×10 <sup>-8</sup>                                 |
|      | 0.05 | trapez. | h = 0.4<br>0.5        | 18<br>14      | .32×10 <sup>-10</sup><br>.21×10 <sup>-8</sup> | .19x10 <sup>-10</sup><br>.13x10 <sup>-8</sup>                        |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | < 10 <sup>-11</sup><br>.42x10 <sup>-8</sup>   | < 10 <sup>-12</sup><br>.25×10 <sup>-8</sup>                          |
|      | 0.10 | trapez. | h = 0.4<br>0.5        | 16<br>13      | < 10 <sup>-11</sup><br>.48×10 <sup>-8</sup>   | < 10 <sup>-11</sup><br>.30x10 <sup>-8</sup>                          |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | < 10 <sup>-11</sup><br>.28×10 <sup>-8</sup>   | < 10 <sup>-12</sup><br>.18x10 <sup>-8</sup>                          |
|      | 0.50 | trapez. | h = 0.4<br>0.5        | 12<br>10      | .17×10 <sup>-10</sup><br>.26×10 <sup>-8</sup> | .21×10 <sup>-10</sup><br>.33×10 <sup>-8</sup>                        |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | $< 10^{-12} < 10^{-11}$                       | $< 10^{-12}$<br>$< 10^{-11}$                                         |
|      | 1.00 | trapez. | h = 0.3<br>0.4<br>0.5 | 14<br>10<br>8 | $< 10^{-12}$<br>.53x10^{-11}<br>.31x10^{-8}   | $< 10^{-12}$<br>.14×10 <sup>-10</sup><br>.81×10 <sup>-8</sup>        |
|      |      | Gauss   | m= 17<br>12           | 18<br>13      | $< 10^{-12}$<br>$< 10^{-12}$                  | < 10 <sup>-12</sup><br>< 10 <sup>-11</sup>                           |

Table 4. Continued

| S    | x    | met     | hod            | p    | abs. error            | rel. error             |
|------|------|---------|----------------|------|-----------------------|------------------------|
| 1.00 | 0.01 | trapez. | h = 0.4        | 22   | .85×10 <sup>-11</sup> | .17×10 <sup>-10</sup>  |
| 1.00 |      |         | 0.5            | 18   | .25×10 <sup>-8</sup>  | .50×10 <sup>-8</sup>   |
|      |      | Gauss   | m = 17         | 18   | 43×10 <sup>-10</sup>  | 86×10 <sup>-10</sup>   |
|      |      | Quuss   | 12             | 13   | .25×10 <sup>-6</sup>  | .50x10 <sup>-6</sup>   |
|      | 0.05 | tropor  | h = 0.4        | 10   | 61,-10-10             | 49-10-9                |
|      | 0.05 | trapez. | n = 0.4        | 10   | 47×10-8               | 37~10-7                |
|      |      |         | 0.5            | 14   |                       | 12 10-10               |
|      |      | Gauss   | m = 1/         | 18   | 10×10-7               | .15×10                 |
|      |      |         | 12             | 15   | .19x10                | .15×10                 |
|      | 0.10 | trapez. | h = 0.4        | 16   | .31x10 <sup>-10</sup> | .14x10 <sup>-9</sup>   |
|      |      |         | 0.5            | 13   | .91×10 *              | .40×10 °               |
|      |      | Gauss   | m = 17         | 18   | .16×10 <sup>-11</sup> | < 10 <sup>-11</sup>    |
|      |      |         | 12             | 13   | .49×10™               | .22×10-'               |
|      | 0.50 | trapez. | h = 0.3        | 16   | < 10 <sup>-12</sup>   | $< 10^{-12}$           |
|      |      |         | 0.4            | 12   | .52×10 <sup>-10</sup> | .11×10 <sup>-9</sup>   |
|      |      |         | 0.5            | 10   | .77×10 <sup>-8</sup>  | .16x10 <sup>-7</sup>   |
|      |      | Gauss   | <i>m</i> = 17  | 18   | < 10 <sup>-12</sup>   | < 10 <sup>-12</sup>    |
|      |      |         | 12             | 13   | .79×10 <sup>-10</sup> | .16x10 <sup>-9</sup>   |
|      | 1.00 | trapez. | h = 0.3        | 14   | < 10 <sup>-12</sup>   | < 10 <sup>-12</sup>    |
|      |      |         | 0.4            | 10   | .60x10 <sup>-10</sup> | .21×10 <sup>-9</sup>   |
|      |      |         | 0.5            | 8    | .42×10 <sup>-8</sup>  | .15×10 <sup>-7</sup>   |
|      |      | Gauss   | m = 17         | 18   | < 10 <sup>-12</sup>   | $< 10^{-12}$           |
|      |      | Culto   | 12             | 13   | 41x10 <sup>-11</sup>  | .14×10 <sup>-10</sup>  |
| 2 00 | 0.01 | trapoz  | h = 0.3        | 20   | < 10-13               | < 10-12                |
| 2.00 | 0.01 | uapez.  | <i>n</i> = 0.5 | 23   | 29-10-9               | 39-10-8                |
|      |      |         | 0.5            | 18   | .44×10 <sup>-7</sup>  | .60x10 <sup>-6</sup>   |
|      |      | Course  | m= 17          | 19   | 79-10-9               | 11,10-7                |
|      |      | Gauss   | 12             | 13   | 42~10-5               | 57×10-4                |
|      | 0.05 | 4       | <u>12</u>      | - 15 | .+2410                |                        |
|      | 0.05 | trapez. | n = 0.3        | 19   | 1210-10               | 16-10                  |
|      |      |         | 0.4            | 10   | .12×10-7              | .10x10*                |
|      |      |         | .0.5           | 14   | .50x10                | .+2×10                 |
|      |      | Gauss   | m = 17         | 18   | .27×10 **             | .37×10 10              |
|      |      |         | 12             | 13   | .28×10 *              | .39X10                 |
|      | 0.10 | trapez. | h = 0.3        | 21   | .43×10 <sup>-12</sup> | .35×10-10              |
|      |      |         | 0.4            | 16   | .28×10 <sup>-7</sup>  | .23×10                 |
|      |      |         | 0.3            | 15   | .10×10                | .13×10 -               |
|      |      | Gauss   | <i>m</i> = 17  | 18   | .33×10-11             | .27x10-9               |
|      | L    |         | 12             | 13   | .35×10-7              | .28x10 <sup>-3</sup>   |
|      | 0.50 | trapez. | <i>h</i> = 0.3 | 16   | $< 10^{-13}$          | < 10 <sup>-11</sup>    |
|      |      |         | 0.4            | 12   | .27×10 <sup>-9</sup>  | .16×10 <sup>-7</sup>   |
|      |      |         | 0.5            | 10   | .48x10 <sup>-7</sup>  | .29×10 <sup>-5</sup>   |
|      |      | Gauss   | m= 17          | 18   | .37x10 <sup>-12</sup> | .22×10 <sup>-10</sup>  |
|      |      |         | 12             | 13   | .54x10 <sup>-9</sup>  | .33x10 <sup>-7</sup>   |
|      | 1.00 | trapez. | h = 0.3        | 14   | < 10 <sup>-13</sup>   | < 10 <sup>-17</sup>    |
|      | 1    | -       | 0.4            | 10   | .26x10 <sup>-9</sup>  | .32×10 <sup>-8</sup>   |
|      |      |         | 0.5            | 8    | .22×10 <sup>-7</sup>  | .27x10 <sup>-6</sup>   |
|      |      | Gauss   | <i>m</i> = 17  | 18   | < 10 <sup>-13</sup>   | < 10 <sup>-12</sup>    |
| Ļ    |      |         | 12             | 13   | .37x10 <sup>-10</sup> | .46 x 10 <sup>-7</sup> |

Table 4. Continued

to reduce the computing time, it will be effective to use the trapezoidal rule with a predetermined step width h or the Gauss-Legendre formula with an appropriate number of pivots.

# 4.1. Trapezoidal rule and Gaussian quadrature.

A series of numerical experiments was made to compare the speed and accuracy of two quadrature methods. The results are shown in Table 4.

It can be seen from these results that in some cases the Gauss-Legendre formula will yield more accurate values than the trapezoidal rule, if the same number of pivots is used.

