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Bang-Bang Control of Electro-hydraulic Servomechanisms 

By 

Hideo HANAFUSA* and Keiichiro MIYATA* 

(Received April l 7, 1969) 

The optimum control is given for an electro-hydraulic servomechanism. It is 
approximated by two quasi-optimum controls which are reasonable in point of the control 
sensitivity and the practical construction of control system. 

The optimum control is obtained by the bang-bang control except in a very special 
case. The optimum switching points are determined as intersections of the phase 
trajectories and the switching surface in the phase space. We determine the switching 
points by the projections on the phase plane. 

The switching based on the fixed mathematical model is not favorable for considering 
the sensitivities to parameter variations. 

Two quasi-optimum controls are considered. One is obtained by approximating the 
optimum switching curve by two lines on the phase plane, the other by approximating the 
switching surface by a switching plane in the phase space. The errors due to the ap­
proximations are investigated. 

The satisfactory results are obtained in experiments and the advantages of this method 
are verified. 

1. Introduction 

621 

Electro-hydraulic servomechanisms have high performance in point of the 

response speed and the control accuracy, but the compressibility of oil and the 

friction of the actuator sometimes prevent obtaining the required accuracy when 

the conventional feedback control systems are used. 

Now, we provide a practical method to realize the simple and accurate control. 

System equations contain the effect of the friction of the actuator. 1> The time 

optimum control is obtained from Pontryagin's maximum principle. 2> The sensi­

tivities3> to the system parameters are discussed. 

Two kinds of quasi-optimum controls4 > are presented. One is a conventional 

position-plus-velocity feedback control. The other is a quasi optimization method 

with an acceleration feedback in addition to the above two feedbacks. The ex­

periments of the actual equipments verified the validity and advantages of this 

method. 

* Automation Research Laboratory 
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2. State Equations of the Hydraulic Driving System 

The block diagram of the servo system is shown in Fig. 1. Considering the 

compressibility of hydraulic oil and the frictions of the actuator, the equation of 

motion of the valve-cylinder system enclosed by brocken lines is written with a non­

dimensional expression, Eq. (I). 

where 

valve-cylinder system 
r-------------------------
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Fig. I. Block diagram of a valve-controlled electro­
hydraulic servomechanism 

z = xf(Imfwn), w~ = (A;+k2Dp)/CMp, 

U =I/Im, I= k1Aif(A;+k2Dp), q = k2Fvfk1Apim, 

r = wnt, ( = (CDP+Mpk2)/2{CMp(A;+k2Dp) 112}. 

Eq. (1) is written with state variables as follows; 

Z=MZ+N, 

where • means the differentiation by r, and 

( I ) 

( 2) 

The problem is that the load should be tpansported from x=x0 to x=O. Initial 

and terminal conditions are 

( 3 )' 
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( 4) 

,=0 and r= T indicate the time of the beginning and the end of the motion, 

respectively. If the inertia force is less than the static friction force, the system 

stops at the terminal. This condition is 

( 5) 

where P represents the acceleration at the terminal. 

3. Optimal Control 

3.1 Time Optimum Control of the System with C 2 l 

When ( 2 I, the characteristic equation of Eq. (I) has real roots and the 

response of the system is non-oscillatory. The optimum control for ( 2 l is 

obtained by Pontryagin's maximum principle. The roots of the characteristic 

equation of Eq. ( 1), ..:t 10 ..:t 2 and ,'.! 3 are 

Then, Eq. (2) is transformed to a canonical form5 J as 

where 

dY - = KY+L(u-q) 
dr 

The initial and terminal conditions in canonical form become 

y 10 = B, y 20 = B and y 30 = B-A, 

Y 1 r = -P, Y 2 r = -P and Y 3 r = -P, 

when r = 0, 

when r = T. 

( 7 ) 

( 8) 

( 9) 

Introducing adjoint variables, ¢ 10 ¢ 2 and </J 3, Hamiltonian H is constructed 

from Eq. (7) as follows, 

( 10) 

where 
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(11) 

Assuming </110, </1 20 and <Pao as the initial value of </Ji, </1 2 and <Pa, respectively, the 

solutions of Eq. ( 11) are obtained as follows; 

Hamiltonian H should be maximum at any r according to the maximum 

principle. This means 

(12) 
where 

lul sl. 
From the transversality condition at the terminal, 

(13) 

Obviously, u= 1 should be used at the beginning and it means 

(14) 

The sign of g(r) changes two times at most, because </11 and </12 change 

exponentially and <Pa is constant. As the value of g(r) at r= Tis zero by Eq. (13), 

g(r) becomes zero only once during the control process. This means 

</110<0, </1 20>0 and </1 30>0. 

g(r) changes as Fig. 2 and the optimum control can be accomplished by one 

switching of u. 

t: 
OJ 

+ 

Fig. 2. Chang of g(r) vs. r 
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3.2 Optimum Switching 
The optimum switching points are determined by the intersections of the 

forward trajectories which start from Z=Z0 with u= 1 and the reverse trajectories 

which termmate at the terminal point with u= -1. 

