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An Algorithm for Solving the Weighted Distribution 
Linear Programs with Zero-One Variables 

By 

Hisashi MINE and Hiroyuki NARIHISA * 

(Received September 30, 1969) 

Recently, very considerable efforts have been devoted to integer programming. 
In practical point of view, zero-one integer programming is important for solving the 
actual integer programming problems. 

For these problems, various approaches have been proposed by many researchers in 
this field. However, the fundamental idea for solving these problems is based on the 
additive algorithm for solving linear programs with zero-one variables proposed by Egon 
Balas in 1965. 

In this paper, we propose an algorithm for solving the weighted distribution linear 
programming problem with zero-one variables, This algorithm is also an extension of 
the additive algorithm, but is more powerful than that of Egon Balas for the structured 
problem as the weighted distribution linear programming problem with zero-one 
variables, 

1. Introduction 

115 

Recently, there are many papers concerning integer programming problems, 

especially, zero-one integer programming problems. For these problems, various 

approaches have been proposed. The fundamental idea for solving these problems 

is based on the additive algorithm for solving linear programs with zero-one variables 

proposed by Egon Balas. 

In this paper, we propose an algorithm for solving the weighted distribution 

linear programming problem with zero-one variables. The algorithm is also an 

extension of the additive algorithm, but is more powerful than that of Egon Balas 

for the weighted distribution linear programming problem with zero-one variables. 

2. Formulation of problem 

Without loss of generality, the linear programming problem with zero-one 

variables can be expressed as; 
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Find X such as 

Minimize z = CX 

Subject to AX+ Y = B, 

xj = 0 or I 

Y~O, 

(C ~ 0), 

(jEN), 

( I ) 

( 2) 

( 3) 

( 4) 

where X=(xj) is an n components column vector, C=(cj) is an n components row 

vector, A=(a;j) is an mxn matrix, B=(b;) is an m components column vector, 

Y=(y;) is an m components nonnegative slack column vector, and N={l, 2, ... , n}. 

Moreover, A is assumed to be expressed as the following structured form. 

Al• .... 0 l 
A= 0 . Ar , 

A 

where AP (pEP={l, 2,-··, r}) is an mpXnp matrix, A is an m13 xn matrix. 

In this case, denoting ± m;=m,., we have the following relations. 
j=l 

, 
m = m,.+m13 , ~ n; = n. 

j=l 

Additionally, defining the following sets, 

we have 

p-1 

~ n,+2,-··, 
j=l 

p-1 p-l 

Mp= { ~ m,+I, 
j=l 

~ m1+2,···, 
j=l 

U pN= N, 
PEP 

M,. U M 13 =M, 

p-1 

~ n,+np}, 
j• 1 

p-l 

~ m1+mp}, 
j=l 

( 5) 

( 6) 

( 7 ) 

( 8) 

( 9) 

(10) 

where U denotes union of sets, M13 ={m,.+I, m,.+2,···, m,.+m,.=m} and M,. is 

defined as 

( 11) 

In the course of search for the optimal solution, we start from the n+m 

dimension solution vector U 0 = (X0
, Y 0

) = (0, B) and obtain a new solution vector 

by assigning each of x j (j EN) zero or one according to some given criterion. After 

successive iterations, finally we shall obtain the optimal solution vector. 

In this problem, we call the constraints which correspond to the matrix 
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Ap(pEP) of (5) as constraint p and call the set of these constraints as the 

constraints a and finally we call the constraints which correspond to the matrix 

A of A as constraints (J. 

3. Outline of the additive algorithm 

As our algorithm is an modification of Balas', we shall describe the basic idea of 

the additive algorithm in this section. 

An (n+m)-dimensional vector U = (X, Y) is called a solution, if it satisfies 

(2) and (3); a feasible solution, ifit satisfies (2), (3), and ( 4); and an optimal solution, 

ifit satisfies (1), (2), (3), and (4). 

Let ps denote the linear programming problem defined by (I), (2), ( 4) and the 

constraints 

(jEN) 

(jE]s) 

where ls is a subset of N. P 0 is meant by the ordinary linear programming 

problem with ] 0 =</J. 

We start from P 0 with U 0 = (X0
, Y 0

) = (0, B), which is obviously a dual feasible 

solution to P 0 (because C ~0) 

The basis of the solution U 0 consists of the unit-matrix lcm)=(e;)(iEM), e; 

being the i-th unit vector. For somey;°<0, we choose, a vector ai1 such that a;ji 

