
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Roll in/out and Usage of Large
Capacity Core Memory in a Time-
sharing System

HAGIWARA, Hiroshi; KITAGAWA, Hajime

HAGIWARA, Hiroshi ...[et al]. Roll in/out and Usage of Large Capacity Core Memory in a
Time-sharing System. Memoirs of the Faculty of Engineering, Kyoto University 1970, 32(3):
348-360

1970-09-30

http://hdl.handle.net/2433/280828

348

Roll in/out and Usage of Large Capacity Core Memory
in a Time-sharing System

By

Hiroshi HAGIWARA* and Hajime KITAGAWA**

(Received March 31, 1970)

In this paper the analysis ofroll in/out operation and the usage of large capacity core
memory (LCM) in a time-sharing system (TSS) are described. A TSS model based on a
few assumptions is proposed, and the relation between roll in/out and system performance
is analyzed. The system is classified into two types, i.e. swapping limited and CPU
limited, according to whether the maximum system performance is restricted by capa­
bility of swapping devices or central processing units, and using LCM in TSS is very
effective for the swapping limited case because of decrease of system overhead due to roll
in/out operation and increase of system performance. The usage of LCM is divided into
two main classes, i.e. as roll-out area and roll-in area, and a system model with LCM is
analyzed and discussed in each class. One of the typical cases of using LCM as roll-in
area is the implementation of converJational language in interpretive mode, then, the
condition on which the interpreter program using LCM is operated in swapping limited
state in spite of decrease of swapping overhead and increase of CPU time is obtained, and a
numerical example is showed. Finally, an optimum algorithm for the use of LCM, which
betters system performance in man-computer communication, is suggested.

I. Introduction

In recent years considerable attempts have been made to implement a general­

purpose time-sharing system by large-scale, high-speed computer. In such a time­

sharing system (TSS), the system performance which includes not only efficiency

of central processing unit (CPU) but also response interval for request from a

remote terminal and maximum number of active users is often restricted by roll

in/out operation. If N is the number of active terminals ('active' means 'in use',

i.e. in the state of input, output, waiting or thinking), it can be said that the

system is operated in multiprogramming of N degree, but because all of these N

programs can not reside in core memory on account of its capacity limitation, it

becomes necessary to roll in/out (or swap) user's programs between core memory

and file device (drum, disk etc.). Especially, in recent computers the processing

* Department of Applied Mathematics and Physics
** Data Processing Center, Kyoto University

Roll in/out and Usage of Large Capacity Core Memory in a Time-sharing System 349

rate of CPU is rather higher than the transfer rate of file device via input/output

channel unit, therefore, system overhead due to roll in/out operation has increased

and becomes one of the important factors affecting system performance.

With this point in view, it is very effective to use large capacity core memory

(LCM) besides conventional high-speed core memory (HCM) as one of the

methods decreasing system overhaed caused by roll in/out operation. This paper

describes the analysis of the relation between roll in/out and system performance

and some considerations about the usage of LCM in a TSS model based on a few

assumptions.

It is supposed that whether there is a paging facility in the system or not has

a considerable effect on the treatment and result of system analysis4
•
7 >. In the

system which is analyzed and discussed here, there is no paging facility, the whole

of each user's program is rolled in/out, reallocation o(core memory is achieved by

use of base-registers, and there is no supervisor's overhead time for scheduling

and switching of tasks.

2. Roll in/out and System Performance

In a TSS, the users at remote terminals can communicate with the computer

simultaneously, independently and immediately. As each user generates a request

for computer processing, he in effect enters into the queue whose members are

ready for processing by CPU. Thus each program in turn is serviced according to

the specific scheduling algorithm, that is, transferred into core memory, operated

upon and transferred out. Such a swapping of programs is called a roll in/out

operation. After completion of the processing for request the computer responds

to each user as output to terminal. Short response interval makes TSS valuable

I I

request input

response interval

o response output

thinking time

request interval

Fig. l. Transition of terminal status.

, ,

MXC

remote terminals

C M

/
/ ,

C PU

\
\

\

\

FD

Fig. 2. System model.

C H U

350 Hiroshi HAGIWAR.A and Hajime KITAGAWA

and convenient for such jobs as online program debugging, trial and error procedure

and so on. In order to respond to all requests as fast as possible it is effective to

allow each request for CPU service no more than a specified amount of time-slice

at a stretch and such quantum service is the most common scheduling of CPU

service in TSS. Fig. l shows the cyclic transition of terminal status.