From Eq. (2), the forward trajectories become 

(15) 

where <)(r) is the transition matrix of Eq. (2) and 

(16) 

where <J>t -rJ 1s the i:ransition matrix in the reverse time, r= T-r, and 

The locus of the optimum switching points for various values of A is called the 

optimum switching curve. Furthermore varying B, the corresponding optimum 

switching curves make the surface in the z1z2z3 space, which is called the optimum 

switching surface. The equation of the surface is 

-3 

-2 

-I 

-2 

-3 

-4 

.Initial point 

Fig. 3. The optimum switching surface and the 
phase trajectory in the z1z2z8 space for a 
system with (=1.2 and q=0.2 

(I 7) 

Fig. 4. Projection of the optimum switching 
curve and the phase trajectories on the 
z1z2 and z1z3 planes for a system with 
(=1.2 and q=0.2 
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Fig. 3 shows the optimum switching surface for ( = 1.2 and q=0.2. Fig. 4 shows 

the projections of the optimum switching curve and the optimum phase trajectories 

for (=L2, q=0.2 and B=5 on the z1z2 and z1z3 planes. 

The optimum switching curve is S=SRAc shown by the broken line which is 

for the case of B> (q- I )/l1 and S
00 

is the switching point for A= 00 • The switching 

points move from S= to SR according as the initial points approach the terminal 

pos1t10n. At the switching on the curve S=S R, z/s are positive. When A=AR, the 

switching is performed at SR on the switching curve where z3=0. The switching 

points move from SR to Ac according as the initial points approach the terminal 

posHion over AR· za's become negative at the switching points in this case. 

·.,'Therefore, when the phase trajectroies intersect the optimum switching curve 

in the z1z2 plane, the controls should be switched from u= 1 to u= -1 on the curve 

S00SR and SRAc according to z3>0 and z3 <0 at the switching point, respectively. 

When A =Ac, the controller must be switched simultaneously with the start of 

the motion. When OA<OAc, in spite of simultaneous switching, the load cannot 

be transported to z1 =0, Z2 =0 and it overshoots the terminal position. The region 

OAc is called the uncontrollable region. 

In the case of Bs (q- I )/l0 the optimum switching curves on the z1 z2 plane 

h~ve no bottoms and the_ forward trajectory intersects the specific switching curve 

only once. The switching points move from S= to Ac' as the initial points approach 

the terminal position. Therefore, when Bs(q-l)/l0 the optimum switching 

points can be determined uniquely on the Z1Z, plane. 

-3 
-4 
~5 

-6 
Z2 
0 2 3 4 Z: I 

0 

_, 

-2 

Fig. 5. ·Relation between optimum switching curves and B 
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The optimum switching curves for the various initial acceleration B are shown 

m Fig. 5. The uncontrollable region decreases a~ _B_ does, This means that the 

difference between the static and dy?amic friction forces must_ be decreased and 

the rigidity of the system must be increased to obtain the high:a-ccuracy control. 

In the above discussions, we ass_ume I u I :S:: l which means that ·the forward and 

the reverse controls have the _same.'.m.<!g_nitudes and the_opposite>~igns. Next, we 

discuss the case where both controls have different magnitudes. 

In Fig. 6, the optimum traject~ries anq the optimum switching curve with [ u [ = 
5.8 u are shown where other parameters ~re the same as in Fig~ 4. The optimum 

.' l 

switching curve approaches the z1 axis_ imd .the switching take$ place at a nearer 

point than the case of I u I =u. The ;uncontrollable ;e~ion (}:Ac is remarkably 
. ' 

3 

2 

I 

o~~~~========::;:::::=:::===~i1 

-I 

-2 
-3 

-4 

-5 
l2 

0 

-I 

-2 

Fig. 6. 

