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A Procedure of Graph-partitioning for the Mixed 
Analysis of Electrical Networks 

By 

Takao OzAwA* 

(Received March 12, 1971) 

A procedure to get a graph-partitioning for the mixed anaysis of Electrical Networks 
with the minimum number of equilibrium equations is described. The graph represent­
ing the given electrical network is partitioned into subgraphs each of which have a certain 
specified property, and a partial ordering is given to these subgraphs. The graph-par­
titioning is then acquired according to the partial ordering. A method to manip­
ulate the diagram showing the partial ordering is given simplifying the partitioning. 

1. Introduction 

It has been shown that the required number of equilibrium equations for the 

nodal or loop analysis where the variables in the equations are either all voltages 

or all currents respectively, can, in certain cases, be reduced by choosing a suitable 

set of variables containing both voltages and currents. The analysis using such 

variables is called mixed analysis. The minimum number of equations required is 

equal to the topological degree of freedom of the network. 1> For the mixed analy­

sis the graph representing the given electrical network is partitioned to two edge­

disjoint subgraphs associated with voltage variables and current variables respec­

tively. The optimal partitionings (denoted Pd for brevity) which lead to the 

minimum number of equilibrium equations are closely related to maximally 

distant trees and the principal partition of the graph. 2> 

There are three subgraphs uniquely determined in the principal partition, 

though some of which may be an empty graph. In order to get a Pd the principal 

subgraph with respect to common chords of a pair of maximally distant trees should 

be included in the subgraph associated with voltage variables, and the principal 

subgraph with respect to common (tree) branches should be in the subgraph 

associated with current variables. The third subgraph of the principal partition 

is called the principal subgraph of disjoint branches. In general it is subdivided 

into smaller subgraphs corresponding to the minimal graphs consisting of a pair of 
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edge-disjoint trees (PET), and a partial ordering can be given to these smaller 

subgraphs together with the other two principal subgraphs.3> As for achieving a 

Pd> these smaller subgraphs may belong to the subgraph associated with voltage 

variables or to that associated with current variables, provided a certain restric­

tion arising from the partial ordering is observed. Thus there may be more than one 

Pd of the given graph and to choose one of them some criterion other than the 

number of equations may be introduced. 

We describe a method which enables us easily to choose the optimal Pd for 

some criterions, as well as a method to obtain the partially ordered set of sub­

graphs. 

2. The Partially Ordered Set of Subgraphs 

We denote the graph representing the given electrical network G, and the 

principal subgraph with respect to common chords, with respect to common 

branches, and of disjoint branches G1, G2 and G0 respectively. We also denote 

the subgraphs associated with voltage and current variables Gn and Gm respectively. 

We assume without loss of generality that G is connected. 

The principal subgraph G 1 may consist of several smaller subgraphs corre­

sponding to the non-separable graphs obtained when the edges of G2 and G0 are 

opened. Similarly G2 may consist of several smaller subgraphs corresponding to 

the non-separable graphs obtained when the edges of G1 and G0 are shortened. 

If the edges of G1 are shortened and those of G2 opened, G0 becomes a graph 

consisting of a PET. If it contains no proper subgraph also consisting of a PET, 

it is a minimal graph of graphs consisting of a PET.3> If it is not minimal, it may 

contain one or more minimal subgraphs. These minimal subgraphs have neither 

an edge nor more than one vertex in common. There is no closed chain of such 

minimal subgraphs contained in the graph. When we shorten the edges of these 

minimal subgraphs, we get a single vertex if the graph consists entirely of minimal 

subgraphs, or otherwise again get a graph consisting of a PET. In the latter 

case the graph obtained may itself be a minimal graph or may contain one or more 

minimal subgraphs. We repeat the shorting operation on the edges of the mini­

mal subgraphs again and so on until we get a single vertex. The original graph is 

called k-compound if k shorting operations are needed to bring it to a vertex. 

