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Identification and Prediction for the Long Range 
Runoff Systems 

By 

Tojiro ISHIHARA*, Takuma TAKASAO* and Shuichi IKEBUCHI* 

(Received December 28, 1971) 

In this paper, the runoff simulation method has been discussed in order to obtain 
effective information for water resource planning. The framework consists of the identi­
fication of the long range runoff systems and the simulation for the areal daily precipitation 
while the runoff data are simulated by their combination. 

First, for identifying the long range runoff systems, the improved statistical unit hydro­
graph method is proposed based on the techniques of information theory. Next, the daily 
precipitation data are simulated over a long period and in a wide area through the successive 
combination of regional correlation analysis between the base or sub-base and sur­
rounding stations, spatial simulation between the base and sub-base stations, and 
sequential simulation at the base station. Finally, by the combination of the improved 
statistical unit hydrograph metho<l and the simulation method for areal daily precipitation, 
the observed data are shown with sufficient accuracy. 

1. Introduction 

201 

In the development of water resource planning and design, it is a basic problem 

to establish techniques for the long range runoff simulation. Most studies on runoff 

simulation are based on time series analysis of runoff data. Because of the short length 

of observed runoff data, however, the stability of frequency distribution is in itself a 

problem and moreover, it seems to be an essential defect that those methods pay no 

attention to the runoff mechanism. In addition to those circumstances, considering 

that long range runoff phenomena are essentially stochastic processes and the observed 

daily precipitation data are better in length and accuracy than runoff data, the runoff 

simulation should be constructed by the following procedures: 

First, construct the basin system model from both the observed runoff data and 

corresponding precipitation data. In this case, we should introduce into the model 

* Department of Civil Engineering 
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Generated 
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Runoff 
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Fig. 1. Flow chart for runoff simulation. 

Runoff 

not only the deterministic or physical characteristics but also the statistical laws involved 

m the transformation system from precipitation to river discharge. 

Next, complement the lack of runoff data from the combination of the basin model 

and observed daily precipitation data. Furthermore, for predicting the future the 

daily river discharge, establish the simulation methods of daily precipitation in space 

and time and combine them with the basin system model. 

Finally, it may be concluded that the runoff simulation consists of making the 

basin system model and establishing the simulation method of daily precipitation in 

space and time. The flow chart for the above description is shown in Figure l. 

2. Improved statistical unit-hydrograph method 

The authors are interested in information theory, especially in Wiener's filtering 

theory and have investigated how to apply this theory to long range runoff systems1>. 
At first, the statistical properties of daily precipitation and river discharge series 

are discussed by using correlation analysis. Then, after the time-invariant-linearization 

of runoff system is made according to the physical mechanism of runoff phenomena, 

the unit-impulse response function is derived from the Wiener-Hopf equation. We 

have designated this response as "the statistical unit-hydrograph", and subsequently 

written it as SUH. The results applied to the Yura River basin have verified that the 

SUH method may be effective for identifying the long range runoff system. At the 

same time, however, there still have remained some problems, such as the peak values 

of SUH differ from year to year and the accuracy of prediction is unsatisfactory, es­

pecially in the lower stages of river discharge. These problems result from the fact 
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that separation method of surface runoff from observed hydrographs is still unsatisfactory 

and the subsurface and groundwater runoffs are considered as the same runoff system 

in spite of their different linearities. 

From these circumstances, the authors hope to improve and modify the SUH 

method by the following approach: The major improvements and modifications are 

to divide the observed hydrographs into the subsurface and groundwater runoff com­

ponents and to introduce the effect of evapotranspiration on water content in the sub­

surface stratum into the model. 

2-1. Supplies to subsurface and groundwater runoff systems 

The runoff process depends on time-distribution of water content in the subsurface 

stratum. In the rainy season, especially, we must remove the initial loss and the surface 

runoff components from observed daily precipitation data, for estimating the effective 

input data for linear system. Figure 2 shows a schematic representation of water 

content distribution in the subsurface stratum. In Fig. 2, Ws, We and Wa are the 

saturated water content, the capillary saturated water content and the adsorbed water 

content respectively. Each value is determined from the product of depth and effective 

porosity of subsurface stratum2>. 