<0, to introduce into the basis. But instead of introducing ai1 in place of a vector 

e; in the basis, as we do in the usual dual simplex method, we add to P 0 the con­

straint x it= I, which is slightly modified as the form -x it+ Ym+i = -1 with an 

artificial variable Ym+i in practice. Thus we obtain the problem P 1 with ] 1 = {j1} 

defined by (I), (2), (3a), ( 4) and the additional constraint 

It is easy to see that the set xi=O (jEN),y;=b;(iEM), is a dual feasible solution 

to P 1
• In the extended basis Icm+l)=(e;) (i=I, ... , m+l), the (m+l)st unit vector 

em+i corresponds toym+i· We introduce ai1 at the place of this unit vector em+i, and 

thus xii takes the value I in the new solution to P 1 that obviously remains daul 

feasible. As the artificial variable Ym+i, which becomes 0, does not play any role 

henceforth, it must be abandoned and the new solution can be written as U1 = (X1, 

Yl) ( 1 1 1 1) = X1, ... , Xn ,Y1, "",Ym · 

Given the additional constraint, the pivot operation around the element-I 

yields the algebraic addition B-aji· Thus, the new dual feasible solution U1 = 
(X1, Y 1

) to P 1 is 
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X _1 = {l 
J 0 

(j =j1) 

(j = N-{j1}), 

(iEM). 

As the operations to be carried out at each iteration consist of only additions and 

subtractions, this algorithm is called additive one. 

If the solution-vector U 1 still has negative components, then according to the 

above mentioned rules we choose another vector a;2 to introduce into the basis, 

and we add to P 1 the new constraint X;2=1, in the form -x;2+Ym+2=-l, Ym+2 

being another artificial variable. This yields the problem P2, consisting of ( 1), 

(2), (3a), and (4) and the additional constraint set (3b2), made up of X;1 = 1, X;2= I. 

The set x;1 =1, x,-=0 [jE(N-{.ii})J, y,=b1-a1,-1 (iEM), Ym+ 2=-l, is a dual 

feasible solution to P 2
• The vector a;2 is now introduced in place of em+2• and 

x,-2 takes the value 1 in the new solution to P 2
, which remains dual feasible. As the 

artificial variable Ym+ 2 does not play any role henceforth, it must be dropped as in 

the case ofym+i, and the new dual feasible solution to P 2 is U2 =(X2
, Y 2

), where 

X• = {l 
J 0 

(j =ji, j2) 

[j E (N-{j1,j2})], 

(iEM). 

This procedure is repeated until either a solutiqn U 8 with all nonnegative 

components is obtained, or any solution tops does not exist. If a nonnegative vector 

U 8 =(X8, Y-') is obtained, it is a feasible solution to P 8
• 

The procedure is started again from a solution UP for some p<s according to 

the backtracking idea, introducing a suitable vector into the basis, until either 

another feasible solution Ut such that z,<z8 is obtained (zp being the value of z 

for UP) (p = 0, 1, .. ·), or evidence is obtained of the absence of such solutions. 

The sequence U"(q=O, 1, .. ,) converges towards an optimal solution. This 

procedure might be called a pseudo-dual algorithm, because, as in the dual simplex 

method, it starts with a dual feasible solution and then successively approaches the 

primal feasible solution holding at all times the property of dual feasibility. 

However, a real dual simplex method never takes place; the dual simplex criterion 

for choosing the vector to enter the basis is not used, nor any of the vectors e1 

(iEM) are ever eliminated from the basis in the sense of being replaced by another 

vector. 

4. Some definitions and fundamental idea of the algorithm 

Assu~e that we obta,in a solution vector UP= (l(P, J;P) after p-th itera,tioq, 
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As each co11straint of the set (2) contains exactly one component of Y, a solution 

U"=(X", Y") is uniquely determined by the set ]p={j l}EN, x"1=l}. That 

is to say, if 

(jE]p) 

[j E (N-]p)], (12) 

then 

(iEM) (13) 

As already shown, the additive algorithm generates a sequence of solutions. 

For the s-th term u• of this sequence, 

(14) 

where 

Uu .. ,,j,} = {j l}EN, x/ = l} = J •. 

Therefore, if we obtain a solution U" = (X", Y 8
) afters-th iteration, then the values 

of X" and ys are given as follows; 

jE]. 

jE(N-j,,) 

(iEM), 

where x/ andy/ are elements of the vector X" and Y" respectively. 

(15) 

(16) 

Let z" denote the value of the objective function at q-th iteration for the 

feasible solution. Then we define the following z •. 
(17) 

The smallest element of this set is called the ceilling for the solution vector u•. 
That is, 

{

00 if 
z*C•) = . 

m1nz8 

z. = </> 

z" if z8 :j= ¢ 
(18) 

Let N8 denote the set of subscripts of the variable x 1 to be introduced into 

the basis at the s+ l th iteration. Of course, N,, is the subset of the set ( N1 c;;;,. N). 

Further let j (p) denote the element of the indices set "N. 

Now we shall introduce a certain criterion for the choice of the vector to 

introduce into the basis for the vector solution us and for each j EN,. First, we 

define 
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E
l<= iM /- (y/-a,i) + ~lej Mii'- (y/-a1i) 

v/= for (iM/-UiM/-)=l='P 

for (jM/- U jM/Js-) = <p 

(19) 

where iM,/- = {i(y/-a1i)<0, iEMq}, q = p or /3. 