Consider the system model indicated in Fig. 2. In this model there are one

CPU, one input/output channel unit (CHU) and some file devices (FD) for roll

in/out and sufficient number of terminals via multiplexer channel unit (MXC).

The following symbols are used:

tr average response interval

t8 average request interval

N number of active terminals

n number of ready terminals, 'ready' means the status of waiting re­

sponse

Xr CPU time of request, Xr is assumed to be a random variable with

the distribution function given by Pr (Xr~t) = l-exp(-t/A) 2
'
3

)

A average CPU time of request

q time-slice of quantum service

(} average CPU time of quantum service

L average program size

h average number of programs residing in core memory (CM) user area,

h is assumed to be more than the total number of CPU and CHU

(now h~2)

d average number of programs residing in FD

r average CHU occupancy time ofroll in/out operation for one quantum

service

a access time of FD

b transfer rate of FD.

Let X" be CPU time of each quantum service, then because of the basic proper­

ty of the exponential distribution X" becomes a random variable with the distribution

function given by

f I -exp (-t/A)
Pr(X"~t) = 1

' 1

This means that it is no matter how many times the request being taken up for the

present quantum service has been operated before.

Therefore (}, average of Xq, is given by the following equation:

Roll in/out and Usagt of Large Capacity Core Memory in a Time-sharing System 351

8 = .l(l-exp (-q/.l)) 2 +q exp (-2q/.l). (I)

i-, average time of roll in/out for one quantum service, depends upon N and let

N~h,
(2)

where

(3)

Let

W(N) = max (i-(N), 8), (4)

then it is obvious that W(N) is a critical parameter function of system operation

because it strongly influences system performance such as maximum number of

active users, N max, and average response interval. In the following analysis and

discussion, the system is classified into two types, i.e. swapping limited and CPU

limited, according to whether W(Nmax) is i-(Nmax) or 8.

Next, consider the request which is (i-l)q<X,~iq, then its processing is

completed after i quantum services and the probability of generation of such a

request is

Pr((i-l)q<X,<iq) = exp (-(i-l)q/.l)-exp (-iq/.l) i=l, 2, 3,

Let M 9 and M, denote the number of quantum services and requests for a unit

of time respectively, the following relation is obtained.

M 9 = M,~i(exp(-(i-l)q/.l)-exp(-iq/.l))
j

= M, ~ exp (-(i-l)q/.l) = M,
; 1-exp (-q/.l)

(5)

Now, the number of quantum services which can be processed in the duration of

t8 and t, are given respectively by t8 /W(N) and t,/ W(N), therefore, Nmax and nmax,

maximum of n processed in t,, are obtained by using (5) on the assumption that

there is no generation of next request during response interval at each terminal:

N = (I -exp (-q/.l))ts
max W(N) ,

max
(6)

n =(1-exp(-q/.l))t,
max W(N) , (7)

where d 1s assumed to be so large that there is no restriction to N max• i.e.

352 Hiroshi HAGIWARA and Hajime K1TACAwA

d>Nmax-h,

In the case of swapping limited system, using (2), (6) and W(Nmax)=,(Nmax),

the maximum number of active users is obtained as follows:

Nmax = h+ (1-exp (-q/,t))ts. (8)
'1

Function W(N) is indicated in Fig. 3, where Ne is given by h,1/(,1 -8). If

N> N max, each user at terminal can not communicate with the computer by re­

quest interval given by t8 •

time

\

h h+d

- T(N)

(I-exp (-q/.,\}Jts

N

N

Fig. 3. Function W(N) and maximum number of active terminals.

Besides N max, one of the important system performance measures is nmax/ t,..

The maximum number of ready terminals, nmax, which means the congestion of

the system is directly proportional to the average response interval, t,., and nmax(} /t,.
also gives the busy ratio of CPU used for request, so it can be said that the larger

nmax/ t,. becomes, the better the system performance is for users and system. This

is given by

"max

Fig. 4. Relation between response interval and
maximum number of ready terminals.

Roll in/out and Usage of large Capacity Core Memory in a Time-sharing System 353

nmax = I-exp (-q/J)
tr W(N)

(9)

and indicated in Fig. 4.