Non-linear 
component Saturated 

Ws ------- water content 

Runaff zone 

We -------- Capillary 
Initial loaa water content 

zone 
Wa Adaorbed 

Adsorbed water content 

water zone 

Fig. 2. Schematic representation of water content distribution 
in the subsurface stratum. 

For the purpose of practical runoff analysis, we define the runoff zone as domain 

Wc-Ws and the initial loss zone as domain Wa-Wc. Furthermore, considering that 

surface runoff is proportional to water content in the subsurface stratum, we may find 

that water contents in the runoff zone and in the initial loss zone decrease according 

to Eqs. (1) and (2) respectively. 

S(i+ 1) = {S(i)+(fc+ev(i))/a} e-a-Uc+ev(z'))/a 

S(i+l) = S(i)-ev(z') 

(1) 

( 2) 
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in which S(i) and S(i+l) are water contents in the day i and i+l, a, the recession 

coefficient of subsurface runoff, Jc, the final infiltration rate and ev(i), the daily evapo­

transpiration rate. Consequently, the daily decrease rate of water content in the runoff 

zone DS(i) (=S(i)-S(i+l) ), is divided into components Rs(i) and Rc(i), supplied 

to the subsurface and groundwater runoffs respectively. In this case, because the 

maximum value of input component to the groundwater runoff system equals Jc, it 

follows that: 

Rs(i) = DS(i)-Uc+ev(i)) } if DS(i) ~Jc+ev(i) l Rc(i) =Jc 

Rs(i) = 0 } 
( 3) 

Rc(i) = DS(i)-ev(z') 
if DS(i) <Jc+ev(i) 

When it rains, S(i) being in the runoff zone, (S(i)+R(i)) corresponds to S(z'), in 

which R(i) is daily precipitation intensity. Of course, this is true only if We<S(i)+ 

R(i)~ Ws. On the other hand, the initial loss component L(i) and the surface runoff 

component N L(i) are estimated as follows: 

L(i) = We-S(i) 

L(i) = R(i) 

if S(i) + R(i) ~ We 

if S(z)+R(z')< We 

N L(z') = S(i) + R(i)-We if S(z') + R(i) ~ Ws 

(4) 

Next, it is an important problem to estimate the daily evapotranspiration rate. 

Considering that the evapotranspiration rate ev(z"), is highly correlated with the pan 

evaporation rate E(i) and water content in the subsruface stratum S(i), the relationship 

between ev(i), E(i) and S(z) may be expressed by Figure 33>. Therefore, in the runoff 

zone, ev(i) may be replaced by E(z") and in the initial loss zone ev(i) may be replaced 

by Eq. (5). 

1.0 

Fig. 3. Relationship between soil moisture content 
and evapotranspiration. 
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ev(i) = {S(i)-Wa) · E(i)/(Wc-Wa) (5) 

Unfortunately, if pan evaporation has not been observed in the runoff zone, we 

must neglect ev(i) and estimate ev(i) with Eq. (6) in the initial loss zone. 

S(i+ 1) =S(i) · e-P 

in which ~ is the recession coefficient of water content in the initial loss zone. 

2-2. Prediction for the amount of groundwater runoff 

(6) 

Assuming that the groundwater runoff system is linear, we can predict the amount 

of groundwater runoff QG*(i) by the following equation, in which hc(-r) is the unitgraph 

of groundwater runoff system and is given by Figure 4. 

TG 

QG*(i) = _l hc(-r)·Rc(i--r) 
r=O 

TG t 

Fig. 4. Unitgraph of groundwater runoff system. 

( 7) 

In Fig. 4, re is the recession coefficient of grou~dwater runoff (It is estimated from 

the observed hydrographs); tPG, the peak lag time (in most cases, IPG=One day): Tc, 

the duration time for the groundawter runoff over a long period of time (TG=40-50 
days is suitable for practical purposes); and p, the loss rate discharged into the deeper 

groundwater layer and other basins (In general, though, the value nearly equals 1.0 

in the upper basin area, and is less than 1.0 in the downward. For practical analysis, 

when the hydrographs Qc*(i) do not agree with observed groundwater hydrograph, 

the value p may be changed. This process is repeated until QG*(i) is judged to be an 

adequate representation of groundwater hydrograph). 