After the s-th iteration, if there exists any negative element y/ having the 

index i which belongs to the indices Mp, we shall define P8 as the set of these indices 

p. That is, 

for at least one i EM p} . (20) 

Moreover, we shall define PN• as 

(21) 

Then we know empirically that we can obtain efficiently a feasible solution by 

choosing the variable xi to introduce into the basis for the solution vector US, where 

j belongs to the indices set pNs and p belongs to the set Ps. 

This fact means that we examine the feasibility of the solution vector, first of 

all, for the constraints a. In this case, it is expected to introduce at a time as much 

variables as possible into the basis. As the criterion of choosing the variables, we 

select the variable xi so that j belongs to the indices set pNs and the value vis is 

maximum among the set pNs. 

In this case, if we select the all of variables xi of which index j belongs to the 

set pNs for p E Ps, then there exists the possibility that the value of the objective 

function exceeds the value z*cs)_ Therefore, we select the variables to introduce 

into the basis from the ones having the small value of p, in convenience, until the 

value of the objective function does not exceed the value z *cs). Of course, if the 

set Zs is ip, then we have to select for all the pEPs. 

If Ps='P, that is,y/ nonnegative for all iEM,. and the solution vector us is 

not a feasible solution, we select the index j which corresponds to the maximum 

value ofv/ among the indices set Ns. And we can define the set ls of these selected 

indices as follows : 

{

{j0(p) I vj/ = max v/, j =j(p), j(p) ENs, P~Po, pEPs 

ls = for Ps =I= <p 

{j0(p) I vi/= max v/, j E Ns} for Ps = <p, 

(22) 

)'\'here p~ is the maximum of p which satisfies the following relation, 

(23) 
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Then we have the new indices set J.+m from the set J. and 18 • 

In this case, the cardinal number of the indices set l. is m and Js+m yields the 

new solution vector us+m. Moreover, the indices set J8 +1,(l ~k~m) is the union 

of the set 18 of which cardinal number is k and the set ] 8 , where the element of 

the set 18 is ordered such thatj1 ~j2 forj1 E Us+1,-]s+1,-1),j2 E Us+i-ls+l-i) where 

k~l. 

From the above mentioned idea, we can obtain a feasible solution at only one 

iteration by using the operation of (22). However, we need m iterations to obtain 

the same feasible solutions by using the Balas' procedure. In addition, we shall 

denote by J, the ] 8 in order to show that the value of v/ is computed. 

Next, we define the indices set N,." which corresponds to the variable X; to 

introduce into the basis for the solution vector U,. where two solution vector U,. and 

u• are given and k~s, J,.<;;;.J8 • 

Also, we define by k,,. the maximum k1 such as J-;;
1 

<;;;, J,., and by PN,." the joint 

of the sets PN and N,.". That is, 

(24) 

Here, we select the variables x; to introduce into the basis for the given solution 

vector U" so that the value of v /'"' can be maximum among the variables having 

the indices of the indices set pi N,.• and that the value of the objective function can 

be, at any case smaller than z*<•) where p1 EP,,,,., p1 "?;,p(j(p)EJ,.+i-J,.). 

In this case, if Z8 = <f,, we select the variable x; to which the value of v /''" is 

maximum among the variables having the indices of the set N,.". Moreover, if 

z8 =</, and P8 *</,, we select the variable X; so that the value of v/'"' can be 

maximum for p1 EP,.,,., P1 ("?;,p). We define by I,. the set ofindicesj, selected as 

mentioned above, that is, 

{

{j1(P) I v,1,."' = max v/'•, j =j(P1), j(Pi) EN,.", P~Pi~Po, Pi EP,.,.} 

I,,= for P,. *"' ,. 
U1(P) I v1/,. = max v/'•, j EN,."} for P,,,. = <f, 

(25) 

where Po is the maximum p such as 

(26) 

As we described in the previous section, in order to obtain a feasible solution, 

we must take the value of x; as one to which a;;(iEM) is as small as possible. For 

this purpose, we considered the value ofv;,,; i.e., V;8 is the sum of negative components 
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of the solution vector us+m. Therefore, if we can determine the values of x; (j EI;), 

we must cancel v/. From these facts, the values v/m assigned to a certain solution 

U" are successively cancelled in the subsequent iterations according to certain rules. 

In this case, we define c,.s(k~s) as the indices set of the indexj which corresponds 

to the cancelled v/m until the solution vector us has been obtained. Moreover, 

we denote by cs the set of cancelled v /' until the solution vector us has been 

obtained for all k(JiiC J,.); that is 

(27) 

We shall now define for the solution U" the set of those indicesj E N-C8 such 

that, if the variable x; were introduced into the basis, the value of the objective 

function would exceed the value z*cs) as Ds; 

Ds = {jl}EN-C8, C;~z*C-')-z-'} 

Further, we shall define the following sets. 