For example, if we choose the cases where p=18, the errors of both methods become as follows:

| <i>p</i> = 18 |              | rel. error (trapez.)  | rel. error (Gauss)    |
|---------------|--------------|-----------------------|-----------------------|
| (s, x) =      | (0.01, 0.01) | .78×10 <sup>-9</sup>  | .36x10 <sup>-11</sup> |
|               | (0.01, 0.05) | .77×10 <sup>-11</sup> | .32x10 <sup>-12</sup> |
|               | (0.05, 0.01) | .73×10 <sup>-9</sup>  | .32x10 <sup>-12</sup> |
|               | (0.05, 0.05) | .71×10 <sup>-11</sup> | .32x10 <sup>-12</sup> |
|               | (0.10, 0.01) | .51×10 <sup>-9</sup>  | .24×10 <sup>-11</sup> |
|               | (0.10, 0.05) | .62×10 <sup>-11</sup> | .33x10 <sup>-12</sup> |
|               | (0.50, 0.01) | .36x10 <sup>-8</sup>  | .90x10 <sup>-11</sup> |
|               | (0.50, 0.05) | .19x10 <sup>-10</sup> | .60×10 <sup>-12</sup> |
|               | (1.00, 0.01) | .50×10 <sup>-8</sup>  | .86x10 <sup>-10</sup> |
|               | (1.00, 0.05) | .48x10 <sup>-9</sup>  | .13x10 <sup>-10</sup> |
|               | (2.00, 0.01) | .60×10 <sup>-6</sup>  | .11x10 <sup>-7</sup>  |
|               | (2.00, 0.05) | .16x10 <sup>-9</sup>  | .37x10 <sup>-10</sup> |
|               | (5.00, 0.01) | .16×10 <sup>-1</sup>  | .20x10 <sup>-2</sup>  |
|               | (5.00, 0.05) | .33x10 <sup>-3</sup>  | .11×10 <sup>-3</sup>  |

However, if we take the case p=13, the error of the Gaussian quadrature exceeds that of the trapezoidal rule when s is large:

| <i>p</i> = 13 |              | rel. error (trapez.) | rel. error (Gauss)   |
|---------------|--------------|----------------------|----------------------|
| (s, x) =      | (0.10, 0.10) | .12×10 <sup>-8</sup> | .70×10 <sup>-9</sup> |
|               | (0.50, 0.10) | .30×10 <sup>-8</sup> | .18×10 <sup>-8</sup> |
|               | (1.00, 0.10) | .40×10 <sup>-8</sup> | .22×10 <sup>-7</sup> |
|               | (2.00, 0.10) | .13x10 <sup>-5</sup> | .28x10 <sup>-5</sup> |
|               | (5.00, 0.10) | .60×10 <sup>-1</sup> | .32×10+1             |
|               | (5.00, 1.00) | .16×10 <sup>-7</sup> | .40×10 <sup>-3</sup> |

Although the Gaussian quadrature yields better results than the trapezoidal rule under some conditions, the program to take advantage of the former will become very lengthy, since it must be provided with a large number of sets of constants, abscissa and weights. Besides, the trapezoidal rule allows one to estimate the error very easily, and the program can be written very simply.

# 4.2. Error estimation for the trapezoidal quadratures.

According to the theory developed by Takahashi and Mori<sup>5</sup>, the error of the trapezoidal rule can be estimated by the integral of the form:

$$\Delta I = \frac{1}{2\pi i} \oint f(\zeta) \, \boldsymbol{\Phi}(\zeta) d\zeta \,, \qquad (4.1)$$

where

$$\Phi(\zeta) = -\frac{2\pi i}{1 - \exp\left(\frac{2\pi\eta}{h} - i\frac{2\pi\xi}{h}\right)}, \qquad \eta > 0$$
(4.2)

$$=+rac{2\pi i}{1- ext{exp}\left(-rac{2\pi\eta}{h}+irac{2\pi\xi}{h}
ight)},\qquad \eta\!<\!0$$

and

$$f(\zeta) = \exp\left(-x \cosh \zeta + is \zeta\right) \,. \tag{4.3}$$

If we take the ptah of integral such as:

$$\oint d\zeta = \int_{-b-ic}^{b-ic} d\xi + \int_{b-ic}^{b+ic} i d\eta + \int_{b+ic}^{-b+ic} d\xi + \int_{-b+ic}^{-b-ic} i d\eta$$

and put  $c = \pi/2$ , then we have:

$$|\Delta I| \simeq C \exp\left(-\pi^2/h + \pi s/2\right), \qquad (4.4)$$

where C is a constant which can be set to 1.0 for a rough estimation. Thus the order of magnitude of the error can be evaluated by:

$$| \mathcal{4}I | \simeq 10^{-M(\pi^2/h - \pi s/7)} \simeq 10^{4.29/h + 0.682s}$$
(4.5)

or

$$|\Delta I| \simeq 10^{-4.29/h}$$
 when  $h \ll 2\pi/s$ . (4.6)

As shown in Table 5, the formula (4.5) is very useful for error estimation, while the simpler formula (4.6) can not be applied when s is large.

### 4.3. Estimation of relative error.

The formula (4.5) enables us to evaluate the optimal step width of trapezoidal quadrature for a given pair of (s, x). Solving the inequality:

# Takeshi Kiyono and Sadayuki Murashima

Table 5. Observed and estimated errors of the trapezoidal. rule.

| ( \$ | . x | ) = ( | (1.00) | . 0.10). | Kic (x) | = +.22538 | 18853x10 | )0 |
|------|-----|-------|--------|----------|---------|-----------|----------|----|
|------|-----|-------|--------|----------|---------|-----------|----------|----|

|     | abs. error           | abs. error e          | stimated              |
|-----|----------------------|-----------------------|-----------------------|
| n   | observed             | by (4.6)              | by (4.5)              |
| 0.2 | _                    | .37x10 <sup>-21</sup> | .18×10 <sup>-20</sup> |
| 0.3 | -                    | .52×10 <sup>-14</sup> | .25×10 <sup>-13</sup> |
| 0.4 | - 1                  | .19×10 <sup>-10</sup> | .33×10 <sup>-10</sup> |
| 0.5 | .91x10 <sup>-8</sup> | .27×10 <sup>-8</sup>  | .13x10 <sup>-7</sup>  |

 $(s, x) = (2.00, 0.10), K_{is}(x) = -.12290 \ 33496 \times 10^{-1}$ 

| h   | abs. error           | abs. error estimated  |                       |  |
|-----|----------------------|-----------------------|-----------------------|--|
|     | observed             | by (4.6)              | by (4.5)              |  |
| 0.2 | _                    | .37×10 <sup>-21</sup> | .86×10 <sup>-20</sup> |  |
| 0.3 | · _                  | .52×10 <sup>-14</sup> | .12×10 <sup>-12</sup> |  |
| 0.4 | .28×10 <sup>-9</sup> | .19x10 <sup>-10</sup> | .45×10 <sup>-9</sup>  |  |
| 0.5 | .16x10 <sup>-7</sup> | .27×10 <sup>-8</sup>  | .62×10 <sup>-7</sup>  |  |

$$(s, x) = (3.00, 0.10), K_{is}(x) = -.75188 38870_5 \times 10^{-2}$$

|     | abs. error            | abs, error e          | estimated             |   |
|-----|-----------------------|-----------------------|-----------------------|---|
| n   | observed              | by (4.6)              | by (4.5)              |   |
| 0.2 | .5 x10 <sup>-12</sup> | .37x10 <sup>-21</sup> | .41x10 <sup>-19</sup> | _ |
| 0.3 | .2 x10 <sup>-12</sup> | .52×10 <sup>-14</sup> | .57×10 <sup>-12</sup> |   |
| 0.4 | .14x10 <sup>-8</sup>  | .19x10 <sup>-10</sup> | .21×10 <sup>-8</sup>  |   |
| 0.5 | .14x10 <sup>-6</sup>  | .27×10 <sup>-8</sup>  | .30x10 <sup>-6</sup>  |   |

# $(s.x) = (4.00, 0.10), K_{is}(x) = +.23123.93456 \times 10^{-2}$

|     | abs. error            | abs. error estimated  |                       |  |  |  |  |  |  |
|-----|-----------------------|-----------------------|-----------------------|--|--|--|--|--|--|
| n   | observed              | by (4.6)              | by (4.5)              |  |  |  |  |  |  |
| 0.2 | -                     | .37×10 <sup>-21</sup> | .20x10 <sup>-18</sup> |  |  |  |  |  |  |
| 0.3 | .1 x10 <sup>-11</sup> | .52×10 <sup>-14</sup> | .28×10 <sup>-11</sup> |  |  |  |  |  |  |
| 0.4 | .33x10 <sup>-8</sup>  | .19x10 <sup>-10</sup> | .10x10 <sup>-7</sup>  |  |  |  |  |  |  |
| 0.5 | .12×10 <sup>-5</sup>  | .27×10 <sup>-8</sup>  | .14×10 <sup>-5</sup>  |  |  |  |  |  |  |

 $(s, x) = (5.00, 0.10), K_{is}(x) = -.23714 \ 18700 \times 10^{-4}$ 

|     | abs. error            | abs. error            | estimated             |
|-----|-----------------------|-----------------------|-----------------------|
| n   | observed              | by (4.6)              | by (4.5)              |
| 0.2 | -                     | .37×10 <sup>-21</sup> | .95×10 <sup>-18</sup> |
| 0.3 | .77×10 <sup>-11</sup> | .52x10 <sup>-14</sup> | .13x10 <sup>-10</sup> |
| 0.4 | .15x10 <sup>-7</sup>  | .19×10 <sup>-10</sup> | .50×10 <sup>-7</sup>  |
| 0.5 | .14×10 <sup>-5</sup>  | .27x10 <sup>-8</sup>  | .69×10 <sup>-5</sup>  |

$$10^{-N} \le 10^{-M(\pi^2/h - \pi s/2)}$$

we have

$$h \leq 4.286/(N+0.682s)$$
 (4.7)

115

However, the value of h thus obtained guarantees only that the absolute error is less than  $10^{-N}$ .