The edges of G 0 corresponding to these minimal subgraphs appeared in the above 

process form the subgraphs of G 0• The order of appearance of the minimal sub­

graphs also corresponds to the partial ordering of the subgraphs of G0• It may be 

helpful in finding a minimal graph to note that a dual of a minimal graph, if 
exits, is a,lso minimal. 
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In order to obtain those subgraphs and the relation between them we adopt 

the following algorithms based on the algorithms given in 1) and 2). We assume 

a pair of maximally distant trees (Tu T 2) has already been obtained. By Al and 

A2 given below we are going to determine sets of edges denoted Lx and CY respec­

tively. 

Al 

step 1. Choose a chord, say x, of T 1 • Set Lx={x}. Find the fundamental loop 

defined by x and T 1• Add to, Lx the other egdes of the loop besides x. 

step 2. Find the fundamental loops defined by the newly added edges and T 2• 

Add to Lx the edges in the loops which are not in Lx. If no new edge 

is added, stop. Otherwise go to step 3. 

step 3. Find the fundamental loops defined by the newly added edges and T 1• 

Add to Lx the edges in the loops which are not in Lx. If no new edge 

is added, stop. Otherwise go to step 2. 

A2 

step 1. Choose a tree branch, say y, ofT2• Set Cy={y}. Find the fundamental 

cutset defined by y and the cotree of T 2• Add to CY the other edges of 

the cutset besides y. 

step 2. Find the fundamental cutsets defined by the newly added edges and 

the cotree of T 1• Add to CY the edges in the cutsets which are not in 

CY. If no new edge is added, stop. Otherwise go to step 3. 

step 3. Find the fundamental cutsets defined by the newly added edges and 

the cotree of T 2• Add to CY the edges in the cutsets which are not in CY. 

If no new edge is added, stop. Otherwise go to step 2. 

We can always find the fundamental loops or cutsets if we start the algorithms 

from proper edges. 

We observe the following properties of the sets of edges obtained by the appli­

cation of Al and A2 to edges x,y and z. 

(1) Lx:;2Lx. 

(2) IfLx2Ly and Ly2Lx, then Lx=Ly. 

From the way Al goes we see that 

Similar relations hold for Cx, CY and Cz. Besides 

( 4) LX :;2 Ly if and only if Cy :;2 ex. 

Property ( 4) can be proved by observing that if Lx :;2 LY then there must be a string 
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of edges x =Xu x2, ••• , xi, xi+ u ... , xn =y such that xi+ 1 is included in the fundamental 

loop defined by xi and thus xi is included in the fundamental cutset defined by 

X1+1• which means cydcx, etc. We also see that 

(4)' Lx:::::>LY if and only if CY:::::>Cx. 

We denote L,. n Cx --:Sx. Then 

(5) LX =Ly or ex =Cy if and only if yE Sx or XE Sy. 

For if yESx, L,.dLy and C,.dCy. From (4), (2) and the definition of Sx, we get 

L,. =Ly and Cx =Cy and so on. 

We first apply Al to each of the common chords of (Tu T 2) and determine 

sets of edges. If any two of these sets have at least one element in common, they 

are replaced by their union. Repeat the process until all sets are mutually dis­

JOmt. These sets thus obtained correspond to the subgraphs of G1. Similarly we 

apply A2 to the common branches and then get the subgraphs of G 2• 

Now G0 =G-G1-G2• We are going to find the subgraphs of G0 and their 

partial ordering. Suppose we get L,. and C,. starting Al and A2 respectively 

from an edge x of G0• Then the edges in S,. form a subgraph of G0• It is denoted 

Gox· We repeat the same operation on an edge yin G0-G0x to get Gay, and then 

on an edge z in G0-G0x-Gay to get G0z and so on. This process can be shortened 

. by use of the above mentioned properties. Set of edges Lx includes only the disjoint 

edges of (Tu T 2), and the subgraph formed by the edges in L,. is the smallest sub­

graph which contains x and consists of a PET. If LY is the largest proper subset 

contained in Lx, then Lx-Ly=S,. from (4)' and (5), and thus we see Sx corresponds 

to the minimal subgraph described before. Hence if, at some step to get L,. or 

C,., an edge is found to be in SY which has already been determined, the algorithm 

may be stopped immediately, since the edges in SY never belong to S,... Now either 