2 3 4 5 6 

Projection of the optimum switching curve 
and the phase trajectories on the z1z2 and 
z1z3 planes for a system with ( = 1.2, 
q=0.2 and B=5, when u=l and il=5.8 

reduced and high accuracy can be obtained. However, extremely strong reverse 

control stops the load so rapidly that the terminal acceleration exceeds the limit of 

Eq. (5) and the load turns back after the stop. 

Inversely, the small reverse control increases the uncontrollable region. Fig. 7 

shows the optimum trajectories and the optimum switching curve for ll=O. This 
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Fig. 7. Projection of the optimum switching curve and the phase 
trajectories on the z1z2 and z1z3 planes for a system with 
(=1.2, q=0.2 and B=5, when u=l and iZ=O 

control can be achieved only by switching off the controller prior to the terminal 

position and is often used because of the simplicity of the device. But it cannot 

avoid the wide uncontrollable region and so the less control accuracy. 

The limit point Ac of the controllable region can be determined by the tra­

jectories which are obtained by substituting u= -uM into Eq. (1) at -r=O, where 

uM is the maximum absolute value of the reverse control. 

When ( = 1, the trajectories are similar to the case of (>I and the controls 

are determined by similar ways as before. 

4. Time Optimum Control of the System with ( < 1 

4.1 Occurrence of Stick-slip 

When ( <l, the characteristic equation of Eq. (1) has complex roots and 

the motion ofload is oscillatory. This means the possibility of stick-slip. 7> Eq. (2) 

is transformed as follows, 

dy1 = -(v1-(t)v2+(u-q) 
dr 

dy2 = wy1 -(y2 
d-r 

dya = u-q. 
d-r . 

(18) 
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where 

Y1 = -(z2-Za 

Y2 = -CtJZ2 (19) 

Ya= -Z1-2( Z2-Z3' CtJ = (l -(2)1/2 

From Eqs. (3) and (19), the initial conditions ofEq. (18) become as 

y 10 =B, y 20 =0 and y 30 =B-A. (20) 

The forward trajectories on the y 1y 2 plane are obtained as follows, substituting 

u=l in Eq. (18). 

dyl = -(yl -CtJY2+ Q 
dy2 wy1 - ( Y2 

(21) 

where 

Q= 1-q. 

Using y 1 -( Q=r cos 0, y 2 -wQ=r sin 0 and the initial conditions of Eq. (20), we 

obtain 

where (22) 

(j -1( wQ ) 
0 = tan --~ , 

(Q-B 

From Eq. (22), the forward trajectories are the logarithmic spirals which have the 

center at 01 ( ( Q, wQ), start from the point on the y 1 axis and rotate counter­

clockwise with r. Fig. 8 shows the case of ( =0.2, q=0.2, B=2 and B=5. 

The condition of the occurrence of stick-slip is discussed now. y 2 is proportional 

to the velocity because y 2= - wz2 • The load stops when the trajectory intersects 

the y 1 axis. As soon as the motion stops, the static friction acts on the load. The 

load stops until the driving force overcomes the static friction. The load repeats 

the stick and the slip. The existence of stick-slip depends on whether the trajectory 

intersects the y1 axis or not. 

In Fig. 8, the forward trajectory for B=2 starts from y1 =2, and goes toward 

Oi- In this case, no stick-slip occurs and the velocity approaches the constant 

value after the damped oscillation. The trajectory for B=5 starts fromy1 =5 and 

goes as M S1 S2 S 3 SL· y 2 becomes zero at SL and the motion stops. The condition 

of the occurrence of stick-slip is given by y 2 min.s0. Substituting Eq. (22) iny2 = 
wQ+r sin 0, the minimum value of y 2 is obtained. The condition for Y2min.s0 

becomes 
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reverse trajectory 

(P=4) 
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Si_. switching point 

forward 
trajectory 
(8=5) 

-:'l~::::::--=t--__..,7'f---~,----------=:c~--'---~_--~---'--=:=.:~M.__-y, 
5

initil point 
(B,0) 

Fig. 8. Projection of the forward and the reverse trajectories on the Y,Yi plane for 
a system with (=0.2 and q=0.2 

(B2 -2B(Q+Q:)'12 {exp (-5__ tan-' B 0 
)} ~Q, 

(J) B(-Q 

where 

_, B0 
2 i!'<tan ---< it'. 

B(-Q 

4.2 Control by One Time Switching 

(23) 

When ( < 1, multiple switchings of the controller are necessary to realize the 

optimum control in general.8l9l However, we consider one time switching of the 

controller for the simple construction of the control system. 