In order to estimate the optimal value of h to keep the relative error less than a required value, we have to know the approximate value of the function itself.

For such a purpose, the following formula<sup>6)</sup> will be useful:

$$K_{is}(x) \sim \sqrt{\frac{\pi}{2}} (x^2 - s^2)^{-1/4} \exp\left(-(s^2 - x^2)^{1/2} - s\sin^{-1}(s/x)\right), \qquad x > s > 0; \quad (4.8a)$$
  
$$K_{is}(x) \sim \sqrt{2\pi} (s^2 - x^2)^{-1/4} \exp\left(-\pi s/2\right) \sin\left(s\cosh^{-1}(s/x) - (s^2 - x^2)^{1/2} + \pi/4\right), \qquad s > x > 0; \quad (4.8b)$$

$$K_{is}(x) \sim \frac{\pi}{3} \Gamma\left(\frac{1}{3}\right) \sin\left(\frac{\pi}{3}\right) \exp\left(-\pi s/2\right) (x/6)^{-1/3}, \quad s \simeq x.$$
 (4.8c)

Considering the case where  $K_{is}(x) \sim 0$  when s > x, we put  $\sin(\dots) \sim 1.0$  in (4.8b), and we put  $\sin^{-1}(s/x) \sim \pi/2$  in (4.8a) for simplicity.

Thus we have:

$$K_{is}(x) \sim 1.2533 (x^2 - s^2)^{-1/4} \exp\left(-(x^2 - s^2)^{1/2} - 1.5708s\right), \qquad x > s; \tag{4.9a}$$

$$K_{is}(x) \sim 2.5066 (s^2 - x^2)^{-1/4} \exp(-1.5708s)$$
,  $x < s;$  (4.9b)

$$K_{is}(x) \sim 2.4316 \exp(-1.5708 s)(x/6)^{-1/3}, \qquad x \simeq s.$$
 (4.9c)

The equation to estimate the value h becomes:

$$10^{-N} = 10 \uparrow (-M(\pi^2/h - \pi s/2))/K_a, \qquad (4.10)$$

where  $K_a$  is the approximate value of  $K_{is}(x)$  given by (4.9). Solving this equation we get:

 $h = \pi^2 / (N/M - \log_e K_a + \pi s/2)$ ,

or

$$h = 9.8696/(2.3026 N + 1.5708 s - \log_e K_a).$$
(4.11)

### 4.4. Procedure Kitr(s, x).

The procedure Kitr(s, x) given in Appenxdi 2 is based on the trapezoidal quadrature using the optimal value of h estimated by the method described above. The numerical results are shown in Table 6.

It can be seen from this table that the procedure Kitr(s, x) gives fairly good results using relatively a small number of pivots.

| 2    | x    | $K_{is}(x)$ computed          | р  | rel. error            |
|------|------|-------------------------------|----|-----------------------|
| 0.01 | 0.01 | .47191 42928x10 <sup>1</sup>  | 17 | .42x10 <sup>-9</sup>  |
| l    | 0.02 | .40270 76814x10 <sup>1</sup>  | 17 | .28                   |
|      | 0.05 | .31135 15031x10 <sup>1</sup>  | 15 | .096                  |
|      | 0.10 | .24266 71649×10 <sup>1</sup>  | 14 | .17                   |
|      | 0.20 | .17525 09486x10 <sup>1</sup>  | 13 | .26                   |
|      | 0.50 | .92436 25418                  | 11 | .15                   |
|      | 1.00 | .42100 90479                  | 10 | .040                  |
|      | 2.00 | .11389 15117                  | 9  | .11                   |
|      | 5.00 | .36910 64499x10 <sup>-2</sup> | 7  | .024                  |
| 0.02 | 0.01 | .47128 41352x10 <sup>1</sup>  | 18 | .31×10 <sup>-9</sup>  |
|      | 0.02 | .40229 37234x10 <sup>1</sup>  | 16 | .57                   |
|      | 0.05 | .31113 58758×10 <sup>1</sup>  | 15 | .13                   |
|      | 0.10 | .24254 79811×10 <sup>1</sup>  | 14 | .16                   |
|      | 0.20 | .17519 26478x10 <sup>1</sup>  | 13 | .39                   |
|      | 0.50 | .92419 29705                  | 11 | .14                   |
|      | 1.00 | .42096 28799                  | 10 | .30                   |
|      | 2.00 | .11388 44288                  | 9  | .020                  |
| · .  | 5.00 | .36909 62998x10 <sup>-2</sup> | 7  | .026                  |
| 0.05 | 0.01 | .46688 90408x10 <sup>1</sup>  | 18 | .14×10 <sup>-9</sup>  |
|      | 0.02 | .39940 43025×10 <sup>1</sup>  | 17 | .20                   |
|      | 0.05 | .30962 95230x10 <sup>1</sup>  | 15 | .22                   |
|      | 0.10 | .24171 49208×10 <sup>1</sup>  | 14 | .14                   |
|      | 0.20 | .17478 49659x10 <sup>1</sup>  | 13 | .066                  |
|      | 0.50 | .92300 66937                  | 11 | .12                   |
|      | 1.00 | .42063 98075                  | 10 | .006                  |
|      | 2.00 | .11383 48597                  | 9  | .11                   |
|      | 5.00 | .36902 52559×10 <sup>-2</sup> | 8  | .042                  |
| 0.10 | 0.01 | .45141 92445×10 <sup>1</sup>  | 19 | .019x10 <sup>-9</sup> |
|      | 0.02 | .38920 25367x10 <sup>1</sup>  | 17 | .020                  |
|      | 0.05 | .30429 25339x10 <sup>1</sup>  | 15 | .043                  |
|      | 0.10 | .23875 71605x10 <sup>1</sup>  | 14 | .0036                 |
|      | 0.20 | .17333 49929x10 <sup>1</sup>  | 13 | .077                  |
|      | 0.50 | .91878 02976                  | 11 | .076                  |
|      | 1.00 | .41948 78299                  | 10 | .024                  |
|      | 2.00 | .11365 79873                  | 9  | .092                  |
|      | 5.00 | .36877 16340×10 <sup>-2</sup> | 8  | .050                  |
| 0.20 | 0.01 | .39297 80697x10 <sup>1</sup>  | 19 | .033x10 <sup>-9</sup> |
|      | 0.02 | .35018 80122×10 <sup>1</sup>  | 18 | .038                  |
| -    | 0.05 | .28360 37596x10 <sup>1</sup>  | 16 | .057                  |
|      | 0.10 | .22719 52757×10 <sup>1</sup>  | 14 | .10                   |
|      | 0.20 | .16762 84852x10 <sup>1</sup>  | 12 | .12                   |
|      | 0.50 | .90203 48225                  | 11 | .024                  |
|      | 1.00 | .41490 72556                  | 10 | .041                  |
|      | 2.00 | .11295 29949                  | 9  | .058                  |
|      | 5.00 | .36775 88033x10 <sup>-2</sup> | 8  | .051                  |

Table 6. Results obtained [by the procedure Kitr(s, x).

| s    | x    | $K_{is}(x)$ computed          | р  | rel. error            |
|------|------|-------------------------------|----|-----------------------|
| 0.50 | 0.01 | .11098 86091×10 <sup>1</sup>  | 20 | .045×10 <sup>-9</sup> |
|      | 0.02 | .14597 74241x10 <sup>1</sup>  | 19 | .016                  |
|      | 0.05 | .16524 45846x10 <sup>1</sup>  | 17 | .062                  |
|      | 0.10 | .15736 89487x10 <sup>1</sup>  | 15 | .081                  |
|      | 0.20 | .13162 51439x10 <sup>1</sup>  | 13 | .074                  |
|      | 0.50 | .79173 43053                  | 11 | .20                   |
|      | 1.00 | .38404 30169                  | 10 | .029                  |
|      | 2.00 | .10812 83324                  | 9  | .020                  |
|      | 5.00 | .36074 27131x10 <sup>-2</sup> | 8  | .027                  |
| 1.00 | 0.01 | 50063 37168                   | 22 | .022×10 <sup>-9</sup> |
|      | 0.02 | 47860 84238                   | 20 | .066                  |
|      | 0.05 | 12703 35077                   | 18 | .14                   |
|      | 0.10 | .22538 18853                  | 16 | .071                  |
|      | 0.20 | .47533 34599                  | 14 | .094                  |
|      | 0.50 | .48339 60900                  | 12 | .017                  |
|      | 1.00 | .28942 80370                  | 10 | .21                   |
|      | 2.00 | .92385 45989x10 <sup>-1</sup> | 10 | .002                  |
|      | 5.00 | .33670 99989x10 <sup>-2</sup> | 8  | .016                  |
| 2.00 | 0.01 | 73834 84194x10 <sup>-1</sup>  | 25 | .003x10 <sup>-9</sup> |
|      | 0.02 | .64838 68854x10 <sup>-2</sup> | 23 | .69                   |
|      | 0.05 | .72056 07945×10 <sup>-1</sup> | 20 | .009                  |
|      | 0.10 | 12290 33497x10 <sup>-1</sup>  | 18 | .90                   |
|      | 0.20 | $76721 62242 \times 10^{-1}$  | 16 | .061                  |
|      | 0.50 | .16502 01895x10 <sup>-1</sup> | 14 | .22                   |
|      | 1.00 | .80616 99762x10 <sup>-1</sup> | 12 | .017                  |
|      | 2.00 | .47997 99085x10 <sup>-1</sup> | 10 | .059                  |
|      | 5.00 | .25494 65278x10 <sup>-2</sup> | 9  | .002                  |
| 5.00 | 0.01 | 38948 30912x10 <sup>-3</sup>  | 34 | .34x10 <sup>-9</sup>  |
|      | 0.02 | .43102 57512x10 <sup>-3</sup> | 31 | .13                   |
|      | 0.05 | 11577 03973x10 <sup>-3</sup>  | 27 | 34.                   |
|      | 0.10 | 23714 18703x10 <sup>-4</sup>  | 25 | 18.                   |
|      | 0.20 | .16035 12892x10 <sup>-3</sup> | 22 | .09                   |
|      | 0.50 | 42411 71460x10 <sup>-3</sup>  | 18 | 5.0                   |
|      | 1.00 | .38046 18280x10 <sup>-3</sup> | 16 | .24                   |
| ,    | 2.00 | 34633 78807x10 <sup>-3</sup>  | 13 | .31                   |
|      | 5.00 | .31859 10253x10 <sup>-3</sup> | 10 | .22                   |