2-3. Statistical unit hydrograph of subsurface runoff system 

Separating the groundwater runoff estimated by Eq. (7) from the observed hydro­

graphs and moreover, removing the surface runoff component from the residual hydro­

graphs, we get the subsurface runoff hydrographs Qs(i). Then, we can find the 

statistical unit hydrograph of subsurface runoff system hs(-r) from solving the following 
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Wiener-Hoph equation with Rs(z") as input and Qs(i) as output4>: 

Ts 

<l>RQ(T) = _l hs(k)•<l>RR(T-k) (8) 
k=O 

m which <l>RR(T) and <l>RQ(T) are given by Eqs. (9) and (10): 

N-, 

<l>RR(T) = N:__T .l Rs(i)·Rs(i+T) (9) 
t=l 

N-, 

'PRQ(T) = N:__T .l Rs(i) • Qs(i+T) (10) 
t=l 

where N is the number of days for the period considered, and Ts is a duration time of 

subsurface runoff. 

In this case, provided the maximum value of subsurface runoff be approximated 

by the maximum daily decrease rate of water content in the runoff zone, the value 

DSmax may be given as follows: 

DSmax =,, (Ws-Wc+fc/a)(l-e-«)-fc (11) 

Therefore, as first step, when the difference between Qa*(i) and observed hydrograph 

Q(z") is larger than DSmax, the excess part is separated as the surface runoff component, 

and the subsurface runoff Q8 *(i) may be predicted by the following equation: 

rainfall .,, soil moisture 
R( i) storage S( i) 

the input supplied to the 
groundwater runoff RG(i) 

the recession coefficient (,.. 
the peak lag time t~ 
i;;he duration time TG 

11.M~l= p IPl 
➔ uni tgraph of the ground 

-water runoff hG(t:) 

j 
linearly predicted 
groundwater runoff 

Q/l(i) 

observed river discharge l 
after the surface runoff ----~ 
separated Q( i) I 

Q8 (i)=Q,(i)-Q.~(i) I 
I 

IVi:JI 

1~ 
IZ.:ECil'I 

i 

Statistical Unit Hydro- linearly predicted 
the input supplied to the ◄- graph of the subsurface _ subsurface runoff 
subsurface runoff R (i) runo:ff h

5
(1:) Q.*(i) 

Fig. 5. Flow chart for the improved statistical unit hydrograph method. 



Identification and Predictz"on for the Long Range Runoff Systems 207 

Ts 

Q8*(i) = _l hs(T)·Rs(i-T) (12) 
i-=O 

However, considering that the maximum value DSmax does not discharge into 

the subsurface runoff in a moment, the separation of surface runoff component should 

be practically modified by the following approach. That is to say, only when Qs*(i") 

predicted by Eq. (12) is smaller than Qs(z") under the condition of Rs(i-l)=DSmax 

or ::::; DSmax, the difference between Q8*(i) and Qs(i) should be separated as surface 

runoff component, namely Qs(z")=Q8*(i), and in other days, Qs(i)=Q(z")-Qs*Cz"). 

Ultimately, the SUH of subsurface runoff system may be estimated between such 

modified Qs(z") and Rs(z"). The flow chart of the above procedures is shown in 

Figure 5. 

3. Stochastic structures in space and time of daily 
precipitation and their simulation 

3-1. Classification of precipitation stations 

Though there are many stations for acquiring precipitation data, we have ex­

perienced situations when usable records are sparse, unavailable, or quite short in the 

time length of observation. In other situations, precipitation records may be adequate 

in length and accuracy, but quite sparsely distributed areally. Thus, it becomes 

increasingly important to estimate the precipitation variables at a number of observing 

stations for relatively short periods of time from observations taken at one station over 

a long interval of time. 

In this paper, we classify observing stations into the base station, the sub-base 

stations and the surrounding stations, and estimate the stochastic structures in space 

and time from their interrelations and lastly, simulate the daily precipitation sequences. 

Where the base station is a representative station in the basin and adequate both in 

length and accuracy; the sub-base station is a representative station in the tributary 

and shorter in length than the base station; and the last stations are surrounding the 

base and sub-base stations and are inadequate in length and accuracy. 

