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Roll in/out and Usage of Large Capacity Core Memory 
in a Time-sharing System 

By 

Hiroshi HAGIWARA* and Hajime KITAGAWA** 

(Received March 31, 1970) 

In this paper the analysis ofroll in/out operation and the usage of large capacity core 
memory (LCM) in a time-sharing system (TSS) are described. A TSS model based on a 
few assumptions is proposed, and the relation between roll in/out and system performance 
is analyzed. The system is classified into two types, i.e. swapping limited and CPU 
limited, according to whether the maximum system performance is restricted by capa­
bility of swapping devices or central processing units, and using LCM in TSS is very 
effective for the swapping limited case because of decrease of system overhead due to roll 
in/out operation and increase of system performance. The usage of LCM is divided into 
two main classes, i.e. as roll-out area and roll-in area, and a system model with LCM is 
analyzed and discussed in each class. One of the typical cases of using LCM as roll-in 
area is the implementation of converJational language in interpretive mode, then, the 
condition on which the interpreter program using LCM is operated in swapping limited 
state in spite of decrease of swapping overhead and increase of CPU time is obtained, and a 
numerical example is showed. Finally, an optimum algorithm for the use of LCM, which 
betters system performance in man-computer communication, is suggested. 

I. Introduction 

In recent years considerable attempts have been made to implement a general­

purpose time-sharing system by large-scale, high-speed computer. In such a time­

sharing system (TSS), the system performance which includes not only efficiency 

of central processing unit (CPU) but also response interval for request from a 

remote terminal and maximum number of active users is often restricted by roll 

in/out operation. If N is the number of active terminals ('active' means 'in use', 

i.e. in the state of input, output, waiting or thinking), it can be said that the 

system is operated in multiprogramming of N degree, but because all of these N 

programs can not reside in core memory on account of its capacity limitation, it 

becomes necessary to roll in/out ( or swap) user's programs between core memory 

and file device (drum, disk etc.). Especially, in recent computers the processing 
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rate of CPU is rather higher than the transfer rate of file device via input/output 

channel unit, therefore, system overhead due to roll in/out operation has increased 

and becomes one of the important factors affecting system performance. 

With this point in view, it is very effective to use large capacity core memory 

(LCM) besides conventional high-speed core memory (HCM) as one of the 

methods decreasing system overhaed caused by roll in/out operation. This paper 

describes the analysis of the relation between roll in/out and system performance 

and some considerations about the usage of LCM in a TSS model based on a few 

assumptions. 

It is supposed that whether there is a paging facility in the system or not has 

a considerable effect on the treatment and result of system analysis4
• 
7 >. In the 

system which is analyzed and discussed here, there is no paging facility, the whole 

of each user's program is rolled in/out, reallocation o( core memory is achieved by 

use of base-registers, and there is no supervisor's overhead time for scheduling 

and switching of tasks. 

2. Roll in/out and System Performance 

In a TSS, the users at remote terminals can communicate with the computer 

simultaneously, independently and immediately. As each user generates a request 

for computer processing, he in effect enters into the queue whose members are 

ready for processing by CPU. Thus each program in turn is serviced according to 

the specific scheduling algorithm, that is, transferred into core memory, operated 

upon and transferred out. Such a swapping of programs is called a roll in/out 

operation. After completion of the processing for request the computer responds 

to each user as output to terminal. Short response interval makes TSS valuable 
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Fig. l. Transition of terminal status. 
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and convenient for such jobs as online program debugging, trial and error procedure 

and so on. In order to respond to all requests as fast as possible it is effective to 

allow each request for CPU service no more than a specified amount of time-slice 

at a stretch and such quantum service is the most common scheduling of CPU 

service in TSS. Fig. l shows the cyclic transition of terminal status. 

Consider the system model indicated in Fig. 2. In this model there are one 

CPU, one input/output channel unit (CHU) and some file devices (FD) for roll 

in/out and sufficient number of terminals via multiplexer channel unit (MXC). 

The following symbols are used: 

tr average response interval 

t8 average request interval 

N number of active terminals 

n number of ready terminals, 'ready' means the status of waiting re­

sponse 

Xr CPU time of request, Xr is assumed to be a random variable with 

the distribution function given by Pr (Xr~t) = l-exp(-t/A) 2
'
3

) 

A average CPU time of request 

q time-slice of quantum service 

(} average CPU time of quantum service 

L average program size 

h average number of programs residing in core memory (CM) user area, 

h is assumed to be more than the total number of CPU and CHU 

(now h~2) 

d average number of programs residing in FD 

r average CHU occupancy time ofroll in/out operation for one quantum 

service 

a access time of FD 

b transfer rate of FD. 

