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Buoyancy Effects on Forced Convection Flow and 
Heat Transfer 

By 

Itaru MrnmYosm* and Yoshihiro KIKUCHI* 

(Received January 28, 1969) 

Buoyancy effects on a forced convection laminar flow with uniform internal heat 
generation along a vertical flat plate are theoretically studied. Solutions are obtained by 
means of the integral equation method (the approximate Karman-Pohlhausen method) 
and are compared with the solutions obtained by the series expansion method in which 
the stream function and the temperature function are expanded into power series in terms 
of the parameter Grf/Re! for Pr~ l, whereas in terms of the parameter Grff(Re!Pr) 
for Pr< I. Velocity and temperature distributions of fluid are presented for various 
values of the governing parameters. 

1. Introduction 

363 

Fluids with internal heat generation are commonly encountered in nuclear 

reactors. If the heat-generating fluids have low flow velocity, density differences 

arise as a result of differences in temperature, and the effects of buoyancy forces 

may not be ignored. 

Many investigators have studied combined laminar flow of forced and free­

convection and heat transfer of heat-generating fluids. Heat transfer by this 

combined laiminar flow with uniform internal heat generation in vertical tube 

was studied by Hallman(!>. Iqbal<2> has dealt with the influence of free convection 

on forced flow in a horizontal circular tube. But they solved their problems by 

assuming that the velocity and temperature distributions are fully developed. 

The purpose of this study is to analyze the velocity and temperature dis­

tributions of fluid flowing along a vertical plate by means of the integral equation 

method which Michiyoshi et al. <3 > have undertaken and to compare the appoximate 

solutions by the integral equation method with the solutions by the series expansion 

method. 

When a fluid flows without internal heat generation along a flat plate having 

a constant temperature, Sparrow & Gregg<4> and Szewczyk<5> showed that the 

buoyancy effects on a forced laminar convection flow along a vertical plate are 
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governed by the parameter Gr"'/Re;, and Mori<6
> and Sparrow & Minkowycz<7> 

showed that the buoyancy effects on a forced convection flow over a horizontal 

plate are governed by Gr.,/Re!l2
• If other cases of the fluid flowing with internal 

heat generation along the flat plate or with a constant heat flux at the wall are 

further examined, the buoyancy effects are found to be governed by the para­

meters given in Table 1. 

Table I. Parameters representing buoyancy effects on forced convection flow. 

I internal heat 
I 

I I boundary condition I vertical flat plate horizontal flat plate generation I 

T.,=constant Gr, Gr, 

Q.=0 
Re.2 Re,5/2 

q=constant Gr,t 3> Gr,t 
Re.512 Re.3 

Gr,* (P~l) 1> 
q=O 

Re.3 Gr,* 

Gr,~ (Pr<l) 
Re,112 

Q. e=coristant Re,3Pr 
--· 

T.,=T0 
Gr,* 2> Gr,* 
Re.3 Re,112 

1): Chapter 2, 2): Appendix 1, 3): Appendix 2. 

We analyze mainly the heat transfer in the case of a fluicj. flowing with uniform 

internal heat generation along a vertical flat plate which is thermally insulated by 

means of both integral equation method and series expansion method in the fol­

lowing chapter. The solutions obtained by both methods are compared with each 

other .. Other cases are dealt with in Appendices. 

2. Analysis 

Let us consider a two-dimensional geometry such as illustrated in Fig. 1. The 

vertical plate is thermally insulated, i.e., q=O. The fluid contacts with the leading 

u., To 
Q gr~vi:f' uw q 
* tie 

l 0 y 
Tw X 

X T., o½ 
Q ttttt q 
* 

Uo, To 

(a)Upflow (b)Downttow 

Fig. I. Coordinate systems. 
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edge (x=O) of plate wit.ha specific uniform velocity u0 and. uniform temperature T 0, 

and flows with uniform' internal heat generation· along the plate. 