Table 6. Continued

# 4.5. Computing time.

The algorithm proposed here still takes considerable time to get a value of  $K_{is}(x)$ , due mainly to the large number of values of the integrand.

The time  $t_f$  necessary to compute one value of the integrand can be roughly estimated by:

Takeshi Kiyono and Sadayuki MURASHIMA

$$t_f = t_c + 2t_x \,,$$

where  $t_c$  and  $t_x$  are the times necessary to compute  $\cos(x)$  and  $\exp(x)$  respectively.

Taking into account the preparatory computations to evaluate the approximate value of  $K_{is}(x)$  and to determine the values of h and b for given values of s and x, the approximate total time T necessary to get a value of  $K_{is}(x)$  can be estimated by:

$$T = t_n + t_q + t_h + pt_f , \qquad (4.12)$$

$$t_h = t_n + 2t_q + t_x \quad \text{when} \quad s < x \text{ or } s < x,$$
  
=  $2t_n + 2t_x \quad \text{when} \quad s \sim x,$  (4.13)

where  $t_n$  and  $t_q$  are computing time for  $\ln(x)$  and  $\operatorname{sqrt}(x)$  respectively.

The integer p is given by:

$$p = [b/h]$$
. (4.14)

If we assume a case where

$$t_q = 100 \ \mu s$$
,  $t_c = t_x = 250 \ \mu s$ ,  $t_n = 200 \ \mu s$ ,

the time T becomes:

$$T = 950 + 750p \ \mu s \qquad \text{when} \quad s > x \text{ or } x < s,$$
  
= 1200 + 750p \mu s \quad when \quad s \sigma x. (4.15)

Therefore this method might find its application in a range where p < 10 (i.e. T < 2 ms.) and when other methods such as series expansion will take longer computing time.

### 5. Conclusion

The procedure Kitr(s, x) proposed here is capable of yielding very accurate values of the function  $K_{is}(x)$ , as verified by the comparison with the results of a more elaborated method.

However, such an algorithm based on the integral representation of this function is sometimes too time-consuming to be used in the numerical analysis of some kinds of problems containing this function.

A more efficient computing method seems to be obtained by the use of the series expansions of this function. The authors are now considering means to establish a practical algorithm, the results of which will be published in near future.

# Acknowledgement

The computer system KDC-II (HITAC 5020) of the Computation Center,

Kyoto University, was used throughout this work. The authors express their thanks to the staffs of the Center, especially to Mr. Yasuo Fujii and Mrs. Chieko Shimizu for their cooperation. The authors also thank Prof. H. Takahashi, University of Tokyo, and Associate Prof. M. Mori, Kyoto University, for their very useful suggestions.

### References

- 1) Gray-Mathews: Bessel Functions, pp. 104-105 (1922).
- 2) K. Maeda: Geophysics, 20, pp. 123-147 (Jan. 1955).
- 3) G. N. Watson: Bessel Functions, pp. 181-183 (1922).
- British Association for the Advancement of Science: Mathematical Tables vol. VI, Bessel Functions Part I, p. 266; vol. X, Bessel Functions Part II, p. 238.
- H. Takahashi and M. Mori: Report of the Computer Centre University of Tokyo, 3. pp. 41-108 (1970).
- Erdelyi, Magnus, Oberhettinger and Tricomi: Higher Transcendental Functions, vol. 2, McGraw-Hill Book Co., Inc. (1953).

# Appendix 1. Procedure Kitc(s, x)

real procedure Kitc(s, x); value s, x; real s, x; begin

```
real b, h, hh, K, KK, t, u;
     h := hh := 0.4:
     K := exp(-x) \times h;
     u := 25.0/x + 1.0;
     b := ln (u + sqrt (u \times u - 1.0));
LLL:
     KK:=0.0;
     t := h;
LL:
     if t > b then goto CC;
     u := exp(t);
     KK := KK + exp(-x \times 0.5 \times (u+1.0/u)) \times cos(s \times t);
     t := t + hh;
     goto LL;
CC:
     KK:=0.5\times K+h\times KK;
```

```
if abs((K-KK)/KK) <_{10}-11 then goto FIN;
if s > x \land abs(KK) < 0.5_{10}-3 \land abs(K-KK) <_{10}-14
then goto FIN;
```

```
K := KK;

hh := if h = 0.4 then 0.4 else 0.5 \times hh;

h := 0.5 \times h;

goto LLL;

FIN:

Kitc := KK

end of Kitc;
```

# Appendix 2. Procedure Kitr(s, x)

```
real procedure Kitr(s, x); value s, x; real s, x;
begin
     real b, h, K, t, u; integer N;
     N := 10; comment N should b be adjusted depending on the required accuracy;
     if s/x < 0.9 then
           begin
           u := sqrt(x \times x - s \times s);
           K := (1.2533/sqrt(u)) \times exp(-u-1.5708 \times s)
           end else
     if x/s < 0.9 then
           begin
           u := sqrt(s \times s - x \times x);
           K:=(2.5066/sqrt(u)) \times exp(-1.5708 \times s)
           end else
           K := 2.4316 \times exp(-1.5708 \times s) \times (6.0/x) \uparrow (1/3);
     h := 9 \cdot 8696 / (2.3026 \times N + 1.5708 \times s - ln(K));
     u:=1.0+2.3026 \times N/x;
     b:=ln(u+sqrt(u\times u-1.0));
     K := 0.5 \times exp(-x);
     for t := h step h until b do
           begin
           u := exp(t)
           K := K + exp(-x \times 0.5 \times (u+1.0/u)) \times cos(s \times t)
           end
     Kitr:=h\times k
end of Kitr;
```