In the other case, the system is CPU limited, using (6), (7) and W(Nmax) =0,

N max and nmax/ tr are obtained as follows:

N _ (1-exp(-q/J))ts
max- O ,

nmax = (1-exp (-q/J)) = Nmax
~ 0 ~

(10)

3. Use of Large Capacity Core Memory

Since large capacity core memory (LCM) is, in comparison with conventional

high-speed core memory (HCM), not so fast but of low cost, to install LCM is
effective for the system whose memony capacity is intended to be as large as possi­

ble. Table 1 shows the comparison of speed and cost between HCM and LCM ·

i_n the case of two popular systems, FACOM 230-60 and IBM 3607
•
8 > (in IBM

360, respectively called HSS-high speed store and LCS-large capacity store).

Table 1. Comparison between HCM and LCM in two popular system8.

cycle time I cost/month

HCM
F ACOM 230-60

0.92 µsec 61 yen/word

LCM 6 µsec 15 yen/word

HSS 0.75 µsec 3.7 ¢/byte
IBM 360

LCS 8 µsec 0.6 ¢/byte

LCM is also directly-addressible core memory, and the only difference between

HCM and LCM is in cycle time and access time. Thus the drum, disk and other

peripherals can read from or write to either core memory via input/output channel,

and CPU can directly access as execution of instructions or load/store of data on

LCM as well as HCM. It is desirable to be able to transfer program or data

between HCM and LCM faster than between core memory and file devices.
Usually such high-speed channel unit for the faster transmission between HCM
and LCM is installed, and called high-speed transfer unit (HTU) here. Using

LCM in a time-sharing system, it is possible to design an efficient system by de­

creasing r:(N) and increasing Nmax or nmaxftr.

Now, consider the system model with LCM indicated in Fig. 5. In this model

there are one CPU, one HTU, one CHU and some 'file devices for roll in/out,

354 Hiroshi HAGJWAR.A and Hajime KrrAOAWA

I H CM
L-~--~~

LCM

Fig. 5. System model with LCM. Fig. 6. Three ways of roll in/out.

and sufficient number of terminals via MXC. h, k and d denote the average number

of programs which can reside in HCM, LCM and FD respectively, and it is assumed

that h?:.2 and dis so large that there is no restriction to Nmax• Other symbols are

used in the same meaning as the previous section.

In such a system three ways of roll in/out operation, that is, between HCM

and FD, LCM and FD, or HCM and LCM, are possible as indicated in Fig. 6.

, 1 and , 2 are

, 1 roll in/out time of program (size L) between FD and HCM or LCM

by CHU, given by (3),

, 2 roll in/out time of program (size L) between HCM and LCM by

HTU, given by

2L
'2 =-' e

where e is transfer rate of HTU.

Next, the usage of LCM in the system is roughly divided into two main classes:

Use ef LCM as roll-out area

LCM is the roll-out area as well as FD. Access to the user's program by

CPU for request is always performed on HCM after transferred from LCM

or FD. Swapping of programs between HCM and LCM is done by HTU.

Use ef LCM as roll-in area

Access to the user's program by CPU for request is always directly performed

on LCM after transferred from FD as the roll-out area. HTU is not used.

Roll in/out and Usage of Large Capacity Core Memory in a Time-sharing System 355

As in both cases the use of LCM intends to make the system efficient by decreasing

frequency and time of roll in/out operation, the analysis and discussion is useful

in the case of swapping limited system, then it is assumed to be swapping limited,

that is, W(Nmax) =-r(Nmax) in the following.

(i) Use of LCM as roll-out area

Let the average roll in/out time, -r(N), be approximately given by

N-:{,h,

(11)

then, using (6) and W(Nmax)=-r(Nmax), the maximum number of active users is

obtained as follows:

Nmax = h+k+ (I-exp (-q/J))t.-h2.
'r 1

Function W(N) is indicated in Fig. 7, where Ne is given by

and nmax/tr is given by (9).

time ~--
1
I

I
I

I
I

(12)

(13)

(I-exp C-q/A.)) t5

N

Fig. 7. Function W(N) for use of LCM as roll-out area.