The equatiol).s of continuity, momentum and energy which govern combined 

laminar flow of forced and free-convection and heat transfer are respectively 

OU+ av= O, 
ax ay 

OU OU o2u 
u-+v- = v-±gf3(T-T) ax ay ay2 

• : 
00 

' 

ar ar a2r Q 
u-+v- =a-+-, ox oy oy2 cp 

( 1 ) 

( 2) 

( 3 ) 

where the plus and minus signs in Eq. (2) refer respectively to the upflow and 

downflow illustrated in Fig. 1 (a) and (b). The order of double sign is the same 

below. Except the density differences needed to form the buoyancy term, the 

variation of fluid properties has been neglected. Viscous dissipation· has also 

been deleted. The boundary conditions are 

y = 0 : u = v = 0, •. 8T/8y = 0, 

2.1 The lp.tegral Equation Method 

We first introduce the boundary layer thickness and solve this problem. The 

velocity and temperature distributions may be written as polynomials satisfying 

the boundary conditions 

u _ 3 y _ 1 ( y )
3 ± ro2 

a} [ 1 y -( y )
2 + 1 ( y )

3
] ( 5 ) 

U
0 

2 O 2 0 12 2 0 o 2 o , 

where ii and d T are respectively the hydrodynamic and thermal boundary layer 

thicknesses and r is the factor accounting for the effects of buoyancy forces: 

Prg/3Q 
r = llbcpv2 

r=O implies absence of the buoyancy effects. 

( 7) 

If or may be assumed to be equal to o, Eqs. (5) and (6) become respectively 
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( 9) 

Integrating Eqs. (2) and (3) with respect toy with Eq. (1) held in view, we 

obtain 

d ~6 
2 d ~

6 

(au) i6 
- udy-uy=a- udy= -1,1 - ± g(i(T-Ty=Br)dy, 
dx O dx O ay y=O 0 

(10) 

d ~
8
r d i6

r (a T) ~ar Q, - uTdy-Ty=ar- udy=-a- + -dy. 
dx o dx o 8y y=o o cp 

( 11) 

2.1.1 Case of IJ~IJT 

Inserting Eqs. (5) and (6) into Eqs. (10) and (11) and taking account of 

o~oT, we have 

with the boundary conditions 

x = 0: o =OT= 0. 

If o can be substituted for oT in Eqs. (12) and (13), we obtain 

[ ~=i=ra•(-1 ±~)]do
2 

= !._[3=i=ro'] 
280 672 6720 dx u0 12 ' 

[ 
29 ± 11 ra•] d 0

2 
_ a [ 3 =i= ro• ] . 

280 4320 dx U0 4 144 

Eq. ( 16) is identical with the results obtained by Michiyoshi et al. <3 > 

2.1.2 Case of IJ~oT 

(12) 

(14) 

(15) 

(16) 

In the case of o ~ o T we have the following equations in place of Eqs. ( 12) and 

(13): 
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[~=r=ra2a2 (-1-± ro2o})]da2=r=ra4[_I_± ra2a}]do} 
280 T 1120 12096 dx 1680 15120 dx 

( 17) 

( 18) 

If oT is assumed to be edual to o, Eqs. (17) and (18), of course, become 

respectively Eqs. (15) and (16). 

2.2 The Series Expansion Method 

2.2.1 Power series in terms of Gr!/Re! 
We note that Eq. (I) may be satisfied by a stream function ,fr, defined in the 

usual way as 

u = B,jr ' 
By 

V = - B,jr . 
Bx 

(19) 

In the absence of the buoyancy effects, the solution of these equations would 

correspond to the purely forced convection situation. Inasmuch as our aim here 

is to find the deviations from forced convection due to buoyancy effects, it is 

natural to seek solutions in the form of a series of which the first term is the purely 

forced convection solution. So we write 

(20) 

(21) 

where 7/, Gr!, and Re., are, respectively, the Blasius similarity variable, modified 

Grashof number, and Reynolds number. These quantities are defined as 

U0 X 
Re.,=-

1,1 
(22) 

The functions Jo and 00 are associated with the purely forced convection problem, 

while};, 01, •· • give the deviation due to buoyancy effects. 