3-2. Regional correlation analysis between the base or the sub-base 
station and the surrounding stations 

The statistical concepts of correlation analysis play an important role to interpolate 

the precipitation variable. The inter-station correlation coefficient r equals: 
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n 

~ XtYi-n·x·y 
s=l (13) 

and is a measure of association between the variables, Xi and Yi, taken simultaneously 

in time at the base and the surrounding stations, provided linear association between 

Xt and Yt, Yt will be predicted as follows: 

in which a and p are given by Eq. (15) and e is the residual random variable. 

a = r . / (t?t2-n ,y2) 
I (t,xi 2-n·x2

) 

p = y-a•x 

(14) 

(15) 

However, considering that the pairs of daily precipitation (xt, Yi) have generally 

bivariate exponential distribution, we must modify the above procedures as follows: 

Between higher correlated stations, we have experienced that the residual random 

variable e distributes normally within the subdivided classes of x. Thus, we estimate 

the standard deviation <1, in each subdivision of the residual series {y1-(a·x1+~)} and 

generate Ei according to the class of x, based on standard normal distribution N(O, <1,). 

In the end, we can relate Yt to Xi and estimate missing data as accurately as feasible 

by Eq. (14). 

Furthermore, combining the surrounding stations so that the regional correlations 

on the base station are the same, we can describe isolines of inter-station correlation 

coefficient about a base station5). Because the correlation between variables at differ­

ent points tend to decrease with an increase of distance and difference in height between 

points, isolines do not show concentricity. 

3-3. Spatial simulation between the base and sub-base stations 

Because the great increase of distance between the base and sub-base stations 

makes the regional correlation coefficient lower, it is difficult to apply directly the above 

procedure to the correlation analysis between both points. Thus, we define four 

systems from the precipitation and no precipitation states of the base and sub-base 

stations: First; precipitation-precipitation system (R .R), second; precipitation-no 

precipitation system (R.D), third; no precipitation-precipitation system (D.R), fourth; 
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I : Year 
J: Month 
K: Day 

Random number 

N(J) : Days of J-th month 
pl Probability of R,R 
p2 Probability of R,D 
p3 Probability of D.R 
p4 Probability of D.D 

Normal ran om 
number N( o ,o- ) 

n: Simulated year 

p4 

Y(I J K)=O 

Yes 

Y(I J K)=O 

Random number 
2 

Y(I J K)=F2 

r : Correlation Coefficient of R.R system 
& Regression Coefficient 
fl Constant 
o-£, Residual standard deviation 
Fl, Distribution function of R.R system in the 
F2, Distribution function of D.R System 
X(I,J,K) : Precipitation in the base station 
Y(I,J,K) : Simulated precipitation in the sub-l 

Fig. 6. Flow chart for the spatial simulation between the base and sub-base stations. 

209 

no precipitation-no precipitation system (D.D). Table 1 shows their occurrence 

probabilities. 

Also, we have observed that the sub-base stations have themselves inherent oc­

currence probabilities. In general, the values P2 and P3 are higher with an increase 
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Table 1. Occurrence probabilities of (R.R), (R.D), (D.R) and (D.D) systems. 

' Sub-base station I 

I I 
R D 

Base station 
"··-

I R Pl 
I 

P2 Pl+P2 = 1 

D P3 I P4 P3+P4 = 1 
I 
I 

of distance and difference of height between the base and sub-base stations, and the 

value P1 in rainy and typhoon seasons is higher compared with any other season. 

Next, in (R.R) and (D.R) systems, we must estimate the daily precipitation at 

the sub-base station. For (R.R) system, the daily precipitation R(i) at sub-base station 

will be estimated by the same equation as Eq. (14). In this case, if lrl<0.3, the 

daily precipitation will be generated independently from the distribution of daily 

precipitation at sub-base station, Fi. For (D.R) system, the daily precipitation will 

be generated independently from the distribution of daily precipitation at sub-base 

station, F2. Where F1 and F2 are estimated from samples contained in (R.R) 

and (D.R) systems respectively. 

Figure 6 shows the flow chart for the above procedures on spatial simulation. 

3-4. Sequential simulation at the base station 

It still remains to simulate the daily precipitation at the base station for predicting 

future precipitation over a long period. 

We consider two processes (R*(i'), D(z")) (i' =l, 2,-···) instead of one single process 

of the daily precipitation R(i) (i=l, 2,-·-·). Figure 7 shows two processes of daily 

precipitation. In Fig. 7, R*(i') corresponds to the precipitation intensity R(i)>O, 

and D(z'') corresponds to the continuous dry days. 