Ns = N-(CsUDs), 

w/ = ~;e;M.,:-(y/-a,;), wherejEPN. 

(28) 

(29) 

(30) 

Then, if there is some setj1 (p) which has only one element, among the set of sets 

j(p)EN8 and w;/ is negative (w;/<0) for some pEP, it is not necessary to 

introduce the variable x ;i into the basis. Since, the new solution U" which is 

obtained by the iterations for the solution us does not satisfy the constraint p 
from the definition ofw/ and moreover PNn N,.=</> because of N,,cN. andj1 $N.,. 

Let Es denote the above mentioned indices setj(w/<0), that is, 

and let N_. define the following indices set. 

(32) 

It is noted that N8 =</J for the feasible solution us from the definition of the Zs 

and D
8

• 

Similarly to Ds, for the pair of solutions U" and us(k<s), we define D,,8 as the 

set of indices j E (N,.m -C,.m8
), such that, if the variable X; were introduced into 

the basis, then the value of the objective function would exceed the value z*cs); 

(33) 

Denoting the indices set N,, s as 

(34) 
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if there exists a setj1 (p) EN1,8 which has the only one element and w1/<0 for some 

pEP, then it is not necessary to introduce the variable x1 into the basis. 

Then, we shall define the set of indices j 1 as E,,"; 

From the above mentioned fact, we define the following indices set N 11"; 

N,," = N,,,. -(C,,8 UD11" UE,,3) = N,,8-E,,8 (36) 

Whenever a solution U" is obtained, only the improving vectors for that 

solution are considered for introduction into the basis. Whenever the set of 

improving vectors for a solution U" is found to be void, this is to be interpreted as a 

stop signal, which means that there is no feasible solution U" such that J,,c J., and 

z 11 <z*C">. 

5. Solution Algorithm 

We start with the feasible solution U 0
, for which 

X!' = 0, Y 0 = B, z0 = 0, Jo = </> (37) 

Suppose that after s iterations we have obtained the solution U\ for which 

jEj,, 

jE (N-J.) 

y/ = b,-~JeJaaiJ 

z,, = ~Je}aCJ 

(iEM) 

(38) 

(39) 

(40) 

For the above mentioned situation, the following procedure is then adopted: 

Step 1. Cheeky/ (iEM). 

la. If y/~0(iEM), set z.,=z*C"> and go to step 4. However, if 

s=0, then U 0 is the optimal solution and the algorithm stops. 

I b. If there exists i1 such that y,i" <0, then go to step 2. 

Step 2. Check the following equation. If N.,=<I>, then we have the same 

procedure of the step 2a. 

(ily/<0), (41) 

where ar; means the negative element of the matrix A. 
2a. If there exists i1 EMp(PEP) for which eq. (41) does not hold, 

set k (j,.=j11(p)) as k0 and go to step 3. In this case return the 

cancelled v 1111 to the original place where j E (J, - J 11) and J ;.1 CJ •. 
However, if k=s and there exists i1 for which eq. (41) does not 
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hold and which belongs only to MfJ, then go to step 4. 

2b. Ifeq. (41) holds for all i(y/<0) as strict inequalities, compute the 

value of Is and obtain the following value. 

ls+m = ls U ls, m = Card. (ls) 

z,,+1 = Zs+1-1 +ch+i' (l = 2, 3, ···, m) 

Y _s+z =y-s+1-1+a-. 
I I IJS+/) 

(42) 

(43) 

(44) 

where is+z means j which belong to (ls+z-ls+z_ 1 ). Then after 

the computation of the above described values ( 42), ( 43), ( 44), 

set ls as J; and cancel v/ (j Els) and go to next iteration (say, 

step 1). 

2c. If eq. (41) holds for all i (y/<0), and there exists a set M/ such 

that eq. (41) holds as equalities for iEM/, go to step 6. 

Step 3. Check the relation 

(i I y/'<O) (45) 

from k=k0 by the increasing order of k. 

(If N,.=</J, then we have the same procedure of the step 3 a.) 

3a. If there exists i1 EMp(pEP) for which eq. (45) does not hold, 

then set k=s and go to step 4. 

3b. Ifeq. (45) holds for all i (y/<0) as strict inequalities, cancel vj,.1"
111 

and repeat step 3 for k1 (l,.cl1ri, where AcB means that that A 
Ill m 

is the maximum set of A' which is contained in B; A'cB.) 
3c. If eq. (45) holds for all i (y/<0), and there exists a set M,.S such 

that eq. (45) hold as equalities for iEM,.8, go to step 6. 

Step 4. Check the relation 

(ily/'<O) (46) 

from the k such as l1rC ls by the decreasing order of k for i(y/'<0) . .. 
(If N,.s=</J, then we have the same procedure of the step 4a.) 

4a. If there exists i,EMp(pEP) for which eq. (46) does not hold, 

return back v,./'"'(l,.c 1,.1) to the original place and repeat the 
m 

step 4 for k2 (j,.2 c 1,.1). If ther exists iEMp y/'1<0, j,.
1 

j,./p), .. 
put Q,.S as the set of i1 EMp for which eq. (46) does not hold and 

go to step 5. 