Let X" be CPU time of each quantum service, then because of the basic proper­

ty of the exponential distribution X" becomes a random variable with the distribution 

function given by 

f I -exp ( -t/A) 
Pr(X"~t) = 1 

' 1 

This means that it is no matter how many times the request being taken up for the 

present quantum service has been operated before. 

Therefore (}, average of Xq, is given by the following equation: 
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8 = .l(l-exp (-q/.l)) 2 +q exp (-2q/.l). ( I ) 

i-, average time of roll in/out for one quantum service, depends upon N and let 

N~h, 
( 2) 

where 

( 3) 

Let 

W(N) = max (i-(N), 8), ( 4) 

then it is obvious that W(N) is a critical parameter function of system operation 

because it strongly influences system performance such as maximum number of 

active users, N max, and average response interval. In the following analysis and 

discussion, the system is classified into two types, i.e. swapping limited and CPU 

limited, according to whether W(Nmax) is i-(Nmax) or 8. 

Next, consider the request which is (i-l)q<X,~iq, then its processing is 

completed after i quantum services and the probability of generation of such a 

request is 

Pr((i-l)q<X,<iq) = exp (-(i-l)q/.l)-exp (-iq/.l) i=l, 2, 3, .... 

Let M 9 and M, denote the number of quantum services and requests for a unit 

of time respectively, the following relation is obtained. 

M 9 = M,~i(exp(-(i-l)q/.l)-exp(-iq/.l)) 
j 

= M, ~ exp (-(i-l)q/.l) = M, 
; 1-exp (-q/.l) 

( 5 ) 

Now, the number of quantum services which can be processed in the duration of 

t8 and t, are given respectively by t8 /W(N) and t,/ W(N), therefore, Nmax and nmax, 

maximum of n processed in t,, are obtained by using (5) on the assumption that 

there is no generation of next request during response interval at each terminal: 

N = (I -exp ( -q/.l) )ts 
max W(N ) , 

max 
( 6) 

n =(1-exp(-q/.l))t, 
max W(N) , ( 7) 

where d 1s assumed to be so large that there is no restriction to N max• i.e. 
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d>Nmax-h, 

In the case of swapping limited system, using (2), (6) and W(Nmax)=,(Nmax), 

the maximum number of active users is obtained as follows: 

Nmax = h+ (1-exp (-q/,t))ts. ( 8) 
'1 

Function W(N) is indicated in Fig. 3, where Ne is given by h,1/(,1 -8). If 

N> N max, each user at terminal can not communicate with the computer by re­

quest interval given by t8 • 

time 

\ 

h h+d 

- T(N) 

( I-exp (-q/.,\}Jts 

N 

N 

Fig. 3. Function W(N) and maximum number of active terminals. 

Besides N max, one of the important system performance measures is nmax/ t,.. 

The maximum number of ready terminals, nmax, which means the congestion of 

the system is directly proportional to the average response interval, t,., and nmax(} /t,. 
also gives the busy ratio of CPU used for request, so it can be said that the larger 

nmax/ t,. becomes, the better the system performance is for users and system. This 

is given by 

"max 

Fig. 4. Relation between response interval and 
maximum number of ready terminals. 
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nmax = I-exp (-q/J) 
tr W(N) 

( 9) 

and indicated in Fig. 4. 

In the other case, the system is CPU limited, using (6), (7) and W(Nmax) =0, 

N max and nmax/ tr are obtained as follows: 

N _ (1-exp(-q/J))ts 
max- O , 

nmax = (1-exp (-q/J)) = Nmax 
~ 0 ~ 

(10) 

3. Use of Large Capacity Core Memory 

Since large capacity core memory (LCM) is, in comparison with conventional 

high-speed core memory (HCM), not so fast but of low cost, to install LCM is 
effective for the system whose memony capacity is intended to be as large as possi­

ble. Table 1 shows the comparison of speed and cost between HCM and LCM · 

i_n the case of two popular systems, FACOM 230-60 and IBM 3607
•
8 > (in IBM 

360, respectively called HSS-high speed store and LCS-large capacity store). 

Table 1. Comparison between HCM and LCM in two popular system8. 

cycle time I cost/month 

HCM 
F ACOM 230-60 

0.92 µsec 61 yen/word 

LCM 6 µsec 15 yen/word 

HSS 0.75 µsec 3.7 ¢/byte 
IBM 360 

LCS 8 µsec 0.6 ¢/byte 

LCM is also directly-addressible core memory, and the only difference between 

HCM and LCM is in cycle time and access time. Thus the drum, disk and other 

peripherals can read from or write to either core memory via input/output channel, 

and CPU can directly access as execution of instructions or load/store of data on 

LCM as well as HCM. It is desirable to be able to transfer program or data 

between HCM and LCM faster than between core memory and file devices. 
Usually such high-speed channel unit for the faster transmission between HCM 
and LCM is installed, and called high-speed transfer unit (HTU) here. Using 

LCM in a time-sharing system, it is possible to design an efficient system by de­

creasing r:(N) and increasing Nmax or nmaxftr. 