Next, assumed that 1) these vectors are mutually independent and have a common 

• D(i'.-1J D(i') D(j•+1, • • • • • • on 
j'..1 j' i'+-1 j' j'+1 

Fig. 7. Illustration of the daily precipitation intensity R *(i) 
and the continuous dry days D(i). 
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distribution function, and 2) R*(i') is independent of D(i'), we may transform the 

daily precipitation R(i) into two mutually independent processes, (R*(i'), D(i"') ). 

Therefore, we may simulate the daily precipitation at the base station by the 

following procedures: 

1) For each month, count the frequency distributions of R* and D respectively. 

2) For each R* and D, divide up the year into the months with similar distribution 

by the x2-test of independence. 

3) Reorganize the months with similar distribution for both R* and D, and call 

those months "populations". 

:;:; Year 

NO 

WRITE; 
IK(I,J), 
IR(!,J,K), 
ID(I.J.K) 

F, (J); Discributio~ ~unction of 
Z; Month the Qaily pre~ipi~a~ion intensity 
KK; Day F. (J); Distr::.-cutior1 :'unc:.ion of 
:.n,:, Tee al a.ays the continuous dry days 

~; Si~u:a:et yea~ IR(:,J,K:; Simulated precipitation intensity 
:l:C:AY(,.7); ~a;cs of :-::c ::iomi:. D(I,J,K); Simulated dry days 
:~(:,.:~; ;r..:._:.C~~ o:"' :;~ecir.:..-:c.""::.on days 

Fig. 8. Flow chart for the sequential simulation at the base station. 
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4) For each population, after the probabilities of exceedance over the subdivided 
classes are calculated for R* and D, the distribution functions FR and Fn are 
estimated from the least square method. 

Once the populations are defined and the functions FR and Fn are determined, 
the daily precipitation may be simulated according to Figure 8. 

4. Application to the Yoda River basin and their results 

4-1. The research data 

Figure 9 shows the general map of the basin. The basin may be divided broadly 

Gaging station of stage 

a. Yasu 
b. Mikuma 
c. Ugawa 
d. Toriigawa 
e. Kurotzu 
f. Yodo 
g. Kameoka 
h. Nhoso 
i. Shimagahara 
j. Nabari 
k. Kamo 
I. Hirakata 

I. Kuroda I I. Shim aghara 
2. Hanase 12. Ueno 
3. Shuzan 13. Anami 
4. Kumogahata 14. Kizu 
5. Hieizan 15. Oyama 
6. sonobe 16. Ao 
7. Kameoka 17. Harigabecho 
8. Utagaki 18 Nabari 
9. Kyoto 19. Halbara 

I 0. Tamataki 20. Soni 

Fig. 9. General map of Yodo River basin. 
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into Kizu, Uji and Katsura River basins and in the upper region of Uji River basin 

there is Lake Biwa. The research data for identifying the long range runoff systems 

are Kameoka and Nohso in the Katsura River basin, and Nahari, Shimagahara and 

Kamo in the Kizu River basin. Because of the storage effect by Lake Biwa and an 

artifical control by Amagase dam, the Uji River basin was not analyzed. 

Furthermore, the areal precipitation as input data to those analytical basins was 

calculated by the Thiessen method of precipitation stations shown in Fig. 9. 

4-2. Unitgraph of groundwater runoff system and SUH of subsurface 

runoff systems 

Once the daily decrease rate of water content in the subsurface stratum was calcu­

lated according to Eqs. (1) and (2), the unitgraph of groundwater runoff system and 

the SUH of subsurface runoff system are estimated based on Fig. 5. The analytical 

constants and parameters are summarized in Table 2. The runoff rate p in the down­

stream becomes smaller than that in the upstream. 