The switching is carried out at the intersection of the forward and the reverse 

trajectory. The forward trajectories are given by Eq. (22). The reverse tra­

jectories in the y,y2 plane are obtained in the same way as the forward trajectories 

under the terminal condition, 

Y,r = -P, Y2T = 0 and YsT = -P • 

They are the logarithmic spirals which have the center at 0 2 (-(Q, -0Q), 

start from the point on they, axis and rotate clockwise according to the increase 

of the reverse time 'fas shown in Fig. 8. The switching points are the intersections 

of the forward and reverse trajectories in the y 1y 2y 3 space. For example, the poiht 

S, is the switching point for A=8 and B=5, and S2 for A= 10 and B=5. If the 
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controller is switched at this point, the load can be transported to z1 =0, z2 =:,0 and 

the terminal acceleration P=4. 

( 1) The case when stick-slip occurs 

When stick-slip occurs, the load repeats the same motion intermittetitly. The 

problem exists in the final step which involves the terminal posi"tion.' Fig. 9 is 
,,. ---

the projection of the phase trajectories and the optimum switching curve on the 

z1z2 and z1 z3 planes for ( =0.2, q=0.2 and B=S. In this c,ase, the control is 

4 

cl 

2 

0 

-I 

-2 

-3 

-4 

0 

-I 

-3 
s', 

-4 2 

'i ' ,/ sw1tch1ng 
- 5 - point 

7 8 9 10 

r---
•witching curve 

Fig. 9. Projection of the optimum switching curve 
and the phase trajectories on the z1z2 and 
z1 z3 planes for a system with a stick-slip 
motion ((=0.2, q=0.2 and B=5) 

determined in a way similar to the case of(~l. When A=AL, the trajectories 

enter z1 =0 and z 2 =0 with u=l. This means that OAL is the displacement of the 

one step of stick-slip. Ac is the limit of controllable region which exists intermit­

tently as 

m,OAc::;;,A::;;,m,OAL 

(2) The case when no stick-slip occurs 

(m=l, 2,-··). 

Fig. 10 is the projection of the trajectories and the optimum switching curve 
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7 8 

phase trajectory 
I 

-

2 

[•witct,ing \ sw, c mg curve 
point 

9 10 

Fig. JO. Projection of the optimum switching curve and the phase trajectories on the z1z2 and 
z1z3 planes for a system with no stick-slip motion ((=0.2, q=0.2 and B=2) 

on the z1z2 and z1z3 planes for C =0.2, q=0.2 and B=2. On the z1z" plane, the 

switching curve is the spiral which starts from Ac on the z1 axis and approaches the 

center Sw The forward trajectories start from the points on the z1 axis and approach 

the terminal position with damped oscillations and intersect the switching curve. 

The forward trajectories intersect with the switching curve at many points apparent 

in the z1z2 plane, but the real intersection is only one in the z1z2z3 space. The 

switching point goes to the center of the spiral as Ac, Si, S2 , •· • according as the 

initial point goes away from Ac, as A1 , A2 , •••• S~ is the switching point for the 

trajectory which starts from the infinite distance. 

4.3 Discussion about Optimality 

The maximum principle gives the necessary and sufficient condition for the 

time optimum control of the system which is linear and has the additive control 

function. 6> Consequently, if the control of the above one time switching maximizes 

Hamiltonian H, optimality is guaranteed. 

We use Hamiltonian fl with the reverse time f instead of Hin this case. fl is 

where 



Solving Eq. (25), 
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difi1 /dr = -8H/8y1 = -(ifi1+wifi2, 

difi2/dr = -8H/8y2 = -wifi1+Cifi2, 

difi3/dr = -8Hf8.y3 = 0. 

ifi1(f) = (ifi10 cos wr+ifi20 sin cvf) exp (-(f), 

ifi2(f) = ( -ifi10 sin 0r+ifi20 cos wf) exp ( -(f) , 

ifia(f) = ifiao • 
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(25) 

(26) 

From the condition of maximizing Eq. (24), the optimum control u is obtained 

as follows. 

It is obvious that u= l at the initial point (i.e. the terminal point in the reverse time) 

and it means 

(28) 

From the transversality condition at the terminal point, 

The maximum value of H should be zero because Tis not determined. This means 

at the terminal point. 