When Eqs. (20) and (21) are substituted in Eqs. ( 19), (2) and (3), and terms 
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are grouped according to powers of (fr;/ Re!, there result the following ordinary 

differential equations fot lo, 00 ,f;_ and 0;: 

+Ill+__!_+ +II - 0 Jo 
2 

JoJo - , (23a) 

0o'' -tPr( + lo0o'-fo
1
00+ 1) = 0, (23b) 

+Ill+__!_ + +11 +2 + +II -2 +f +f +__!_ (0 -1) = 0 
J1 2 JoJ1 2 JlJo JoJ1 Pr o , (24a) 

0/' +Pr(__!_ lo0/ +~ f;_0o'-3lo'0 1-f;_'0) =0. 
2 2 / 

(24b) 

with boundary conditions 

lo(0) =f;_(0) = 0, fo'(0) =f;_'(0) = 0, 0o'(0) = 0/(0) = 0, 

lo'(=)= 1, f;_'(=) = 0, 00 (=) = 1, 01 (=) = 0. 
(25) 

The solutions of Eqs. (23a) and (23b) were respectively given by Blasius<8> and 

Michiyoshi et al.<3> Numerical solutions for Eqs. (24a) and (24b) have been 

obtained by means of the Kyoto University Digital Computer (KDC-11), for 

Prandtl numbers of 0.01, 0.1, 0.72, 1.0, 5.0, and 10.0 using the Runge-Kutta 

numerical integration procedure. The numerical values of fn" (0) and 0 n(O) are 

tabulated in Table 2. 

Table 2. J.u(O) and O.(O). 

Pr I fo"(0) I /t(0) I 80 (0) I 81(0) 

0.01 0.3320575 / l.158668 / 
0.1 0.3320575 7.179953 1.520468 -3.898502 

0.72 0.3320575 2.267490 2.383997 -3.102781 

1.0 0.3320575 1.837776 2.614146 -2.913710 

5.0 0.3320575 0.6016313 4.278591 -1.891867 

10.0 0.3320575 0.3565922 5.354188 -1.480628 

2.2.2 Power series in terms of Gr;/(Re!Pr) 
Following a procedure similar to that presented in Section 2.2.1., the stream 

function and the temperature function are now expanded into a power series in 

terms of the parameter Gr;/(Re!Pr), i.e., 

,fr Gr; 
f =. ;- =lo(TJ)±R- ap fi(TJ)+ ... , 

V IIXUo e., r 
(26) 

(27) 
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Substituting these power-series expansions into Eqs. ( 19), (2) and (3) and 

grouping terms according to powers of Gr!/(Re!Pr), we obtain the following set of 

ordinary differential equations:, 

Bo'' +Pr(+ foBo'-fo' 80+ 1) = 0, 
1' 111 +__1__1' 1'"+2 f' f'"-2f''f''+B -1 - 0 J1 

2 
JoJ1 

2 
J1Jo JoJl o - , 

The boundary conditions are 

fo(0) = fr(0) = 0, fo'(0) = f/(0) = 0, 80
1 (0) = 8/(0) = 0, 

Jo'(=) = 1, j/(oo) = 0, 80(00) = 1, 81(00) = 0. 

(28a) 

(28b) 

(29a) 

(29b) 

(30) 

The zeroth approximation, i.e., the purely forced convection equations (28a) and 

(28b) are identical with Eqs. (23a) and (23b). Numerical solutions of Eqs. (29a) 

and (29b) have been obtained on KDC-II for various Prandtl numbers. The 

numerical values offn"(0) and Bn(0) are tabulated in Table 3. 

Table 3. f.H(0) and e.(0). 
,---------~------------~------~------, 

\ fo"(0) \ N(0) I 80(0) I Pr 

0.01 

0.1 

0.72 
1.0 

2.5 

5.0 

10.0 

0.33206 0.23237 1.1543 

0.33206 0. 71799 1.5205 

0.33206 1.6326 2.3840 

0.33206 1.8377 2.6141 

0.33206 2.4762 • 3.4383 

0.33206 3.0083 4.2786 

0.33206 3.5663 5.3542 

8,(0) 