If there does not exist k2 , the algorithm stops. Then, if Z8 =</J, 

there is no feasible solution and if Z8 =1=</J, then z9 =z*C") becomes 
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the optimal solution U" in the stage. 

4b. Ifeq. (46) holds for all iEM(y/'<0) as strict inequalities, compute 

the value of I,. and obtain the following values. 

ls+m = J,. Ul,., Card. (1,.) = m 

Zs+i = z,.+cis+1 

Zs+I = Zs+l-1+ci,+i 
s+l I, Y; = Y; -a;;.+1 

Y .sH =y-s+1-1_a.. • 
, • 'J•+I 

(l = 2, 3, ···, m) 

(47) 

(48) 

(49) 

(50) 

(51) 

Then, after the computation of the above described values, cancel 

v /''" for all j E J,, and go to the next iteration. 

4c. If eq. (46) holds for all i(y/<0), and there exists a set M,." such 

that eq. (46) hold as equalities for iEM,.8, go to step 6. 

Step 5. Check the relation (52) for i (y/'1<0) and the relation (53) for i 
EQ,.8. 

If X = </>, then we have the same procedure as that of step 5a. 

If Card. (X)=l and w;/1<0 and w/<0 for j 1EX, we have the 

same procedure of that of step 5a. If w;/1~0 and w;/~O, we 

have the procedure of step 5b. Where, X=pNn (N,,,.UD,,,.)­

{j,.1} 

~jEXlli]~y/'i 

~jEXlliJ ~y/' 

(ii iEMp, y/'1<0) 

(iEQ1,8
) 

(52) 

(53) 

5a. If there exist i1 E MP and i2 E Q1,8 simultaneously for which eq. 

(52) and eq. (53) do not hold respectively, then we repeat step 

4 fork" where J,.,c J,.
3
cj,., J,.

3
=J,.3(p). If there does not exist 

m 

k,, we have the same procedure as that of steps 4b, where there does 

not exist k2• 

5b. Ifeq. (52) andeq. (53) holdforalli(y/'1<0) and iEQ,." respective­

ly, we repeat the procedure of step 4 for ks (j,.scJ,.). If there .. 
does not exist ks we have the same procedure as that of step 4b. 

Step 6. Check the relation 

(54) 

where F,," means the set ofindicesj for which a;;<O at least one i 
EM,.s. Note thatjEN,. if from step 2c or 3c, andjEN,,s if from 

step 4c. 
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6a. If eq. (54) holds, set 

ls+t = J~UF,." 
•H I, "1, Y; = Y; - ~JEF1'a;; 

and cancel v",,, for allj EF/ and go to the next iteration. 

6b. If eq. (54) does not hold, return back V;1,/''" (j11 S ]111 ) to the 

original place and repeat the procedure of step 4 for kiJ,,2cj11) • .. 
If there does not exist k2, we have the same procedure as that of step 

4b. 

Remark. In the following, we shall describe the procedure of computations of 

I,. and I,.. 
1. Computation of I,. 
Step 1. Obtain the set P8 • 

Step 2. If P8 =</J, then compute v/(j EN,.) and obtain the maximum 

v;/ among v/(jEN,.) and set I.={j0}. 

Step 3. If P,.=t-</J, then compute v/ for j j(p), pEP., and obtain the 

maximum v;: for pEP0 among v/(j=j(p)). 

3a. If z,.=</J, then set l,.=Upl PEP,}. 
3b. If z.=t-</J, then set l,=UplP<Pi, pEP8 } wherep1 is the maximum 

p which satisfies eq. (55). 

(55) 

2. Computation of 111 
Step 1. Obtain the set P ,.,.. 

Step 2. If P ,.,. = </J, then obtain the maximum v ;/"' of v /"' (j E N11
8

) and set 

l11=Uo}. 

Step 3. If P11,.=f:.rp, then obtain the maximum v,: of v/ (j=j(p)) for all 

PEP,., P~Pi, l11,,,J1,i,j1,1 =j,,(p)' 
3a. Ifz.,=</J, then set l.,=UplP~Pi,PEP,.}. 
3b. If z,.=f:.</J, then, set l,.={jpjp1 ~p~p0 , pEP0 • Where Po is the 

maximump which satisfies eq. (56). 

(56) 

6. Some Remarks on the efficiency of the algorithm 

Since the solution algorithm which is described in the previous section is an 

extension of Balas' algorithm, the algorithm is essentially same as the additive 

algorithm. However, we can delete many iterations by applying the proposed 
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algorithm for the weighted distribution problem comparing with additive algorithm. 

The characteristics of our algorithm are the following three points: 

(i) Introduction of more than one variables into the basis at a time 

(ii) Institution of the step 5 

(iii) Institution of the set Ea and the set E1,8. 
The above three points are deviced to check the feasibility for the constraint 

a in order to utilize the properties of the given problem as much as possible. 