356 Hiroshi llioiWAllA and Hajime KITAGAWA

(ii) Use of LCM as roll-in area

Direct access to LCM from CPU increases CPU time for request because of

its larger cycle time. Then, assuming that the average value of CPU time for

request is).r; where r;> 1, the average value of CPU time for quantum service, w,

is obtained by using).r; instead of). in (I) :

w =).r;(l-exp (-q/().r;)))2+qexp (-2q/().r;)). (14)

Now, consider the two typical cases of direct access to the user's program on

LCM. First, each user's program is a self-executable object program in machine

language and access by CPU during processing for request is always performed on

LCM. In this case r; is given by

(15)

where g1 and g2 are the average duration for execution of one instruction on HCM

and LCM respectively. Second, each user's program is a symbolic program which

is interpreted and executed by the interpreter on HCM. Usually the processing of

conversational language which is indispensable for TSS is implemented in inter­

pretive mode because of its special facilities such as incremental compilation,

controlled execution, online debugging and so on. If the interpreter program is

re-entrantable and almost resident in HCM, direct access to LCM is the only

load/store of data by the interpreter. In this case r; is given by

(16)

where f is cycle time of LCM and it is assumed that access to user's program area

by the interpreter is every j steps on the average.

Let the average roll in/out time, r:(N), _be given by

(17)

then, using).r; instead of). in (6) and W(Nmax)=r:(Nmax), the maximum number of

active users is obtained as follows:

Nmax = k+ (1-exp (-q/().r;)))ts. (18)
T:1

Function W(N) is indicated in Fig. 8, where Ne is given by kr:1/(1: 1-w), and

nmaxftr is given by

time

Roll in/out and Usage of Large Capacity Core A{emory in a Time-sharing System 357

k

- 7(Nl

(I-exp (-q/('-'Tllllts

N

Fig. 8. Function W(N) for use of LCM as roll-in area.

nmax = l-exp(-q/(l7J))
t,. W(N)

(19)

Next, it can be said that the average value of CPU time for quantum service

always increases because the larger 7J becomes, the more frequent quantum-over

CPU service is. Then the use of LCM as roll-in area may make system CPU

limited because of increase of eu or much more decrease of -r(N) than eu. Then,

the condition of the swapping limited system is obtained as follows by using

eu-S,-r(Nmax):

(: + ~)(l7Jz+ q(l ~z)2) -S, l ,
s (20)

where z = 1-exp (-q/(l7J)) ,

thus it is necessary for 7J to be less than 7Jc, where 7Jc is the value of 7J derived

from the relation of equality in (20). And the condition on which the interpreter

program using LCM is operated in swapping limited state is obtained by using (16)

and 7J < 7J c as follows :

(21)

Some numerical examples on the condition of the interpreter program using

LCM are showed in Table 2 and Table 3, where the following values are used:

a=17 msec, b=39, 78 kw/sec, g1=l.6 µsec, g2=6.l µsec,

358 Hiroshi HAGIWARA and Hajime KITAGAWA

.f=6.0 µsec, l=0.l, 0.2, 0.5 sec, q=0.5, 1.0 sec,

t8 =20, 30, 40 sec, L=5, 10, 20 kw,

k= 760, l<1Ji:g2 ,

L gl

and values of 7/c and jc are calculated by using (3), (20) and (21). In these tables

'S' and 'C' mean respectively swapping limited and CPU limited system at 1 <
7/ S,g2/g1.

Table 2. Numerical examples of 7Jc (upper) and ic (lower) at b=39 kw/sec.

~~-:--+ 0.5 1.0

0.1 0.2 I 0.5 0.1 I 0.2 I 0.5
t. ~

20 C C C C C C

5 30 1.31 C C 1.19 C C
12. l 19.8

40 l. 72 C C 1.40 C C
5.2 9.4

20 3.78 l.89 C l.84 C C
1.4 4.3 4.5

10 30 s s s 2.53 1.27 C 2.5 13.9

40 s s s 3.25 l.63 C l. 7 6.0

20 s s s s 3.35 1.34
1.6 11.l

20 30 s s s s s s

40 s s s s s s

Table 3. Numerical examples of 7/c (upper) and ic (lower) at b=78kw/sec.