Obtaining ifi10, ifi20 and ifi30 from Eqs. (28), (29) and (30) and substituting them 

into Eq. (27), 

u = -sgn {g(f)} , (31) 

where 

g(f) = e-r;, cos (wr-a)-cos a, (32) 

a= tan_1(P+e-r;T{Bw sin wT +(B( -Q) cos wT}+Q. (
33

) 
wP+e-!;T{Bw cos cvT-(B(-Q) sin wT} 

The switching times are represented by Ts and fs in the forward and the 

reverse time, respectively. Then 

(34) 

Substituting Eqs. (33) and (34) into Eq. (32) and eliminating Ts by using 

the relation between Ts and f 5 obtained from Eq. (2), 
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Now the sign of g(f) is examined. The denominator of Eq. (35) can be 

rewritten as eu{P-z3 ( T)}, where z3 ( T) is obtained from Eq. (2) and 

z3(T) = {(B(-Q) sin euT-Beu cos euT} exp (-CT)/eu. 

From numerical calculation, P-z3(T)>O and the denominator ofg(f) is positive. 

Next, the sign of cosa in Eq. (35) is examined. The denominator of Eq. (33) 

is the same as Eq. (35) and is positive. The numerator of Eq. (33) is rewritten as 

({P-z3(T)}-z2(T), where z2(T) is obtained from Eq. (2). Since P-z3(T)>O 

and -z2(T)>O, tan a>O and O<a<rr/2 from Eq. (33). This means cos a>O. 

Consequently, Eq. (31) is reduced to the following: 

ll = -sgn {f(f)}, (36) 

where 

Fig. 11 shows J(f) in the reverse time. f (f) =0 at f=fs because the switching 

occurs at this moment. Therefore, if the change of the sign off(f) does not occur 

during f 8 <f< T, the one time switching control is time optimal. 

tci1 

+ 
2'lHWf8 

t'----"~w_r.~•----'r~-----2,n_,w~fp'-f-/ __ 3_nr-wT 

Fig. 1 I. Sketch of the behavior off ('f) vs. f 

First, when stick-slip occurs, the relation between the angle O of the forward 

trajectory in they1y 2 plane of Fig. 8 and -r is 

(38) 

For example, the time -r n at Non the trajectory starting from y 1 =5 is given by 

L.N01M/eu. Also on the reverse trajectory, 

(39) 

From this, the total control period Tis given by T=(L.S20 1M+ L.S20 2G)/eu where 
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S2 is the switching point. In this case, T<211:/w obviously from the figure. At 

f=211:/w,f(211:/w) =e-s"s sin wfsV 2"i;/w_ 1). Therefore,/(211:/w) <0 for 0<wfs<11:. 

r: P which represents the time at the second peak off (f) is larger than 211: /w. 
f(f)=0 occurs only at f=fs during 0<r::::::; T. Optimality of the one time 

switching control is ensured in this case. 

Next, when no stick-slip occurs, the forward trajectory comes near 01 in Fig. 8 

asymptotically and T takes all values according to the initial conditions. 

When 0< T<211:/w, optimality is ensured as well as in the case with the 

stick-slip. When T>211:/w, optimality is guaranteed for all initial conditions 

only iff(r) <0 at f<f8 • This condition is given by f(f p) <0 and it becomes from 

Eq. (37) as follows: 

where 

f(f p) is the function of ( and fs· fs depends on A and B, so f(f p) is the function 

of A and B. Fig. 12 shows the critical condition between Band ( of f(f p) ::::;;o and 

the occurrence of stick-slip given by Eq. (23). Optimality is not always guaranteed 

in the shaded region which exists for ( <0.05. However, this condition scarcely 

occurs in practice. 

4 ,-----r---,--.,-----, 

CD 
2 f---+--,----_r---t-C-r-it-ic_a_l ----1condition 

of stick-slip 

0.1 0.2 0.3 

Fig. 12. Region where the optimality is guaranteed 
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5. Sensitivity Analysis 

The optimum switching curves are obtained for an ideal mathematical model. 

But in practical use, the sensitivity which means the effect of the changes of 

parameters to the control accuracy should be considered. 

The terminal error which occurs when the controller is switched at the different 

point from the optimum switching point is investigated. The terminal error means 

the position deviation of the load position from the terminal position where the 

velocity equals to zero. 

The forward and the reverse trajectories shown by Eqs. (15) and (16) re­

presented as follows: 

Z(,) ~ F,(,)+G,(,)B+(fl 

Z(r) = F".i(r) +G2 (r)P 

(41) 

(42) 

If the terminal positions are given by z,r=a, Z2r=0 and Z 3r=P instead 

of z,r=O, z2r=0 and z3T=P, the reverse trajectory becomes 

(43) 

Substituting z,-a=z,', Eq. (43) reduces to Eq. (42). Therefore, the optimum 

switching surface is the same form given by Eq. (17), that is, 

(44) 

That is obtained by moving the switching surface of h(z,, z2, z3) =0 by a along the 

z1 axis. In other words, the terminal error a is equal to the distance along the z, 

axis from the actual switching point to the optimum switching point. 