# Appendix 3. Table of the Function $K_{is}(x)$

| x    | s      | = 0.01      |    | S      | = 0.02            | 2  | 5      | = 0.03       |    | s      | = 0.04       |    | 5      | = 0.05      |    |
|------|--------|-------------|----|--------|-------------------|----|--------|--------------|----|--------|--------------|----|--------|-------------|----|
| 0.01 | 4.7191 | 429         | -  | 4.7128 | 414               |    | 4.7023 | 514          |    | 4.6876 | 923          |    | 4.6688 | 904         |    |
| 2    | 4.0270 | 768         |    | 4.0229 | 372               |    | 4.0160 | 445          |    | 4.0064 | 085          |    | 3.9940 | 430         |    |
| 3    | 3.6224 | <b>79</b> 0 |    | 3.6193 | 287               |    | 3.6140 | 825          |    | 3.6067 | 468          |    | 3.5973 | 307         |    |
| 4    | 3.3356 | 885         |    | 3.3331 | 304               |    | 3.3288 | 700          |    | 3.3229 | 121          |    | 3.3152 | 631         |    |
| 0.05 | 3.1135 | 150         |    | 3.1113 | 588               |    | 3.1077 | 674          |    | 3.1027 | 444          |    | 3.0962 | <b>95</b> 0 |    |
| 6    | 2.9322 | 584         |    | 2.9303 | 956               |    | 2.9272 | 928          |    | 2.9229 | 529          |    | 2.9173 | 800         |    |
| 7    | 2.7792 | 717         |    | 2.7776 | 339               |    | 2.7749 | 059          |    | 2.7710 | 901          |    | 2.7661 | 896         |    |
| 8    | 2.6470 | 030         |    | 2.6455 | 440               |    | 2.6431 | 137          |    | 2.6397 | 141          |    | 2.6353 | 479         |    |
| 9    | 2.5305 | <b>793</b>  |    | 2.5292 | 661               |    | 2.5270 | 786          |    | 2.5240 | 184          |    | 2.5200 | 879         |    |
| 0.10 | 2.4266 | 716         |    | 2.4254 | 798               |    | 2.4234 | 944          |    | 2.4207 | 168          |    | 2.4171 | 492         |    |
| 20   | 1.7525 | 095         |    | 1.7519 | 265               |    | 1.7509 | 551          |    | 1.7495 | 960          |    | 1.7478 | 497         |    |
| 30   | 1.3723 | 417         |    | 1.3719 | 867               |    | 1.3713 | 953          |    | 1.3705 | 676          |    | 1.3695 | 040         |    |
| 40   | 1.1144 | 496         |    | 1.1142 | 112               |    | 1.1138 | 139          |    | 1.1132 | 579          |    | 1.1125 | 433         |    |
| 0.50 | 0.9243 | 6254        |    | 0.9241 | 9297              |    | 0.9239 | 1041         |    | 0.9235 | 1494         |    | 0.9230 | 0669        |    |
| 60   | 0.7774 | 8034        |    | 0.7773 | 5510              |    | 0.7771 | 4640         |    | 0.7768 | 5430         |    | 0.7764 | 7887        |    |
| 70   | 0.6604 | 8818        |    | 0.6603 | 9314              |    | 0.6602 | 3477         |    | 0.6600 | 1311         |    | 0.6597 | 2820        |    |
| 80   | 0.5653 | 2257        |    | 0.5652 | 4897              |    | 0.5651 | 2632         |    | 0.5649 | 5464         |    | 0.5647 | 3398        |    |
| 90   | 0.4867 | 1100        |    | 0.4866 | 5308              |    | 0.4865 | 5656         |    | 0.4864 | 2147         |    | 0.4862 | 4782        |    |
| 1.00 | 0.4210 | 0905        |    | 0.4209 | 6288              |    | 0.4208 | 8594         |    | 0.4207 | 7825         |    | 0.4206 | 3983        |    |
| 1.50 | 0.2137 | 9992        |    | 0.2137 | 8299              |    | 0.2137 | 5479         |    | 0.2137 | 1530         |    | 0.2136 | 6455        |    |
| 2.00 | 0.1138 | 9151        |    | 0.1138 | 8443              |    | 0.1138 | 7262         |    | 0.1138 | 5610         |    | 0.1138 | 3486        |    |
| 2.50 | 0.0623 | 4648        | 7  | 0.0623 | 4328              | 9  | 0.0623 | 3795         | 9  | 0.0623 | 30 <b>49</b> | 8  | 0.0623 | 2090        | 6  |
| 3.00 | 0.0347 | 3899        | 8  | 0.0347 | 3748              | 1  | 0.0347 | 3495         | 1  | 0.0347 | 3141         | 0  | 0.0347 | 2685        | 8  |
| 3.50 | 0.0195 | 9864        | 8  | 0.0195 | 9790              | 2  | 0.0195 | 9665         | 9  | 0.0195 | 9491         | 8  | 0.0195 | 9268        | 1  |
| 4.00 | 0.0111 | 5955        | 1  | 0.0111 | 5917              | 4  | 0.0111 | 5854         | 7  | 0.0111 | 5766         | 8  | 0.0111 | 5653        | 9  |
| 4.50 | 0.0063 | 9979        | 26 | 0.0063 | 9959              | 87 | 0.0063 | 9927         | 55 | 0.0063 | 9882         | 31 | 0.0063 | 9824        | 15 |
| 5.00 | 0.0036 | 9106        | 45 | 0.0036 | 90 <del>9</del> 6 | 30 | 0.0036 | 907 <b>9</b> | 38 | 0.0036 | 9055         | 70 | 0.0036 | 9025        | 26 |

| x    | S      | = 0.10 | )  | S      | = 0.20 | )  | s      | = 0.30 | )  | S      | = 0.40 | )  | S      | = 0.50 |    |
|------|--------|--------|----|--------|--------|----|--------|--------|----|--------|--------|----|--------|--------|----|
| 0.01 | 4.5141 | 924    |    | 3.9297 | 807    |    | 3.0698 | 503    |    | 2.0783 | 686    |    | 1.1098 | 861    |    |
| 2    | 3.8920 | 254    |    | 3.5018 | 8011   |    | 2.9119 | 673    |    | 2.2012 | 569    |    | 1.4597 | 742    |    |
| 3    | 3.5195 | 361    |    | 3.2201 | 279    |    | 2.7610 | 211    |    | 2.1954 | 485    |    | 1.5859 | 465    |    |
| 4    | 3.2520 | 096    |    | 3.0075 | 497    |    | 2.6292 | 608    |    | 2.1565 | 009    |    | 1.6364 | 071    | -  |
| 0.05 | 3.0429 | 253    |    | 2.8360 | 376    |    | 2.5137 | 600    |    | 2.1067 | 995    |    | 1.6524 | 458    |    |
| 6    | 2.8712 | 390    |    | 2.6919 | 523    |    | 2.4112 | 338    |    | 2.0539 | 088    |    | 1.6504 | 480    |    |
| 7    | 2.7255 | 990    |    | 2.5675 | 788    |    | 2.3191 | 327    |    | 2.0008 | 486    |    | 1.6382 | 143    |    |
| 8    | 2.5991 | 698    |    | 2.4581 | 048    |    | 2.2355 | 521    |    | 1.9489 | 176    |    | 1.6199 | 033    |    |
| 9    | 2.4875 | 109    |    | 2.3603 | 157    |    | 2.1590 | 575    |    | 1.8986 | 756    |    | 1.5979 | 095    |    |
| 0.10 | 2.3875 | 716    |    | 2.2719 | 528    |    | 2.0885 | 485    |    | 1.8503 | 386    |    | 1.5736 | 895    |    |
| 20   | 1.7333 | 499    |    | 1.6762 | 849    |    | 1.5844 | 273    |    | 1.4624 | 096    |    | 1.3162 | 514    |    |
| 30   | 1.3606 | 662    |    | 1.3257 | 704    |    | 1.2692 | 014    |    | 1.1932 | 480    |    | 1.1009 | 282    |    |
| 40   | 1.1066 | 033    |    | 1.0831 | 012    |    | 1.0448 | 360    |    | 0.9931 | 1783   |    | 0.9296 | 8957   |    |
| 0.50 | 0.9187 | 8030   |    | 0.9020 | 3482   |    | 0.8746 | 8770   |    | 0.8375 | 5619   |    | 0.7917 | 3431   |    |
| 60   | 0.7733 | 5628   |    | 0.7609 | 7115   |    | 0.7406 | 9923   |    | 0.7130 | 8025   |    | 0.6788 | 4015   |    |
| 70   | 0.6573 | 5807   |    | 0.6479 | 4971   |    | 0.6325 | 2301   |    | 0.6114 | 4934   |    | 0.5852 | 3002   |    |
| 80   | 0.5628 | 9803   |    | 0.5556 | 0530   |    | 0.5436 | 3058   |    | 0.5272 | 3742   |    | 0.5067 | 8268   |    |
| 90   | 0.4848 | 0282   |    | 0.4790 | 5987   |    | 0.4696 | 1884   |    | 0.4566 | 7137   |    | 0.4404 | 7762   |    |
| 1.00 | 0.4194 | 8783   |    | 0.4149 | 0726   |    | 0.4073 | 6964   |    | 0.3970 | 1711   |    | 0.3840 | 4302   |    |
| 1.50 | 0.2132 | 4199   |    | 0.2115 | 5924   |    | 0.2087 | 8101   |    | 0.2049 | 4625   |    | 0.2001 | 0833   |    |
| 2.00 | 0.1136 | 5799   |    | 0.1129 | 5299   |    | 0.1117 | 8684   |    | 0.1101 | 7262   |    | 0.1081 | 2833   |    |
| 2.50 | 0.0622 | 4102   | 7  | 0.0619 | 2245   | 2  | 0.0613 | 9483   | 0  | 0.0606 | 6311   | 3  | 0.0597 | 3413   | 3  |
| 3.00 | 0.0346 | 8894   | 5  | 0.0345 | 3767   | 7  | 0.0342 | 8692   | 7  | 0.0339 | 3871   | 9  | 0.0334 | 9585   | 3  |
| 3.50 | 0.0195 | 7404   | 2  | 0.0194 | 9965   | 4  | 0.0193 | 7626   | 2  | 0.0192 | 0474   | 2  | 0.0189 | 8630   | 5  |
| 4.00 | 0.0111 | 4713   | 2  | 0.0111 | 0958   | 1  | 0.0110 | 4726   | 1  | 0.0109 | 6056   | 6  | 0.0108 | 5004   | 2  |
| 4.50 | 0.0063 | 9339   | 67 | 0.0063 | 7405   | 22 | 0.0063 | 4193   | 45 | 0.0062 | 9722   | 71 | 0.0062 | 4018   | 47 |
| 5.00 | 0.0036 | 8771   | 63 | 0.0036 | 7758   | 80 | 0.0036 | 6076   | 63 | 0.0036 | 3733   | 88 | 0.0036 | 0742   | 71 |