Lx:::::>LY or LY:::::>L,. and from (1), (2) and (3) we can define the partial ordering of 

subgraphs of G0, that is, G0,. > Gay if and only if L,. :::::> LY or CY:::::> C,.. Similar con­

ditions are used to define the ordering of the subgraphs of G0 and those of G1 and 

G2 ; that is if Lx contains some edges of a subgraph of Gu say Gm then G0,.>Gm 

etc. The ordering of the subgraphs of G1 and those of G2 is determined likewise. 

Now we draw a diagram showing the partial ordering of the subgraphs with a 

greater one at a higher level. The subgraphs of G1 are always placed at the lowest 

level and those of G2 at the highest. There are k levels between them if G0 is k­

compound. Such a diagram shows the configuration of G in the sense of the 

topological degree of freedom. An example of a graph and its configuration is 

shown in Fig. 1. 
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Fig. 1. (a) G (b) Configuration of G 

3. Partitioning for the Mixed Analysis 

It was shown4> that the graph-partitioning for the mixed analysis with the 

minimum number of equilibrium equations can be reduced to the partitioning of 

the diagram of the partial ordering of the subgraphs. The subgraphs of G1 and 

those of G2 should be included in Gn and Gm respectively. As for the subgraphs of 

G0, they may be in either Gn or Gm, but if G0x>G0Y and if G0x is included in Gn, 

then G0y should also be included in Gn, or if G0Y is included in Gm, then G0x should 

also be included in Gm. There are, in general, many possibilities for partitioning. 

Now if the diagram is such that all the subgraphs are on a straight vertical line, 

all the possibilities for partitioning can be easily seen. In order to bring a diagram 

to such a form, we consider the two cases separately in which a subgraph is included 

in Gn and Gm respectively. No definite algorithm for this process has been found, 

but in general we pick a subgraph with many lines indident to it in the diagram. 

Then we draw two new diagrams for each of the two cases. For example, we pick 

G0c in Fig. l (b). Ifwe includeG0c in Gn, we get Fig. 2 (a), and if in Gm, we get 

Fig. 2 (b). If a line appears which connects two subgraphs with some other route 

G, • Goa,Gob,Goc . 

(a) (b) 

Fig. 2. Possibilities for partitioning of G 



A Procedure of Graph-partitioning for the Mixed Ana!Ysis ef Electrical Networks 133 

between them (like that shown by a dotted line in Fig. 2), it can be deleted. We 

repeat .this operation until the diagram~ become simple enough for us to make a 

decision. As shown in Fig. 2 (a), there are two possibilities for pc!,rtitioning in 

this case. In Fig. 2 (b) we see 2 x 3 = 6 possibilities, and thus there are 2 +6 =8 

possibilities for partitioning in all. To choose one of them we need some other 

criterion as stated before. The last process is related to Theorem 12 of 1), which 

is based on the operations on edges. It may be much ~asier to handle with the 

subgraphs and their partial ordering diagram. 

4. Conclusion 

A procedure of graph-partitioning for the mixed analysis is-given. It may 

not be the simplest, but it is very easy to follow, since we can work entirely on the 

original graph G. The process to find the subgraphs may be simplified if the foldant 

algorithm is introduced. For instance when G1 and G2 are found, their edges are 

shortened and opened respectively to get the graph consisting of a PET. The 

edges of its subgraphs are also shortened or opened if the subgraphs are found to 

be locally greatest or locally least of the partial ordering. The minimal subgraphs 

of the graphs consisting of a PET can sometimes be recognized without applying Al 

or A2, and can be utilized. 
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