The deviation of the optimum switching point caused by the change of initial 

condition is obtained as follows. The suffix op indicates the values at the normal 

optimum switching point. The optimum switching point is expressed as Z 0 P when 

the initial condition is expressed as Z 0• 

When the initial conditions change slightly from Z 0 to Z 0 +.JZ0, each state 

variables slightly changes from the normal values. The following equation is 

obtained from Eq. (15). 
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Therefore the equation about small variables is obtained as follows: 

(45) 

Because, neglecting the second order small variables and using Taylor expansion, 

¢('op +.J, op) (Zo+.dZo) = ¢( 'op)Zo+ M¢(' op)Zo.d, ot, +¢( 'op).dZo, 

iTop+,lfrop ~Top( a it 
¢(,0 p+.d,0 p-s)N1ds = 'op-s)N1 +-[ ¢(t-s)N1ds].d, 0 p 

0 0 at O t=Top 

= [°P ¢(,0 p-s)N1 ds+ rP M¢(, 0 p-s)N1 ds .d,0 p 

+N1.d'op 

= rP ¢(,0 p-s)N1 ds+¢(,0 p)N1.d,0 P, 

and 

The similar equation in the reverse time is obtained in the same way . 

.d, op is obtained by .dZ0 p=.dZop- Substituting .d, op in Eq. ( 45), the variation of the 

optimum switching point .dZ0 p is obtained. 

Now, we consider the ~ariation of B due to th~ change of friction force. Fig. 13 

shows the relation between the terminal erq::>r and the optimum switching curve 

for the change of B from B0 to B0 +.dB. The solid lines show the optimum 

I ' 

/ :l---forword trajectory when B=Bo+ <1B 
I , 

7-----forward trajectory when s~sa 
I , i-r- -optimum switching curve when B= Bo+AB 

_j , 

/ ---..,,},:----optimum switching curve when B = Bo 
I '/ S . a::;, 0 

/Sb / 
/ / 

/ 

Fig. 13. Terminal error due to a change of B 
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switching curve and the trajectory in the case of B=B0 • The optimum switching 

point is S0 for B=B0 +JB, but the controller is actually switched at the point Sb 

because Bis estimated as B 0 • The terminal error caused by this switching delay is 

given as the horizontal distance a from the point Sb to the optimum switching 

curve. 

Fig. 14 shows the relation between (8a/8B) 80 which represents the sensitivity 

of the terminal error to B. It depends on A. The normal optimum switching 

curves and the optimum trajectories are also shown. B0 =5 and B0 = 1 are con­

sidered as the normal value and other parameters are same as Fig. 4. When 

B0= 1, (8a/8B) 80 is small for all initial points. The control accuracy is not much 

affected by the variation of B and the high accuracy control is possible. 

3 

J 0 

'" 
ID 2 
~ ..,, 
"' 1 

0 
2 

Bo= I 
-1 

-2 

22 
0 

-1 

-2 

Fig. 14. Sensitivities to initial points for ( = 1.2, 
q=0.2 and B=l,5 

Conversely, (8a/8B)
80 

is relatively large for B0=5 and it becomes infinite at 

A=AR. This means that the trajectory from AR cannot intersect the optimum 

switching curve when B changes slightly. This is evident from the figure. The 

region near A=AR is a kind of uncontrollable region. The uncontrollable region 

should be avoided in practical control systems. Therefore, the switching curve 

on the z1z2 plane is not favorable in the meaning of the sensitivity as well as the 

difficulty of its realization. The following two quasi-optimization methods are pre­

sented to avoid the contradiction of the optimum control. 
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6. Quasi-optimum Controls 

6.1 Quasi-optimum switching line 
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This method intends to obtain the quasi-optimum control by approximating 

the optimum switching curve projected on the z1 z2 plane by a straight line. This 

means the control by a conventional position-plus-velocity feedback. 

The optimum switching curve for (:Zl and B>(q-l)jl..1 is approximated 

by two lines. Fig. 15 shows the trajectories in the case of ( = 1.2, q=0.2 and B=5. 