~
0.5 1.0

0.1 I 0.2 I 0.5 0.1 I 0.2 I 0.5

20 C I C C
I

C C C

5 30 C C C C C C

40 1.06 C C 1.01 C C
62.5 375.0

~
l. 72

~
C 1.40 C C

5.2 9.4

10 s s l. 72 C C
5.2

s s l.95 C C 4.0

20 s

H=
s 3.21 l.61

H= 1.7 6.2

20 30 s s s 2.81
2.1

40 s s s I s

Roll in/out and Usage of Large Capacity Core Memory in a Time-sharing System 359

(iii) Optimum use of LCM

In the above discussion the use of LCM has been considered to divide into

two classes, roll-out area and roll-in area. But usually these two kinds of usage

are mixed in the practical system where strategy of using LCM depends upon

each program. Now, if each program is designed to be executed or interpreted

in both HCM and LCM, the following algorithm will be optimum for the use

ofLCM.

In the case of w>8, the use of LCM as roll-out area for small N and roll-in

area for large N makes system efficient because of decrease of W(N) and conse­

quently increase of nmax/t,. as clearly indicated in Fig. 7 and Fig. 8. If NP denotes

the value of N by which -r (N) for the use as roll-out area given by (11) is equal

tow, then the usage as roll-out area when NS,NP and as roll-in area when Np<

NS,Nmax is an optimum algorithm which makes W(N) as small as possible. Fig.

9 indicates function W(N) in this case, and NP is given by

(22)

However, in such a system where there are any differences in the memory allocation

and protection scheme between HCM and LCM, this algorithm is not so effective

because of increase of the system overhead.

time
r(N) as roll-out area

T(N) as roll-in area

(I-exp (-q/(',Tj)))t 8

N

'------'---------'------'----'--------'----- N
k / \

h+k Np

h Nmax

Fig. 9. Function W(N) for optimum use of LCM at <u>(),

360 Hiroshi HAGIWARA and Hajime KITAGAWA

4. Conclusion

The relation between roll in/out operation, which is inevitable and an important

factor in a recent large-scale, general-purpose TSS, and system performance in

man-computer communication was analyzed in the system model based on a

few assumptions, then, the usage and the effect of LCM in TSS was discussed.

The condition on which the interpreter program using LCM as data area is

operated in swapping limited state was obtained and it will be useful when a

conversational language processor in TSS with LCM is designed and implemented.

The time-slice of quantum service is also an important and easy adjustable fac­

tor for system performance, and it is necessary to decide its value with the policy

of which performance measure is placed great emphasis on.

However, this entire discussion has been based on the analysis by average

value as for several random variables, so, it is desirable to analyze the system

performance dynamically in real-world application. For this purpose, the digital

simulation and the real-data collection are considered to be effective and will be

tried.

References

I) J.I. Schwartz, E.G. Coffman and C. Weissman: A general-purpose time-sharing system,
Proceedings of the 1964 SJ CC, pp. 397--411

2) B. Krishnamoorthi and R.C. Wood: Time-shared computer operations with both interarrival
and service times exponential, Journal of the ACM, Vol. 13, No. 3, pp. 317-338 (1966)

3) E.G. Coffman and R.C. Wood: Interarrival statistics for time-sharing system, Com­
munications of the ACM, Vol. 9, No. 7, pp. 500--503 (1966)

4) J.E. Shemer and G.A. Shippey: Statistical analysis of paged and segmented computer system,
IEEE Transactions, Vol. EC-15, No. 6, pp. 855--863 (1966)

5) A.L. Scherr: An analysis of time-shared computer systems, The M.I.T. Press (1967)
6) M. Tsujigado: Multiprogramming, swapping and program residense priority in the FACOM

230-60, Proceedings of the 1968 SJCC, pp. 223-228
7) R.E. Fikes, H.C. Lauer and A.L. Vareha: Steps toward a general-purpose time-sharing

system using large capacity core storage and TSS/360, Proceedings of the 1968 ACM national
conference, pp. 7-18

8) D.N. Freeman and R.R. Pearson: Efficiency vs responsiveness in a multiple-services computer
facility, Proceedings of the 1968 ACM national conference, pp. 25-34

9) T.B. Pinkerton: Performance monitoring in a time-sharing system, Communications of
the ACM, Vol. 12, No. 11, pp. 608---610 (1969)

10) Fujitsu Limited: FACOM 230--60 / Hardware, System Manual EX-011-1-4