122

Takeshi Kıyono and Sadayuki Murashima

| x     | z =    | 0.60 |    | s =     | 0.70 |    | s =     | 0.80 |    | s =     | 0.90 |    | s =     | 1.00 |    |
|-------|--------|------|----|---------|------|----|---------|------|----|---------|------|----|---------|------|----|
| 0.01  | 0.2974 | 7093 |    | -0.2720 | 4894 |    | 0.5700  | 6828 |    | -0.6236 | 5445 |    | -0.5006 | 3372 |    |
| 2     | 0.7733 | 3270 |    | +0.2100 | 2906 |    | -0.1889 | 6241 |    | -0.4128 | 2424 |    | -0.4786 | 0842 |    |
| 3     | 0.9950 | 4998 |    | 0.4765  | 3852 |    | +0.0687 | 0154 | 5  | -0.2093 | 6784 |    | -0.3580 | 6366 |    |
| 4     | 1.1175 | 429  |    | 0.6436  | 9282 |    | 0.2487  | 5463 |    | -0.0465 | 5127 | 9  | -0.2357 | 8658 |    |
| 0.05  | 1.1899 | 357  |    | 0.7558  | 0181 |    | 0.3798  | 7162 |    | +0.0824 | 4481 | 0  | -0.1270 | 3351 |    |
| 6     | 1.2334 | 296  |    | 0.8339  | 1897 |    | 0.4782  | 5145 |    | 0.1856  | 2172 |    | -0.0332 | 5508 | 4  |
| 7     | 1.2588 | 290  |    | 0.8895  | 0528 |    | 0.5536  | 2884 |    | 0.2690  | 9121 |    | +0.0470 | 1706 | 6  |
| 8     | 1.2722 | 557  |    | 0.9293  | 9606 |    | 0.6122  | 1646 |    | 0.3372  | 9649 |    | 0.1157  | 2325 |    |
| 9     | 1.2774 | 453  |    | 0.9579  | 4421 |    | 0.6581  | 7846 |    | 0.3934  | 8134 |    | 0.1746  | 6625 |    |
| 0.10  | 1.2768 | 049  |    | 0.9780  | 6227 |    | 0.6944  | 1819 |    | 0.4400  | 5228 |    | 0.2253  | 8189 |    |
| 20    | 1.1529 | 420  |    | 0.9799  | 6794 |    | 0.8048  | 2530 |    | 0.6345  | 5426 |    | 0.4753  | 3346 |    |
| 30    | 0.9958 | 1750 |    | 0.8818  | 5149 |    | 0.7631  | 1347 |    | 0.6436  | 2299 |    | 0.5271  | 3838 |    |
| 40    | 0.8566 | 4235 |    | 0.7763  | 1581 |    | 0.6911  | 8939 |    | 0.6037  | 7069 |    | 0.5164  | 8739 |    |
| 0.50  | 0.7385 | 4609 |    | 0.6794  | 8980 |    | 0.6161  | 7620 |    | 0.5502  | 6406 |    | 0.4833  | 9609 |    |
| 60    | 0.6388 | 6318 |    | 0.5941  | 5839 |    | 0.5458  | 2210 |    | 0.4949  | 9824 |    | 0.4428  | 3818 |    |
| 70    | 0.5544 | 7882 |    | 0.5199  | 0069 |    | 0.4822  | 6787 |    | 0.4423  | 9426 |    | 0.4011  | 0918 |    |
| 80    | 0.4827 | 0506 |    | 0.4555  | 1106 |    | 0.4257  | 5920 |    | 0.3940  | 4285 |    | 0.3609  | 7256 |    |
| 90    | 0.4213 | 5847 |    | 0.3996  | 8603 |    | 0.3758  | 7284 |    | 0.3503  | 6006 |    | 0.3236  | 0524 |    |
| 1.000 | 0.3686 | 8651 |    | 0.3512  | 2596 |    | 0.3319  | 7136 |    | 0.3112  | 5605 |    | 0.2894  | 2804 |    |
| 1.50  | 0.1943 | 3388 |    | 0.1877  | 0142 |    | 0.1802  | 9972 |    | 0.1722  | 2602 |    | 0.1635  | 8399 |    |
| 2.00  | 0.1056 | 7660 |    | 0.1028  | 4427 |    | 0.0996  | 6193 | 4  | 0.0961  | 6347 | 6  | 0.0923  | 8546 | 0  |
| 2.50  | 0.0586 | 1650 | 2  | 0.0573  | 2048 | 8  | 0.0558  | 5787 | 0  | 0.0542  | 4176 | 8  | 0.0524  | 8646 | 1  |
| 3.00  | 0.0329 | 6186 | 7  | 0.0323  | 4099 | 5  | 0.0316  | 3811 | 2  | 0.0308  | 5867 | 6  | 0.0300  | 0865 | 9  |
| 3.50  | 0.0187 | 2248 | 6  | 0.0184  | 1512 | 7  | 0.0180  | 6635 | 3  | 0.0176  | 7855 | 5  | 0.0172  | 5435 | 7  |
| 4.00  | 0.0107 | 1638 | 4  | 0.0105  | 6042 | 4  | 0.0103  | 8312 | 8  | 0.0101  | 8558 | 3  | 0.0099  | 6898 | 73 |
| 4.50  | 0.0061 | 7113 | 06 | 0.0060  | 9045 | 41 | 0.0059  | 9860 | 69 | 0.0058  | 9609 | 89 | 0.0057  | 8349 | 40 |
| 5.00  | 0.0035 | 7118 | 61 | 0.0035  | 2880 | 21 | 0.0034  | 8049 | 20 | 0.0034  | 2650 | 07 | 0.0033  | 6710 | 00 |

| x    | s =     | 1.10         |    | s =     | 1.20 |    | s =     | 1.30              | 1.4 | s =     | 1.40             |    | s =     | 1.50 |    |
|------|---------|--------------|----|---------|------|----|---------|-------------------|-----|---------|------------------|----|---------|------|----|
| 0.01 | -0.2874 | 8367         | ·  | -0.0664 | 9504 | 4  | +0.1019 | 5904              |     | +0.1883 | 7470             |    | 0.1935  | 2416 |    |
| 2    | -0.4239 | 3795         |    | -0.2969 | 1556 |    | -0.1456 | 2949              |     | -0.0094 | 4330             | 86 | +0.0864 | 1546 | 8  |
| 3    | -0.3944 | 1680         |    | -0.3469 | 3317 |    | -0.2492 | 9551              |     | -0.1341 | 8611             |    | -0.0283 | 1297 | 8  |
| 4    | -0.3257 | 3428         |    | -0.3335 | 5401 |    | -0.2827 | 9793              |     | -0.1990 | 571 <del>9</del> |    | -0.1059 | 8424 |    |
| 0.05 | -0.2497 | 3831         |    | -0.2958 | 4943 |    | -0.2819 | 3332              |     | -0.2278 | 1816             |    | -0.1534 | 8467 |    |
| 6    | -0.1763 | 1702         |    | -0.2492 | 4473 |    | -0.2636 | 9719              |     | -0.2350 | 2632             |    | -0,1798 | 4510 |    |
| 7    | -0.1086 | 1496         |    | -0.2004 | 8679 |    | -0.2367 | 3456              |     | -0.2292 | 5110             |    | -0.1917 | 7113 |    |
| 8    | 0.0473  | 8800         | 4  | -0.1526 | 7368 |    | -0.2056 | 9269              |     | -0.2156 | 5012             |    | -0.1938 | 7787 |    |
| 9    | +0.0075 | 0436         | 27 | -0.1072 | 2447 |    | -0.1731 | 6417              |     | -0.1974 | 1419             |    | -0.1893 | 1505 |    |
| 0.10 | 0.0565  | 2881         | 5  | -0.0647 | 3886 | 1  | -0.1406 | 2454              |     | -0.1765 | 6411             |    | -0.1802 | 4888 |    |
| 20   | 0.3321  | 6211         |    | +0.2086 | 4979 |    | +0.1069 | 2333              |     | +0.0276 | 4915             | 2  | -0.0298 | 4021 | 0  |
| 30   | 0.4169  | 8546         |    | 0.3159  | 2231 |    | 0.2260  | 4555              |     | 0.1487  | 4507             |    | 0.0847  | 0067 | 2  |
| 40   | 0.4315  | 8848         |    | 0.3510  | 5986 |    | 0.2765  | 5835              |     | 0.2093  | 6650             |    | 0.1503  | 6960 |    |
| 0.50 | 0.4171  | 3854         |    | 0.3529  | 2714 |    | 0.2920  | 2183              |     | 0.2354  | 7202             |    | 0.1840  | 9341 |    |
| 60   | 0.3904  | 6201         |    | 0.3389  | 2280 |    | 0.2891  | 7546              |     | 0.2420  | 5108             |    | 0.1982  | 3785 |    |
| 70   | 0.3592  | 3167         |    | 0.3175  | 4617 |    | 0.2767  | 8069              |     | 0.2375  | 8810             |    | 0.2005  | 3129 |    |
| 80   | 0.3271  | 5839         |    | 0.2931  | 9305 |    | 0.2596  | 3633              |     | 0.2270  | 0141             |    | 0.1957  | 4341 |    |
| 90   | 0.2960  | <b>699</b> 0 |    | 0.2682  | 0760 |    | 0.2404  | 5263              |     | 0.2132  | 0992             |    | 0.1868  | 4630 |    |
| 1.00 | 0.2668  | 4112         |    | 0.2438  | 4624 |    | 0.2207  | 8323              |     | 0.1979  | 7325             |    | 0.1757  | 1212 |    |
| 1.50 | 0.1544  | 8179         |    | 0.1450  | 2991 |    | 0.1353  | 3916              |     | 0.1255  | 1867             |    | 0.1156  | 7397 |    |
| 2.00 | 0.0883  | 6656         | 4  | 0.0841  | 4696 | 1  | 0.0797  | 6769              | 5   | 0.0752  | 7006             | 5  | 0.0706  | 9501 | 7  |
| 2.50 | 0.0506  | 0719         | i  | 0.0486  | 1995 | 5  | 0.0465  | 4129              | 3   | 0.0443  | 8807             | 2  | 0.0421  | 7727 | 1  |
| 3.00 | 0.0290  | 9447         | 8  | 0.0281  | 2291 | 7  | 0.0271  | 0104              | 9   | 0.0260  | 3615             | 4  | 0.0249  | 3563 | 7  |
| 3.50 | 0.0167  | 9659         | 5  | 0.0163  | 0828 | 1  | 0.0157  | 9257              | 7   | 0.0152  | 5275             | 9  | 0.0146  | 9218 | 4  |
| 4.00 | 0.0097  | 3464         | 03 | 0.0094  | 8392 | 88 | 0.0092  | 1831 <sup>-</sup> | 43  | 0.0089  | 3931             | 93 | 0.0086  | 4851 | 42 |
| 4.50 | 0.0056  | 6140         | 49 | 0.0055  | 3048 | 82 | 0.0053  | 9143              | 81  | 0.0052  | 4498             | 11 | 0.0050  | 9186 | 99 |
| 5.00 | 0.0033  | 0258         | 57 | 0.0032  | 3327 | 58 | 0.0031  | 5950              | 76  | 0.0030  | 8163             | 51 | 0.0030  | 0002 | 65 |