The controller should be switched by the line CD which passes through O and S~, if 

z3 is positive at the intersection of the forward trajectory and the optimum switching 

line. The other switching line ® which is perpendicular to the z1 axis and passes 

through Ac is used if z3 is negative at the intersection. The control should be zero 

when the velocity becomes zero. When the line CD is used, the terminal error is 

maximum for A=AR. When the line ® is used, the switching point becomes 

-I 

Fig. 15. Trajectories of quasi-optimum controls 
by using quasi-optimum switching 
lines for (=1.2, q=0.2 and B=5 

Fig. 16. Trajectories of quasi-optimum controls 
by using quasi-optimum switching 
line for (=1.2, q=0.2 and B=l 
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optimum for A=Ac and A=AR. The terminal error is very small for OAc<A< 

OAR and the control is almost optimum. 

The optimum switching curve has not the peak when B~(q-l)/).1 and it 

1s approximated by a single switching line. Fig. 16 shows the case of C = 1.2, q= 

l2 
0 2 3 4 -l------~-~-~~-~~---~- l, 

0 

·-1 

-2 

switching line for B =4 

optimum switching line for B =5 

optimum switching line for B =6 

terminal error 

quasi-optimum switching line 

Fig. 17. Sensitivities of quasi-opti~um switching for C = 1.2, q=0.2 and 
B=5±1 

-0.5 

-1.0 

optimum switching line for 
optimum switching line for 
optimum switching line for 

Soo 

B= 1.2 
B= I. 0 
8=0.8 

Fig. 18. Sensitivities of quasi-optimum switching 
for C=l.2, q=0.2 and B=l±0.2 
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0.2 and B= I. In this case, the switching points are determined uniquely by the 

intersections of the forward trajectories and the switching line. The terminal 

error is very small for all initial points. 

Next, we study the sensitivity to the parameters variation in the system. As 

an example, we consider the case when the initial acceleration B changes by ±20% 

from the normal value. Fig. 17 and Fig. 18 shows the terminal error for B=5± 1 

and B= I ±0.2, respectively (both for ( = 1.2 and q=0.2). The relatively large 

error occurs for some initial points in the case of B>(q-1)/J..,, while the terminal 

error is small for all initial points in the case of B :::;,_ ( q-1) /J.. 1 • The approximation 

by the switching line is very effective especially in B:::;.(q-l)/J..1 • 

6.2 Quasi-optimum switchin plane 

As previously described, the optimum switching curves construct the optimum 

switching surface. Now, the surface is approximated by a simple plane. This 

means the quasi-optimum control by the acceleration feedback in addition to the 

conventional position-plus-velocity feedback. 

The surface in Fig. 3 is approximated by the plane which is determined by 

S=, SR and Ac in Fig. 19. The co-ordinates of S=, SR and Ac are obtained by 

Fig. 3 and they are given by (s1 , s2 , 0), (r,, r2, 0) and (a,, 0, a3 ), respectively. The 

equation of the plane is as follows: 

-5 

-3 

-2 

-I 

' 
' 

I 

I 

/ 

OJ-f---+: ,-· ---f--+----+----+--Z, 

-3 -2 -1-v/// // 2 

/ / -4 , 

Ac 

/ 
/ 

3 4 

Fig. 19. The quasi-optimum switching plane 
for ( = 1.2 and q=0.2 

s,, s2 , 0, 

ai, 0, a3 , 

= 0. 

This plane approximates the surface well in the case of B> (q-1) /J..1 • 

(47) 
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optimum switching curve for B = 3 

i!2 
optimum switching curve for B=5 

to 3 4 s 6 
~o·•,~--~+---~-c-+--~--~------.------.---~~, 

-1: 

-2 

Fig. 20. 

trajectory for 
B=3 

phase trajectory for 
8=5 

Switching points and the phase trajectories of quasi-optimum controls 
by using the quasi-optimum switching plane for (=1.2, q=0.2 and 
B=3,5 

Fig. 20 shows the phase trajectories and the switching points by such quasi­

optimum control. B is chosen as 5 and 3, and the other paraters are same as Fig. 4. 

TheycorrespondtothecaseofB>(q-l)(A1 • In the figure, the optimum switching 

curves are shown for B=5 and B=3. Little differences exist between the actual 

and optimum switching points. The terminal error due to the variation of the 

parameters is so small that this method is very effective. 

In the case of B ~ ( q-1) / J.1 , the quasi-optimum control by the switching plane 

is performed more easily than the previous case. Although the acceleration 

feedback is somewhat difficult, we can obtain the same effect by the pressure 

feedback instead of the acceleration feedback in a hydraulic control system. 