In the case of (i), though there exists the over introduc;tion of the variables 

into the basis, we can modify these over introduction by step 3. In the case of 

(ii), the merit can be described by the following fact; that is, ifwe have the process 

of step 4 for k, (J,,, c ] 113 c ] 11) after the decision of step 5 a for a solution U 11, we 
"' 

can delete n'( ~n-l) s times of iterations for step 4, and by this fact, we can delete 

n' ! iterations at best. In the case of (iii), this algorithm is efficient for the case, 

where we have the decision of step lb and Pa =I= 0 for a solution U/ that is, we can 

delete a few interations by considering the elements of the set N8 for the step. 

7. fflustrative Esamples 

(Problem) Find X such as 

Minimize 

Subject to 

-3x1 -5x2+2x3-5x, 

-2x1 +3x2 -2x3 +4x, 

-5x5 +5x6 -6x7- x8 ~ -5 

-4X5-2Xe-5X7-2Xa~ -6 

-~-~-~-~-~-~-~-~~-8 
-3x1 + x2-4x3+ x,- x5-2x6 +3x7-3x8 ~-3 

Xi, x2 , ... , x8 ~0 

(Solution) First, we obtain the following fundamental set. 

P = {l, 2}, 1N = {l, 2, 3, 4}, 2N = {5, 6, 7, 8}, N = 1N U2N 

Ml= {l, 2}, M2 = {3, 4}, M .. = Ml UM2, Mfl = {5, 6}, 

M = M .. U Mfl and also ] 0 = </J, Z0 = 0 , 

Yi°= h1=-7, Y20 = h2 = 3, Yso = -5, y,o = -6, Yso = -8, y/=-3. 
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(iteration 1) 

step 1. 

step 2. 
y,° <0 for i = 1, 3, 4, 5, 6, then this is the state of the step 1 b. 

C0 =D0=E0 =</J, N0=N-(C0 UD0 UE0)={l(l), 2(1), 3(1), 4(1), 
5(2), 6(2), 7(2), 8(2)}. 

~jENollIJ= -3-5-5= -13<yi°= - 7 

~;eNoaSJ= -5-6-1 =-12<y3°= -5 

~jENolliJ=-13<y.o=-6 

~jENoasJ= -34<yso=-8 

~jENoll6J= -13<yao= -3 

then this is the state of step 2b. 

P0={l, 2} 

v1=~iE1M1°-(y,-a,1) + ~,e1M11
-(y;°-a,1) = -4-5= -9 

V2= ~iE2M1°-(y;°-a,2) + ~iEzM11-(y,°-a,2) = -2-6-4= -12 

v3°=-13, v/=-11, v5°=-5, v/=-17, v/=-12, v8°=-ll 

Henceforth, we have max v/=vi°=-9 forj j(l) (EN0) and max v/=v5° 

=-5 forj-j(2) (EN0). Then we have 

/ 0 ={1(1), 5(2)}, l 2=l0 LJ/0 ={1(1), 5(2)}, Card. (/0)=2, 

z1 =O+c1 =5, z2=z+c5=5+8= 13 

y/=:Yt0-a11 =-4, y/=3-a21 =5, y/=-5, y/=-6, y/=-5, 

y6
1=0, y/=y/= -4, y/--"y/=5, y/=0, y/=2, y 5

2=2, y/= 1. 

Putting lo as 10- and cancel vi° and v5° and go to iteration 2. 

(iteration 2) 

step 1. y,2<0 for i=l, 4 (lb) 

step 2. C2={l, 5}, D2 =</J, E2 =</J. Then we have 

N2={2(1), 3(1), 4(1), 6(2), 7(2), 8(2)}. 

~jeN2llIJ=-10<y/=-4, 

~jeN8lliJ= -9 <y/= -2 (2b) 

P2 ={l, 2} 

v/=0, v/=0, v/= -5, v/= -2, v/=0 
For j=j(l), max v/=v/=v/=0. However, we take v.2 for max 

v/ because c4 =2<c2<4. 

Forj=j(2), max v/=v.2=0. 

Therefore, we have 

/ 2 ={4(1), 8(2)}, 12+2=1,={(l), 5(2), 4(1), 8(2)}. 
In this case, 
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(iteration 3) 

y/=1, y/=1, y/=0, y/=-2, y/=6, y,3=0 

y/=1, y/=1, y/=1, y:=o, y/=11, y/=3. 
Put 12- instead of 12 and cancel v/ and v8

2
• 

step 1. For ally/60 (la), we put z,=z*<') and go to step 4. 

step 4. Since Ca'={4, 8}, c2=7>z*<')-z3=5 for k=3, we have Da'={2}. 

(iteration 4) 

Na'= N2-(Ca' UDa') = {3(1), 6(2), 7(2)}. 

Since Card. {j(l)}=l, ws'=-1<0, we have Es'={3}. 