.

|      |         |       |    | · · · · · · · · · · · · · · · · · · · |                  | -      | 1       |              |    | T       |       |     | T       |       |    |
|------|---------|-------|----|---------------------------------------|------------------|--------|---------|--------------|----|---------|-------|-----|---------|-------|----|
| x    | S       | = 1.6 | 0  | S                                     | = 1.7            | ′0<br> | S       | = 1.8        | 30 | S       | = 1.9 | 0   | S       | = 2.0 | 00 |
| 0.01 | 0.1402  | 6356  |    | 0.0614                                | 3879             | 5      | -0.0120 | 0166         | 1  | -0.0594 | 2289  | 5   | -0.0738 | 3484  | 2  |
| 2    | 0.1323  | 8656  |    | 0.1325                                | 8759             |        | +0.1003 | 8894         |    | +0.0530 | 0058  | 5   | +0.0064 | 8386  | 89 |
| 3    | +0.0506 | 4704  | 2. | 0.0949                                | 4133             | 9      | 0.1056  | 7858         |    | 0.0903  | 6675  | 6   | 0.0597  | 9290  | 0  |
| 4    | -0.0222 | 8122  | 7  | +0.0399                               | <del>9</del> 979 | 0      | 0.0757  | 7548         | 4  | 0.0860  | 5255  | 4   | 0.0762  | 1924  | 0  |
| 0.05 | -0.0764 | 3175  | 4  | -0.0098                               | 4346             | 95     | 0.0382  | 8778         | 9  | 0.0651  | 0333  | 2   | 0.0720  | 5607  | 9  |
| 6    | -0.1138 | 0335  |    | -0.0498                               | 5245             | 4      | +0.0028 | 2837         | 31 | 0.0391  | 9476  | 7   | 0.0580  | 5409  | 9  |
| 7    | -0.1380 | 1414  |    | -0.0801                               | 2010             | 3      | -0.0275 | 4314         | 9  | +0.0135 | 1781  | 6   | 0.0401  | 6018  | 8  |
| 8    | -0.1522 | 8753  |    | -0.1019                               | 9014             |        | -0.0522 | 3220         | 1  | -0.0097 | 3643  | 17  | 0.0215  | 3126  | 1  |
| 9    | -0.1591 | 5764  |    | -0.1169                               | 7727             |        | -0.0715 | 6438         | Ò  | -0.0297 | 7976  | 0   | +0.0037 | 8810  | 6' |
| 0.10 | -0.1605 | 4570  |    | -0.1264                               | 4789             |        | -0.0861 | 7173         | 0  | -0.0464 | 8186  | 0   | -0.0122 | 9033  | 5  |
| 20   | -0.0673 | 3522  | 7  | 0.0874                                | 7930             | 9      | -0.0934 | 6788         | 8  | -0.0887 | 4482  | 1   | -0.0767 | 2162  | 2  |
| 30   | +0.0339 | 2355  | 7  | -0.0041                               | 6749             | 66     | -0.0306 | 4223         | 7  | -0.0469 | 3712  | 1   | -0.0547 | 2560  | 6  |
| 40   | 0.1000  | 5447  |    | +0.0585                               | 2849             | 9      | +0.0255 | 5625         | 4  | +0.0006 | 0991  | 235 | -0.0170 | 7050  | 1  |
| 0.50 | 0.1384  | 5684  |    | 0.0988                                | 8890             | 2      | 0.0654  | 8330         | 5  | 0.0381  | 2169  | 9   | +0.0165 | 0201  | 9  |
| 60   | 0.1582  | 6890  |    | 0.1225                                | 1711             |        | 0.0911  | <b>968</b> 0 | 1  | 0.0643  | 7150  | 8   | 0.0419  | 6722  | 8  |
| 70   | 0.1660  | 7233  |    | 0.1345                                | 6614             |        | 0.1062  | 5841         |    | 0.0812  | 8765  | 4   | 0.0596  | 9099  | 4  |
| 80   | 0.1662  | 5059  |    | 0.1388                                | 3822             |        | 0.1137  | 4538         |    | 0.0911  | 3446  | 2   | 0.0710  | 9327  | 6  |
| 90   | 0.1616  | 8345  |    | 0.1379                                | 9258             |        | 0.1159  | 9108         |    | 0.0958  | 4101  | 6   | 0.0776  | 4941  | 4  |
| 1.00 | 0.1542  | 6473  |    | 0.1338                                | 6062             |        | 0.1146  | 9089         |    | 0.0969  | 0634  | 9   | 0.0806  | 1699  | 8  |
| 1.50 | 0.1059  | 0534  |    | 0.0963                                | 0620             | 4      | 0.0869  | 6185         | 3  | 0.0779  | 4838  | 0   | 0.0693  | 3185  | 7  |
| 2.00 | 0.0660  | 8257  | 0  | 0.0614                                | 7127             | 8      | 0.0568  | 9774         | 0  | 0.0523  | 9616  | 3   | 0.0479  | 9799  | 1  |
| 2.50 | 0.0399  | 2577  | 4  | 0.0376                                | 5017             | 1      | 0.0353  | 6656         | 4  | 0.0330  | 9039  | 4   | 0.0308  | 3628  | 5  |
| 3.00 | 0.0238  | 0695  | 0  | 0.0226                                | 5750             | 7      | 0.0214  | 9461         | 6  | 0.0203  | 2539  | 9   | 0.0191  | 5672  | 8  |
| 3.50 | 0.0141  | 1425  | 9  | 0.0135                                | 2240             | 8      | 0.0129  | 2003         | 9  | 0.0123  | 1051  | 4   | 0.0116  | 9711  | 9  |
| 4.00 | 0.0083  | 4750  | 21 | 0.0080                                | 3790             | 60     | 0.0077  | 2135         | 38 | 0.0073  | 9946  | 58  | 0.0070  | 7384  | 1  |
| 4.50 | 0.0049  | 3287  | 69 | 0.0047                                | 6878             | 85     | 0.0046  | 0039         | 83 | 0.0044  | 2850  | 15  | 0.0042  | 5388  | 8  |
| 5.00 | 0.0029  | 1506  | 15 | 0.0028                                | 2712             | 80     | 0.0027  | 3661         | 97 | 0.0026  | 4393  | 33  | 0.0025  | 4946  | 5  |