Now, consider the system model with LCM indicated in Fig. 5. In this model 

there are one CPU, one HTU, one CHU and some 'file devices for roll in/out, 
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I H CM 
L-~--~~ 

LCM 

Fig. 5. System model with LCM. Fig. 6. Three ways of roll in/out. 

and sufficient number of terminals via MXC. h, k and d denote the average number 

of programs which can reside in HCM, LCM and FD respectively, and it is assumed 

that h?:.2 and dis so large that there is no restriction to Nmax• Other symbols are 

used in the same meaning as the previous section. 

In such a system three ways of roll in/out operation, that is, between HCM 

and FD, LCM and FD, or HCM and LCM, are possible as indicated in Fig. 6. 

, 1 and , 2 are 

, 1 roll in/out time of program (size L) between FD and HCM or LCM 

by CHU, given by (3), 

, 2 roll in/out time of program (size L) between HCM and LCM by 

HTU, given by 

2L 
'2 =-' e 

where e is transfer rate of HTU. 

Next, the usage of LCM in the system is roughly divided into two main classes: 

Use ef LCM as roll-out area 

LCM is the roll-out area as well as FD. Access to the user's program by 

CPU for request is always performed on HCM after transferred from LCM 

or FD. Swapping of programs between HCM and LCM is done by HTU. 

Use ef LCM as roll-in area 

Access to the user's program by CPU for request is always directly performed 

on LCM after transferred from FD as the roll-out area. HTU is not used. 
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As in both cases the use of LCM intends to make the system efficient by decreasing 

frequency and time of roll in/out operation, the analysis and discussion is useful 

in the case of swapping limited system, then it is assumed to be swapping limited, 

that is, W(Nmax) =-r(Nmax) in the following. 

(i) Use of LCM as roll-out area 

Let the average roll in/out time, -r(N), be approximately given by 

N-:{,h, 

(11) 

then, using (6) and W(Nmax)=-r(Nmax), the maximum number of active users is 

obtained as follows: 

Nmax = h+k+ (I-exp (-q/J))t.-h2. 
'r 1 

Function W(N) is indicated in Fig. 7, where Ne is given by 

and nmax/tr is given by (9). 

time ~--
1 
I 

I 
I 

I 
I 

(12) 

( 13) 

( I-exp C-q/A.)) t5 

N 

Fig. 7. Function W(N) for use of LCM as roll-out area. 



356 Hiroshi llioiWAllA and Hajime KITAGAWA 

(ii) Use of LCM as roll-in area 

Direct access to LCM from CPU increases CPU time for request because of 

its larger cycle time. Then, assuming that the average value of CPU time for 

request is ).r; where r;> 1, the average value of CPU time for quantum service, w, 

is obtained by using ).r; instead of). in (I) : 

w = ).r;(l-exp (-q/().r;)))2+qexp (-2q/().r;)). (14) 

Now, consider the two typical cases of direct access to the user's program on 

LCM. First, each user's program is a self-executable object program in machine 

language and access by CPU during processing for request is always performed on 

LCM. In this case r; is given by 

(15) 

where g1 and g2 are the average duration for execution of one instruction on HCM 

and LCM respectively. Second, each user's program is a symbolic program which 

is interpreted and executed by the interpreter on HCM. Usually the processing of 

conversational language which is indispensable for TSS is implemented in inter­

pretive mode because of its special facilities such as incremental compilation, 

controlled execution, online debugging and so on. If the interpreter program is 

re-entrantable and almost resident in HCM, direct access to LCM is the only 

load/store of data by the interpreter. In this case r; is given by 

(16) 

where f is cycle time of LCM and it is assumed that access to user's program area 

by the interpreter is every j steps on the average. 

Let the average roll in/out time, r:(N), _be given by 

(17) 

then, using ).r; instead of). in (6) and W(Nmax)=r:(Nmax), the maximum number of 

active users is obtained as follows: 

Nmax = k+ (1-exp ( -q/().r;)) )ts. (18) 
T:1 

Function W(N) is indicated in Fig. 8, where Ne is given by kr:1/(1: 1-w), and 

nmaxftr is given by 
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k 

- 7(Nl 

( I-exp (-q/('-'Tllllts 

N 

Fig. 8. Function W(N) for use of LCM as roll-in area. 

nmax = l-exp(-q/(l7J)) 
t,. W(N) 

(19) 

Next, it can be said that the average value of CPU time for quantum service 

always increases because the larger 7J becomes, the more frequent quantum-over 

CPU service is. Then the use of LCM as roll-in area may make system CPU 

limited because of increase of eu or much more decrease of -r(N) than eu. Then, 

the condition of the swapping limited system is obtained as follows by using 

eu-S,-r(Nmax): 