Therefore, 

Na' = {6(2), 7(2)} . 

~JeN3'a4.1=-2-5=-7<y.3=-2 (4b). 
F . "(2) 2 2 2 *<') or J=J , max v1 =v7 =- , c7<z -z3• 

Therefore, 13={7(2)}, 15={1(1), 5(2), 4(1), 7(2)} 

=ls Uh 
In this case, 

Z 5 = 16 

y/= 1, Y2s= 1, Yas=6, .Y,s=3, Yr..s~9, y/:d:.~3 
and cancel vt 

step 1. y/<0, for i=5 (lb) 

step 2. C5 ={1, 4, 5, 7, 8}, L>5={2} . 

E5={3} (w3
5 =-1<0}. 

Therefore, 

~JeN5a6J=-2<y8
5=-3 (2a). 

Since i( =6) E MfJ, go to step 4. 

step 4. Since C3
5 ={4, 7, 8}, D3

5 ={2}, E/={6} 

for k=3 (j3Cl5), we have N3
5 ={3(1)}. ,. 

~JeN3aij=0> y/= -2 (4a). 
Since y/60 for iEM2 , return back v/ to t~e original place and 

repeat step 4 for k=2. 

Then we have 

C2
5 ={4}, D2

5 ={2}, E/={3} and N/={6{2), ·7(2), 8(2)}. 

~JeNlaIJ=O> y/= -4 (4a). 
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Since y/<0 for iEMu return back v.2 to the original place and 

repeat step 4 fork= l. 

Then, 

C,5={1, 5}, D,5=E,5=</J, and N,5={2(1), 3(1), 4(1), 6(2), 7(2), 

8(2)}. 

~;eN
1
ai]<y/for i=l, 3, 4, 5 (4b) 
0 - 0 - 11 (fi ·- "(2)) *C

5
) maxv;-V8 -- orJ-'J ,c8 <z -z1 • 

Therefore, we have 

y/= -4, y/=5, y/= -4, y/= -4, y/=0, y/=3 and cancel v8°. 

(iteration 5) 

step 1. y/<0 for i=l, 3, 4 (lb) 

step 2. C6 ={1, 5, 8}, D6=E6 =r/J and 

N6 ={2(1), 3(1), 4(1), 6(2), 7(2)} 

~JeN6a0<Y.6 for i=l, 3, 4. 

(iteration 6) 

step 1. 

step 2. 

step 4. 

Pa={l, 2}, v/=0, v/= -6, v:=o, Ve
6= -3, v/=0. 

max v/=v/=v:=o (in this case, we take v: as max v/, since 

c4 <c2) for} j(l) 

max v/=v/-:--0 forj=j(2). 

Moreover, c4+-c1<z*C5)-z6• Then we have 

J,={4(1), 7(2)}, ] 8 ={1(1), 8(2), 4(1), 7(2)} 

Z1= 12, Z8 = 18 

y/=l, y/=l, y/=-4, y/=-4, y/==4, y/=2 

y/=1, y 2
8 =l, y/=2, y/=l, y5

8 =7, y/=-1. 
Put ] 6 as ] 8- and cancel v: and v/. 

y/<0 for i=6 (lb) 

C8 ={1, 4, 5, 7, 8}, D8 ={2}, E8 ={3, 6} and N8 =</J (2a) 

C/={4, 7}, D/=</J, E/={6}, and N/={2(1), 3(1)} for k=7. 

~jENg8atjy/ for i=3, 4. (4a) 

Return back v/ to the original place. 

c,s={4}, Des=Ee=r/J 

and then 

N/={2(1), 3(1), 6(2), 7(2)} for k=6. 
~jEN6

8aiJ<y/ for i=l, 3, 4 (4b) 

max v/=v/ for j=j(l) 

max v/=v/ for j=j(2). 

Then we have 16={2(1), 7(2)}, ] 10={1(1), 8(2), 2(1), 7(2)}, 
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(iteration 7) 

Z 9= 17, Z10= 18, 

y/=1, y/=2, y3
9 =-4, y/=-4, y/=2, y/=2 

y/o=l,y/o=2, y/o=2, y/o=l, y/o=5, y/o=-1. 

step 1. y/0 <0 for i=6 (lb) 

step 2. C10 ={1, 2, 4, 5, 7, 8}, D10={6}, E10={3} 

and then 

N1o=<I> (2a) 
step 4. C/0={2, 4, 7}, D9

10 ---:-{6}, E9
10={3} 

and then 

(iteration 8) 

N/0 =</, for k=9 (4a) 

C/0={2, 4}, D/0 =</>, E6
10={3} 

and then 

N/0={6(2), 7(2)} for k=6. ;;tl 

:E;EN610 aIJ>Y1 (4a) 

C/0 ={1, 5, 8}, D/0 =</, 

and then 

N/0 ={2(1), 3(1), 4(1), 6(2), 7(2)} for k=l. 