| x    | s =     | 2.50 |     | s =     | 3.00     |     | s =     | 3.50 |     | s =     | 4.00 |                 | s =     | 4.50          |           |
|------|---------|------|-----|---------|----------|-----|---------|------|-----|---------|------|-----------------|---------|---------------|-----------|
| 0.01 | +0.0293 | 5520 | 2   | -0.0122 | 9729     | 4   | +0.0053 | 4323 | 16  | -0.0023 | 3642 | 73              | +0.0009 | 9088          | 329       |
| 2    | -0.0152 | 7068 | 2   | +0.0096 | 7287     | 75  | -0.0048 | 5352 | 39  | +0.0022 | 2890 | 68              | -0.0009 | 8672          | 579       |
| 3    | -0.0312 | 0296 | 9   | 0.0115  | 0382     | 2   | -0.0032 | 6524 | 90  | +0.0005 | 9947 | 569             | +0.0000 | 5754          | 8803      |
| 4    | -0.0244 | 3056 | 0   | +0.0028 | 7743     | 41  | +0.0019 | 8240 | 23  | -0.0018 | 2123 | 35              | 0.0009  | 8207          | 112       |
| 0.05 | -0.0104 | 2464 | 5   | -0.0056 | 1058     | 60  | 0.0050  | 1047 | 27  | -0.0022 | 8748 | 76              | +0.0007 | 1167          | 080       |
| 6    | +0.0035 | 9916 | 15  | -0.0108 | 9174     | 6   | 0.0053  | 5852 | 27  | -0.0013 | 7551 | 39              | -0.0000 | 3486          | 3360      |
| 7    | 0.0149  | 9775 | 9   | -0.0129 | 1580     | 5   | 0.0039  | 8858 | 91  | -0.0000 | 2727 | 2531            | 0.0006  | 6966          | 931       |
| 8    | 0.0231  | 4802 | 7   | -0.0124 | 7778     | 9   | +0.0018 | 6294 | 06  | +0.0011 | 6789 | 59              | -0.0009 | 7691          | 493       |
| 9    | 0.0282  | 4095 | 5   | -0.0104 | 4276     | 6   | -0.0003 | 6099 | 132 | 0.0019  | 6132 | 35              | -0.0009 | 6468          | 328       |
| 0.10 | 0.0307  | 4813 | 2   | -0.0075 | 1883     | 89  | -0.0023 | 1033 | 23  | +0.0023 | 1239 | 35              | -0.0007 | 2778          | 300       |
| 20   | +0.0006 | 0459 | 304 | +0.0129 | 3483     | 4   | -0.0015 | 3410 | 54  | -0.0020 | 2434 | 02              | +0.0007 | 4452          | 346       |
| 30   | -0.0261 | 9556 | 4   | +0.0058 | 8109     | 74  | +0.0049 | 7803 | 85  | -0.0010 | 7951 | 35              | 0.0008  | 4166          | 032       |
| 40   | -0.0311 | 3459 | 6   | -0.0049 | 5673     | 34  | 0.0046  | 5140 | 34  | +0.0014 | 5300 | 37              | -0.0007 | 6479          | 604       |
| 0.50 | -0.0244 | 5093 | 2   | -0.0113 | 6253     | 1   | +0.0012 | 6544 | 49  | 0.0023  | 4887 | 60              | +0.0001 | 3881          | 860       |
| 60   | -0.0135 | 3020 | 1   | -0.0131 | 1692     | .9  | -0.0021 | 4808 | 25  | 0.0017  | 8875 | 02              | 0.0008  | 2340          | 337       |
| 70   | -0.0021 | 5440 | 56  | -0.0117 | 1968     | 1   | -0.0044 | 4116 | 53  | +0.0005 | 9397 | 008             | 0.0010  | 0958          | 19        |
| 80   | +0.0079 | 9820 | 90  | -0.0086 | 0126     | 40  | -0.0054 | 6267 | 61  | -0.0006 | 3159 | 530             | 0.0007  | 9994          | 326       |
| 90   | 0.0163  | 2968 | 0   | -0.0047 | 7788     | 32  | -0.0054 | 4258 | 56  | -0.0015 | 8277 | 76              | +0.0003 | 8463          | 288       |
| 1.00 | 0.0227  | 6353 | 2   | -0.0008 | 8614     | 792 | -0.0046 | 9892 | 29  | -0.0021 | 6071 | 36              | -0.0000 | 7699          | 5652      |
| 1.50 | 0.0337  | 6741 | 5   | +0.0120 | 1643     | 3   | +0.0019 | 0704 | 85  | -0.0010 | 5930 | 99              | -0.0009 | 9886          | 901       |
| 2.00 | 0.0284  | 3237 | 6   | 0.0142  | 3804     | 1   | 0.0056  | 2186 | 34  | +0.0013 | 9516 | 24              | -0.0001 | 1460          | 025       |
| 2.50 | 0.0203  | 3529 | 8   | 0.0119  | 2433     | 8   | 0.0060  | 6268 | 94  | 0.0025  | 3954 | 19              | +0.0007 | 6298          | 170       |
| 3.00 | 0.0135  | 3739 | 3   | 0.0087  | 3048     | 13  | 0.0050  | 7486 | 16  | 0.0026  | 0364 | 65 <sup>.</sup> | 0.0011  | 3275          | 30        |
| 3.50 | 0.0086  | 7853 | 93  | 0.0059  | 7134     | 47  | 0.0037  | 8285 | 83  | 0.0021  | 8223 | 38              | 0.0011  | 25 <b>9</b> 4 | <b>09</b> |
| 4.00 | 0.0054  | 4264 | 70  | 0.0039  | 2638     | 59  | 0.0026  | 4360 | 67  | 0.0016  | 5019 | 56              | 0.0009  | 4560          | 270       |
| 4.50 | 0.0033  | 6674 | 60  | 0.0025  | 1847     | 16  | 0.0017  | 7518 | 75  | 0.0011  | 7376 | 83              | 0.0007  | 2359          | 722       |
| 5.00 | 0.0020  | 6396 | 17  | 0.0015  | 8910     | 29  | 0.0011  | 6094 | 87  | 0.0008  | 0234 | 103             | 0.0005  | 2238          | 971       |
|      | L       |      |     | ·       | <u> </u> |     | •       |      |     | •       |      |                 |         |               |           |

126

Takeshi Kiyono and Sadayuki Murashima

| x    | s =     | 5.00        |      | s =     | 5.50 |       | s =     | 6.00 |      |
|------|---------|-------------|------|---------|------|-------|---------|------|------|
| 0.01 | -0.0003 | 8948        | 309  | +0.0001 | 3175 | 219   | -0.0000 | 3117 | 8953 |
| 2    | +0.0004 | 3102        | 575  | -0.0001 | 8759 | 173   | +0.0000 | 8144 | 1967 |
| 3    | -0.0001 | 3617        | 953  | +0.0000 | 9556 | 7273  | -0.0000 | 5292 | 3071 |
| 4    | -0.0004 | 2768        | 742  | +0.0001 | 6216 | 582   | -0.0000 | 5444 | 9041 |
| 0.05 | -0.0001 | 1577        | 040  | -0.0000 | 3711 | 1942  | +0.0000 | 4791 | 0057 |
| 6    | +0.0002 | 6069        | 137  | -0.0001 | 7633 | 924   | 0.0000  | 8175 | 2871 |
| 7    | 0.0004  | <b>2978</b> | 725  | -0.0001 | 6805 | 637   | +0.0000 | 3987 | 9462 |
| 8    | 0.0003  | 7986        | 959  | -0.0000 | 6652 | 1448  | -0.0000 | 2418 | 2612 |
| 9    | +0.0001 | 9795        | 182  | +0.0000 | 5381 | 6419  | -0.0000 | 6966 | 3330 |
| 0.10 | -0.0000 | 2371        | 4187 | +0.0001 | 4434 | 254   | -0.0000 | 8241 | 2650 |
| 20   | +0.0001 | 6035        | 129  | -0.0001 | 8913 | 331   | +0.0000 | 3884 | 8722 |
| 30   | +0.0002 | 9351        | 275  | +0.0001 | 1053 | 739   | -0.0000 | 7703 | 0240 |
| 40   | -0.0002 | 7930        | 614  | +0.0001 | 5284 | 926   | +0.0000 | 4127 | 8065 |
| 0.50 | -0.0004 | 2411        | 715  | -0.0000 | 5318 | 6727  | 0.0000  | 7933 | 3641 |
| 60   | -0.0001 | 8137        | 466  | -0.0001 | 8188 | 778   | +0.0000 | 1596 | 9912 |
| 70   | +0.0001 | 4423        | 746  | -0.0001 | 6155 | 767   | -0.0000 | 5497 | 6371 |
| 80   | 0.0003  | 6766        | 281  | -0.0000 | 5426 | 3180  | -0.0000 | 8283 | 8092 |
| 90   | 0.0004  | 3861        | 397  | +0.0000 | 6545 | 9538  | -0.0000 | 6612 | 8250 |
| 1.00 | +0.0003 | 8046        | 183  | 0.0001  | 5196 | 750   | -0.0000 | 2431 | 8212 |
| 1.50 | -0.0003 | 5406        | 011  | +0.0000 | 0868 | 33457 | +0.0000 | 7304 | 0311 |
| 2.00 | -0.0003 | 4633        | 788  | -0.0001 | 9447 | 243   | -0.0000 | 4777 | 9430 |
| 2.50 | +0.0000 | 6248        | 7561 | -0.0001 | 0573 | 604   | -0.0000 | 8327 | 1902 |
| 3.00 | 0.0003  | 7941        | 675  | +0.0000 | 6435 | 4426  | -0.0000 | 2792 | 1892 |
| 3.50 | 0.0005  | 0287        | 216  | 0.0001  | 8077 | 122   | +0.0000 | 4074 | 8091 |
| 4.00 | 0.0004  | 8966        | 527  | 0.0002  | 2291 | 385   | 0.0000  | 8421 | 7378 |
| 4.50 | 0.0004  | 1217        | 797  | 0.0002  | 1394 | 038   | 0.0000  | 9881 | 0962 |
| 5.00 | 0.0003  | 1859        | 103  | 0.0001  | 8051 | 008   | 0.0000  | 9383 | 3139 |