The above description concerns the case of (::::: 1. For ( < 1, the optimum 

control is performed by the very complicated switching surface. But we might 

obtain the quasi-optimum control by the proper choice of the switching plane. 

7. Experiment 

7.1 Experimental equipment 

The structure of the experimental equipment 1s shown in Fig. 21. The 

position of load is detected by the differential transformer. The analog computer 

is used for the controller and drives the servo valve by the output directly. The 

cylinder bore is of 35.6 mm and the piston has double rods. The high pressure 



Bang-Bang Control of Electro-hydraulic Servomechanisms 

actuator 

Servo valve 

Differential 
trans farmer 

Fig. 21. Valve-controlled electro-hydraulic servomechanism 
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rubber hoses are used for the connection of the servo valve and the actuator. This 

increases the compliance of the system and makes the control difficult. 

The dimensions of the control system are following. 

AP - 10 cm2 B 0.99 

MP - 0.143 kg sec2/cm F. - 120 kg 

k, 2.31 cm3/mA sec Fv - 90 kg 

k2 0.465 cm5/kg sec lm 10 mA 

C 0.078 cm5/kg Ct.In 95 rad/sec 

DP 19 kg sec/cm ' 0.7 

P. 18 kg/cm2 q - 0.18 

7 .2 Experimental results 

Though the spiral optimum switching curves are necessary for C =0. 7 in the 

actual system, the switching line through the origin is used for simplicity. The 

position-plus-velocity signal is produced in the analog computer by differen­

tiating the output displacement signal. To avoid the effect of the noise, the 

dead band was inserted near the zero velocity. When the velocity enters this 

region, the controller is switched off and the load stops. 

Fig. 22 and Fig. 23 show the output displacements and the input voltage to the 

servo valve for the initial point x0=3.95 mm and x0 =2.44 mm, respectively. The 

controller is switched at point S. The actuating signal is switched off at point L 

where the load velocity enters the dead band. 

Fig. 24 shows the maximum errors for the various initial conditions. They 

were obtained by twenty experiments under the same condition. The terminal 

errors were measured by a dial gauge. The maximum errors are less than 0.02 mm. 
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Fig. 22. Output displacement of 
an actuator and an input 
voltage to a torquemotor for 
x0 =2.44 mm and supply pre­
ssure=l8 kg/cm2 
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Fig. 24. Relation between maximum errors and 
initial points 
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Fig. 23. Output displacement of 
an actuator and an input 
voltage to a torquemoter for 
x0 =3.95 mm and supply pre­
ssure= 18 kg/cm2 
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Fig. 25. Output displacement of an actu­
ator and an inut voltage to a torque­
motor for x0 =3.88 mm and supply 
pressure=30 kg/cm2 
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Fig. 25 shows the response with the supply pressure 30 kg/cm2• The table 

is pulled back after the stop. This is due to the final acceleration over the limit of 

Eq. (5). 

8. Conclusion 

For the position control by the valve-controlled electro-hydraulic ser­

mechanisms the optimum control was obtained by the one time switching of the 

controller and the optimum switching surface was determined. The effect of the 

magnitude of the control and the friction force to the control accuracy was discussed. 

The quasi-optimum controls which are the approximation of the switching 

curve in the phase plane by the switching lines and of the switching surface in the 

phase space by the switching plane were presented. The control accuracies were 

examined for these approximations. 

By the experiment, the high control accuracy was obtained and the possibility 

of the practical use is verified. 

Ap 

DP 
Fs 

Fv 
i 

Zm 

kl 

k2 

MP 
Tf 
X 

A 

B 
p 

q 

T 

z 

u 

1: 

( 

(l)n 

Nomenclature 

effective area of a piston 

viscous damping coefficient 

static friction force 

kinetic friction force 

input different current 

rated different current 

flow gain of servo valve 

flow sensitivity to output pressure 

mass of the moving parts 

velocity feedback coefficient 

output displacement 

initial position 

initial acceleration 

terminal acceleration 

kinetic friction 

control period 

output displacement 

control 

time 

damping coefficient 

natural frequency 

[cm2
] 

[kg sec/cm] 

[kg] 

[kg] 

[mA] 

[mA] 

[ cm3 /sec mA] 

[ cm5 /kg sec] 

[kg sec2 /cm] 

[-] 

[cm] 

[-] 

[-] 

[-] 

[-] 

[-] 

[-] 

[-] 

[-] 

[-] 

[-] 
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