:E;ENi1° aD<y/ for i=l, 3, 4, 5 (4b) 
maxv/=v/forj j(2) 
11={7(2)}, ] 11 ={1(1), 7(2)}, Z11 =6 

y/1=-4,y/1=5,ys11=1,y/1=-1,y611=-2,y/1=-3. 

step 1. y/1<0 for i=l, 4, 5, 6 (lb) 

step 2. C11 ={1, 5, 7, 8}, D11 =</>, E11 ={6} 
and then 

N11 ={2(1), 3(1), 4(1)} 

:E1eN11 aTJ> y/1 for i=4 (4a) 
step 4. Taking k=l, N/1={2(1), 3(1), 4(1)} and 

:E;EN111 aTJ> y 1 for i1=3, 4. (4a) 
Sincey/1<0 for i( =3) EM2> go to step 5 by taking Q/1={3, 4}. 

step 5. X=2N0 U(2NnD0)-{7}={5, 6, 8}, 

:E1ex an<y/1 for i=4 (5b) 
step 6. Taking k=O, 

N0
11 ={2(1), 3(1), 4(1), 5(1), 6(1), 7(1), 8(1)} 

:E;EN011 aTJ<y/ for i=l, 3, 4, 5, 6 (4b) 
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max v/=v/ for j j(l) 

max v/=v5° for j=j(2) 

l/={4(1), 5(2)}, ] 13 ={4(1), 5(2)}, Z12 =2, Z13 =7. 

y/2=-2,y/2=-I,y.'2=-5,y/2=-6,y/2=-4,y/2=-4, 

Y1 ta= -2, y/s= -1, ya's=O, y/s= -2,y/s=3, y/s= -3. 

(iteration 9) 

step I. y/3<0 for i=l, 4, 6 (lb) 

step 2. N13={2(1), 3(1), 6(2), 7(2), 8(2)} 

:E,eN13 aTJ<Y; for i=l, 4, 6. 
v/3= -8, v8

13= -4, v/3= - 7, v/3= -6, v/3=0 

max v/3 =v/3 for j=j(l) 

max v/3 =v/3 for j=j(2) 

I1a={3(1), 8(2)}, l1s={4(1), 5(2), 3(1), 8(2)} 

Z 14=8, Z 15 =13, 

y/'= -4,y/'= I,y/'=0,y,14= -2,y/'=7,y/'= 1 
y/s= -4,y/s= l,y/s= l,y/s=O,y/s= 12,y61s=4. 

(iteration 10) 

I. 

step I. y/5 <0 for i=l (lb) 

step 2. N1,={6(2), 7(2)}, :E,eNis aTJ> y/5, i1 = I EM (2a) 

step 3. N14 ={6(2), 7(2)} 

:E;eNu a0> y/' for i1 = I (3a) 
step 4. N1/

5 =2(1), 6(2), 7(2), 8(2) 

:E;EN1s15 a0 > y/3 for i1 = I, 2 (4a) 

Since i1 EM1 andy/3 <0 for i(=l)EM" 

put Q1a16={l, 2} and go to step 5. 

step 5. X={2}, w/<0, w/3<0 (5a) 
step 4. Taking k=O, N0

15 ={2(1), 3(1), 5(2), 6(2), 7(2), 8(2)} 

:E;ENi5 aTJ> y;° for i= I stop. 

Comparison of the nUD1ber of the iteration of 

Balas' algorithm and the proposed one 

Balas' algorithm 

Number of Solution Number of Solution 
iteration iteration 

1 {5} 6 {5, I, 4, 7, 3} 

2 {5, I} 7 {5, 1, 4, 6} 

3 {5, 1, 4} 8 {5, 8} 
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Number of Solution Number of Solution 
iterations iterations 

4 {5, 1, 4, 8} 9 {5, 2} 

5 {5, 1, 4, 7} 10 {5, 2, 3} 

11 {5, 2, 3, 7} 22 {7} 

12 {5, 2, 3, 6} 23 {7, l} 

13 {8} 24 {7, 1, 4} 

14 {8, 7} 25 {7, I, 4, 3} 

15 {8, 7, l} 26 {7, I, 4, 3, 2} 

16 {8, 7, I, 4} 27 {7, 1, 4, 3, 2, 6} 

17 {8, 7, I, 2} 28 {7, 1, 2} 

18 {8, 7, I, 2, 3} 29 {7, 1, 2, 3} 

19 {8, 7, 2} 30 {7, 3} 

20 {8, 7, 2, 3} 31 {7, 3, 2} 

21 {8, 7, 2, 3, 4} 

II. Proposed algorithm 

Number of Solution Number of Solution 
iterations iterations 

1 {l, 5} 6 {l, 8, 2, 7} 

2 {I, 5, 4, 8} 7 {l, 7} 

3 {I, 5, 4, 7} 8 {4, 5} 

4 {I, 8} 9 {4, 5, 3, 8} 

5 {l, 8, 4, 7} 
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