(: + ~ )(l7Jz+ q(l ~z)2) -S, l , 
s (20) 

where z = 1-exp (-q/(l7J)) , 

thus it is necessary for 7J to be less than 7Jc, where 7Jc is the value of 7J derived 

from the relation of equality in (20). And the condition on which the interpreter 

program using LCM is operated in swapping limited state is obtained by using (16) 

and 7J < 7J c as follows : 

(21) 

Some numerical examples on the condition of the interpreter program using 

LCM are showed in Table 2 and Table 3, where the following values are used: 

a=17 msec, b=39, 78 kw/sec, g1=l.6 µsec, g2=6.l µsec, 
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.f=6.0 µsec, l=0.l, 0.2, 0.5 sec, q=0.5, 1.0 sec, 

t8 =20, 30, 40 sec, L=5, 10, 20 kw, 

k= 760, l<1Ji:g2 , 

L gl 

and values of 7/c and jc are calculated by using (3), (20) and (21). In these tables 

'S' and 'C' mean respectively swapping limited and CPU limited system at 1 < 
7/ S,g2/g1. 

Table 2. Numerical examples of 7Jc (upper) and ic (lower) at b=39 kw/sec. 

~~-:--+ 0.5 1.0 

0.1 0.2 I 0.5 0.1 I 0.2 I 0.5 
t. ~ 

20 C C C C C C 

5 30 1.31 C C 1.19 C C 
12. l 19.8 

40 l. 72 C C 1.40 C C 
5.2 9.4 

20 3.78 l.89 C l.84 C C 
1.4 4.3 4.5 

10 30 s s s 2.53 1.27 C 2.5 13.9 

40 s s s 3.25 l.63 C l. 7 6.0 

20 s s s s 3.35 1.34 
1.6 11.l 

20 30 s s s s s s 

40 s s s s s s 

Table 3. Numerical examples of 7/c (upper) and ic (lower) at b=78kw/sec. 

~ 
0.5 1.0 

0.1 I 0.2 I 0.5 0.1 I 0.2 I 0.5 

20 C I C C 
I 

C C C 

5 30 C C C C C C 

40 1.06 C C 1.01 C C 
62.5 375.0 

~ 
l. 72 

~ 
C 1.40 C C 

5.2 9.4 

10 s s l. 72 C C 
5.2 

s s l.95 C C 4.0 

20 s 

H= 
s 3.21 l.61 

H= 1.7 6.2 

20 30 s s s 2.81 
2.1 

40 s s s I s 
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(iii) Optimum use of LCM 

In the above discussion the use of LCM has been considered to divide into 

two classes, roll-out area and roll-in area. But usually these two kinds of usage 

are mixed in the practical system where strategy of using LCM depends upon 

each program. Now, if each program is designed to be executed or interpreted 

in both HCM and LCM, the following algorithm will be optimum for the use 

ofLCM. 

In the case of w>8, the use of LCM as roll-out area for small N and roll-in 

area for large N makes system efficient because of decrease of W(N) and conse­

quently increase of nmax/t,. as clearly indicated in Fig. 7 and Fig. 8. If NP denotes 

the value of N by which -r ( N) for the use as roll-out area given by ( 11) is equal 

tow, then the usage as roll-out area when NS,NP and as roll-in area when Np< 

NS,Nmax is an optimum algorithm which makes W(N) as small as possible. Fig. 

9 indicates function W(N) in this case, and NP is given by 

(22) 

However, in such a system where there are any differences in the memory allocation 

and protection scheme between HCM and LCM, this algorithm is not so effective 

because of increase of the system overhead. 

time 
r(N) as roll-out area 

T(N) as roll-in area 

(I-exp (-q/(',Tj )))t 8 

N 

'------'---------'------'----'--------'----- N 
k / \ 

h+k Np 

h Nmax 

Fig. 9. Function W(N) for optimum use of LCM at <u>(), 
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4. Conclusion 

The relation between roll in/out operation, which is inevitable and an important 

factor in a recent large-scale, general-purpose TSS, and system performance in 

man-computer communication was analyzed in the system model based on a 

few assumptions, then, the usage and the effect of LCM in TSS was discussed. 

The condition on which the interpreter program using LCM as data area is 

operated in swapping limited state was obtained and it will be useful when a 

conversational language processor in TSS with LCM is designed and implemented. 

The time-slice of quantum service is also an important and easy adjustable fac­

tor for system performance, and it is necessary to decide its value with the policy 

of which performance measure is placed great emphasis on. 

However, this entire discussion has been based on the analysis by average 

value as for several random variables, so, it is desirable to analyze the system 

performance dynamically in real-world application. For this purpose, the digital 

simulation and the real-data collection are considered to be effective and will be 

tried. 
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