Also, Fig. 10 shows the improved statistical unit hydrograph of subsurface runoff 

04 

06 ,, --1958 
-·-1959 
-··-1960 
-···-1961 

04 ---1962 

~ 
-········· 1963 

•,• Nhoso 
0 

.. .... •· 

Fig. 10. Statistical unit hydrograph of subsurface runoff 

system at Kameoka and N ohso stations. 
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Watershed I 

Kameoka 

Nhoso 

l~---

Q 
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a (hr-•) I 
0.0245 I 
0.0339 

I 

Table 2. Analytical constants and parameters. 

t2-ti (hr) 

100 

80 

I yD (mm) I /3 (day-•) I r0 (day-1
) I To (day) J tpo _(day) I 

I 110 

I 
0.026 

I 
i 110 0.026 
I ' I 

--Observed 

-·- - Predicted 

O.o700 

0.0550 

i 
I 
I 
i 
i 
I 
I 
i \ 
I I 

i I 
i \ 
i i 
i \ 

I \ 

50 

50 

I i 
I. \, '\ 
. ·--.j \_ 

I ---=-

1 

1 

Fig. 11. Comparison between the observed and predicted river discharges at Kameoka. 

p* 

1.0 

0.9 

system at Kameoka and N ohso. They coincide very well every year, not only in the 

whole shape but also in their peak values. Furthermore, the sum of predicted sub­

surface runoff and groundwater runoff components is shown in Fig. 11 compared with 

the observed runoff sequences. They coincide very well and it may be concluded that 

the prediction of groundwater and subsurface runoff is very satisfactory. 

4-3. Spatial and sequential simulation results on the daily precipitation 

For simulating the daily precipitation, Kyoto station was selected as the base 

station and Sonobe and lT eno stations as the sub-base stations. Their data length 

are 80 years (1886--1965) at Kyoto, 40 years (1926--1965) at Sonobe, 28 years (1938-

1965) at Ueno and 6 years (1958-1963) at other stations. Fig. 12 shows the isolines 

of inter-station correlations about Kyoto, Sonobe and Ueno stations. 

Table 3 shows the occurrence numbers of (R.R), (R.D), (D.R) and (D.D) systems 

between Ueno, Sonobe and Kyoto stations. The occurrence number of (R.R) system 

is smaller than that of (D.D) system. On the other hand, though the number of (R.D) 

nearly equals that of (D.R) throughout the year between Kyoto and Ueno, for Sonobe 
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station, (D.R) system has a great occurrence number in winter season. Also, Table 

4 shows the comparison between observed data and simulated data with different 

standard deviations for R*(i)~lO and R*(i)<lO (mm/day). The simulated data has 

Table 3. Occurrence numbers of (R.R), (R.D), (D.R) and (D.D). 

MONTH I 

,~ST_A_T_IO_N __ __c_: -~- ___ l_ 
1 2 

OSAKA 92 53 I 
(1926-1945) 26 447 I 

---·-~-- -~----- __ ---i-_~ 

164 

37 

3 4 
I 

74!-168 43 

343 l 29 358 

UENO 
(1938-1945) 

31 

13 

19 

183 

54 . 9 i s2 • 13 I 69 10 

20 . 139· [ __ 14_ 1371·----i2···: 147 

HIKONE 
(1926-1945) 

SONOBE 
(1926-1945) 

MONTH I 
STATION 

29 128 

7 

----

34 174 

104 

8 

OSAKA I 160 89 131 76 185 

(1926-l945) 1-- 33. :···;;;;6·· .. 53 • 358 62 

64 153 58 

276 73 314 

9 10 

38 

313 

76 

13 

138 

59 

133 

64 

5 

11 

6 

35 183 42 

387 39 334 

12 

102 52 

38 426 
--- ---~ 70 i 23 ~---7-3-! -21---i--7-3~-8--s-·-53~-l-l~----, 

(1~!~~4~) I_!! _i-~~i~J 37 ·i26 r· ·20 :_1_2_4~_1_1 __ 1_s4_· ·~· _--·_;:_3~---·---i-16_1~ 

HIKONE 
(1926-1945) 

125 82 179 68 143 49 123 49 I 102 : 52 

73 • 338 72 • 279 89 337 l 106 32_~_ i 169 :··29s--

_(i~~~~!4~)_~-----~1-~-1-•~---5F tl-2:_:__c__l_::~-3-:-:--c--
1
:_: __ 3::~_:~_:_ -~_::_11 

Table 4. Comparison between observed data and simulated data at Ueno. 

Mon
th 

I 1 I 2 I 3 ~ · 1 5 I 6 ! 7 : 8 I 9 f 10 I 11 ! 12 

- o.791 I o.7391 o~789- o.8371 o.8_51 I o.8581 o.7981 o.7171o.767-10~66 [o.1ss I 0.142-1 

R. R 0.65610.757 0.731 0.73810.86410.679 0.611 I 0.641 ! ()~655 i 0.72710.756!0.651 : 

I 0.081 ro:093 0.11410.0821 0:109 ro:142 0.171 I 0.186 I o.i42I o.io2l ()~()76F.ioil 

D. R 
1

1 o.077T()_-l-35 I ()~0931 o.os~Jo.072 F~4 !I oioaT~233\()~l ~51 o.~~j~~~7~1-0:065-

upper: observed under: simulated 
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Fig. 12. Isolines of inter-station correlations about Kyoto, Sonobe and 
Ueno stations. 

good agreement with the observed, except for June and July. We believe that if the 

variable R*(i) are subdivided much more, their agreement will become better. 
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Fig. 13. Comparison between observed and simulated data (daily precipitation) 
(a) Winter (b) Summer. 

tday) 
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Table 5. Distributions of the daily precipitation intensity and the continuous dry days. 
-------c ~---------- -------------- - - ·-----------------

Month I I 
4 

1

!, 

I 1 ! 2 I 3 5 I 
6 

----- ---------~----------+---------------

Number of Mean Value I 8.675 i 9.225 I 12.075 I 11.950 I 11.100 I 13.600 

1
_!_:_;~_i_p,-·ta_t_i

0

_n----:--v_a_r_ia_n_c_e __ i _1_1_.s_1_5-----:l_-__ -_-7_~46_-_i_-~1 __ 8_.9_9_4----+1 __ 7_. 7_4_1_-_I-_-_--_5-.~7_3-3~~~1 ~~1~2~.8~1~0=
1 

Number of 
Continuous 
dry days 

Mean Value: 3.055 

Standard I 1 

Deviation 3·025 
I 

2.809 I 2.372 I 2.352 I 2.681 I 2.052 I 
-~---~---~----, 

2.527 I 1.937 i 1.806 2.369 I 1.820 

Month days divided by Mean 9.820 I 9.968 !I 

value of Continuous dry days 12.647 I 12.755 11.189 14.619 

Month I I I I 
l-------------"---7---~--8-~i __ 9 ____ l, ___ 1_0 _ ____,_ __ 1_1_~ ___ 1_2_ 

Mean Value I 12.525 j 9.825 j 12.650 i 9.700 I 8.350 i 8.050 Number of 
Precipitation 
days 

-----~------------_c__ _____ ------~--------1 

Variance I 16.102 I 11.635 I 12.079 I 8.677 I 3.772 I 8.818 I 
1

_N_u_m_b-er_o_f ----:-M-e_a_n_V_a-lu-e---:-I -2-.2-7-5:--1--2-. 7_7_6_-c-j -2 ___ 17_3~1:---2-.8-l-3-+l--3-.i61--I--- -3~26 -i 
Continuous ----~----~---~-- -- - ----~---------"! 
dry days tt:~~~i~'; I 2.386 I 2.868 I 2.004 I 2.598 I 2.915 I 3.189 1 

Month days divided by Meanl 1 6 I I I 5 I I value of Continuous dry days 13.186 i 10.80 13.774 10.664 8.92. 9.019 I 
•---------~~~---~----~--

Finally, let us discuss the simulated results at Kyoto base station. Table 5 shows 

that the continuous dry days have approximately an exponential distribution and the 

number of precipitation days the poisson distribution respectively. Also, considering 

that the values at the lowest low nearly equals the mean value of the number of pre­

cipitation days, our treatment for two processes R* and D may be effective for sequential 

simulation. Thus, we divided the year into the following seven populations by the 

x2-test of independence. I, Dec., Jan., Feb.; II, Mar.; III, Apr., May; IV, Jun., 

0.5 

-- -1926-1935 -- Simulation 
- - - 1936-1945 
---------1946-1955 

1.0 r f(T) 
XI o5 

I 

I 
0 51 

( bl 

12 6 4 3 T (Month) 

Fig. 14. Comparison between observed and simulated data (monthly precipitation) 
(a) Correlogram (b) Power spectrum. 
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Jul.; V, Aug.; VI, Sep.; VII, Oct., Nov .. The comparisons between observed and 

simulated data are shown in Fig. 13 and Fig. 14. Fig. 13 corresponds to the daily 

precipitation and Fig. 14 to the monthly precipitation with the sum of simulated daily 

data. The simulated data reflects sufficiently the characteristics of observed data. 

From the above results, we may conclude that methods proposed in this paper are 

effective for simulating the daily precipitation over a long period and in a wide area. 

5. Application to the runoff simulation at Nohso 

5-1. Areal precipitation as input to SUH method 

Combining the simulated daily precipitation with the improved statistical unit 

hydrograph, we obtain the simulated runoff data. In this case, because the input to 

SUH are lumped data, we must estimate the areal precipitation from the simulated 

data given in section 4. The procedures are as follows: 

a) for estimating the daily precipitation at all other stations up to the length of observed 

data at the sub-base station - First, determine the influential domain of the base or 

sub-base station from the regional correlation analysis between the base or sub-base 

station and the surrounding stations. Second, interpolate the daily precipitation at 

stations in the domain by Eq. (14). Lastly, these estimated data and the observed daily 

precipitation at the base or sub-base station are transformed into the areal daily pre­

cipitation by Thiessen method. 

b) for estimating the daily precipitation at all other stations up to the length of observed 

data at the base station - In this case, interpolate the daily precipitation at the sub-base 

station with spatial simulation method between the base and sub-base stations. Next, 

using the regional correlation analysis, estimate the daily precipitation at all stations 

up to the length of observed data at the base station. The last procedure is the same 

as method a). 

c) for estimating the daily precipitation at all other stations up to more than the length 

of observed data at the base station - Simulate the daily precipitation at the base station 

for long period with sequential simulation and using successively methods b) and a). 

The daily precipitation at all other stations are estimated up to more than the length 

of observed data at the base station. Lastly, combining these simulated data with 

the Thiessen method, we obtain the areal daily precipitation for a long period. 

5-2. Comparison between the observed and simulated runoff data 

At N ohso in the Katsura River basin, the daily areal precipitation was simulated 

according to method b) in the previous section, 5-1. That is to say, once the influential 

domains of Kyoto base station and Sonobe sub-base station were determined from the 
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regional correlation results such as Fig. 12, and the daily precipitation at Sonobe was 

estimated from spatial simulation between Kyoto and Sonobe stations, we transformed 

the simulated data at the sub-base station and the observed data at the base station 

into the data at all other stations in their domains. Finally, all of this data was trans­

formed into the areal precipitation with the Thiessen method. 

On the other hand, as for the basin system models, we used the average of the 

improved statistical unit hydrographs shown in Fig. 10 and the unitgraph with the same 

parameters as Table 2. Therefore, combining the simulated daily areal precipitation 

with the long range runoff system models, the runoff data were simulated. 

Fig. 15 shows the comparison between the observed and simulated data. The 

simulated runoff data reflect sufficiently the observed data. If we are allowed to hope 

for better agreement, we must improve the simulation method only in those days which 

show the greatest precipitation intensity. However, considering that these methods 

are applied to June with intensive variation of river discharge, the good agreement 

between the observed and simulated data may verify that the combination of the im­

proved statistical unit hydrograph method and the simulation method of the areal daily 

precipitation are effective for the runoff simulation. 
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Fig. 15. Comparison between observed and simulated data (areal daily 
precipitation and daily river discharge). 
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6. Conclusions 

In this paper, the runoff simulation method has been discussed in order to obtain 

effective information for water resources planning. The framework consists of the 

identification of the long range runoff system and the simulation for the areal daily 

precipitations while the runoff data are simulated by their combination. The results 

obtained are summarized as follows: 

1) The improved statistical unit hydrograph method is an effective method for the 

analysis and synthesis of long range runoff system responses, especially, the satisfactory 

agreement between the observed data and the predicted ones makes it possible to predict 

the daily runoff data and to complement the lack of runoff data. 

2) Once the precipitation stations are classified into the base, sub-base and surrounding 

stations, the daily precipitation data are simulated over a long period and in a wide area 

through the successive combination of regional correlation analysis between the base 

or sub-base and surrounding stations, spatial simulation between the base and sub­

base stations, and sequential simulation at the base station. 

3) The simulated runoff data by the combination of SUH method and the simulation 

method for daily precipitation, reflect the observed data with sufficient accuracy. So, 

it is concluded that a series of these simulation techniques may offer useful information 

for water resources planning. 

In the future, those methods will be applied to many other basins and techniques 

for water resources planning will be developed using these approaches. 
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