-0.044232 

-0.38984 

-2.2340 

-2.9135 

-5.8401 

-9.4599 

-14.808 

The numerical values off," (0) and 81 (0) divided by Prandtl numbers are 

equal to the values off/'(0) and 81 (0) given in Table 2 respectively. It is seen that 

the value of -81 (0) becomes greater with decreasing Pr and -81 (0)>80 (0) for 

Pr~ I in Table 2, while in Table 3 ~81 (0) becomes greater with increasing 

Pr and -81 (0) >80 (0) for Pr~ 1. So the solutions may be obtained by expanding 

the stream function and the temperature function into power series in terms of 

the parameter Gr!/ Re! for Pr ~ l, whereas for Pr< l in terms of the parameter 

Grt/(Re!Pr). 
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3. Results and Discussions 

We first examine the temperature distributions of heat-generating fluid flowing 

along the thermally insulated vertical flat plate by forced convection alone obtained 

by the integral equation method. As a result the dimensionless wall temperature 

8(0) is related approximately to the Prandtl number Pr by the expression 

8(0) = 3.03Prus 

8 (0) = 1. 72 Pr0,0664 

(0. 72 -;;i,Pr ~ 10) , 

(0.001 ~Pr ~0.025) . 

(31a) 

(31 b) 

These values of 8(0) are about 10 per cent higher than the rigorous solutions given 

by Michiyoshi et al. <3 > 

Figure 2 shows the velocity and temperature distributions of fluid of Pr=S 

obtained for combined laminar flow of free convection and forced convection. 

The broken lines represent the solutions obtained by the integral equation method, 

and the solid lines are the solutions obtained by the series expansion method with 

the parameter Gr!/ Re!. 

0.9 

0.8 

~ 
" : 0.7 

0.6 

: 0.5 

0.3 

0.2 

It can be seen that the velocity distribution near the wall becomes steeper for 

~-0.3(Uf) 
Re, 

0.2(UF) 

Uf:lJJljlow 
Df:Downflow 
Pr=5 

• gAQxs 
Gr)(.=~ 

Re~=¥ 

-- Series Expansion 

---- Integral Equation 

.... 
I ,-. 

0 1
5 

II 4.5 
CD 

4 

3,5 

2.5 

1.5 

0.J(UF 

0.2(UF) 

0.HUF) 

. 

-- Series Expansion 

---- Integral Equation 

3(DF) 

2(DF) 

HDF) 

Uf:Upflow 
DF:Downflow 
Pr=5 

Gr:= g~e:s 
Re)(= ~x 

0 o~-o~.5-~--1.~5-~--2_~5-~-~3_-5-----"4 

H{Jf- 'l=Y/¼ 
(a) ve·locity distribution (b) Temperature distribution 

(a) (b) 

Fig. 2. Buoyancy effects on forced convection flow and heat transfer (Pr=5), 
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upflow (or flatter for downflow) with larger values of Gr;/Re;. This fact agrees 

with the results obtained by Szewczyk<5> in the case of a constant wall temperature. 

The solutions by the integral equation method are also in good agreement with 

those by the series expansion method. 

Figure 2 (b) shows that on account of the effects of buoyancy forces the tem­

perature near the wall is lower for upflow (or higher for downflow) compared with 

the purely forced convection. The wall temperature obtained by the integral 

equation method is higher than that by the series expansion method, and the 

former temperature distribution is steeper than the latter. This is because the 

boundary layer thickness is estimated to be too thin in the integral equation method. 

Figure 3 shows the velocity and temperature distributions for Prandtl number 
' of 0. 72. The broken lines are the distributions obtained by the integral equation 

method, assuming that the thermal boundary layer thickness or is equal to the 

hydrodynamic o. The solid lines are the solution by the series expansion method 

with the parameter Gr'!/(Re;Pr). 

Figure 3 (a) shows that for large values of Gr'!/(Re;Pr) the buoyancy effects 

cause flow reversal in a part of the boundary layer of downflow, as shown by the 

, ., ~-.,..---,--.,---,---,-----,----,----, 

1.0 

0.9 

~ 
~ 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

UF:Upflow 
DF=Downflow 
Pr=0.72 

Gr:=~ 

Rex= ~x 

-- Series Expansion 

---- Integral Equation 
(6,=~) 

-o. t0L--~0-'-=_s,--~---,1c1..s~~,---;;2."s ---;---.3'a_5---: 

'l=Y~ 

(a} Velocity distribution 

(a) 

1. 

-- Series Expansion 

---- Integral Equation 
(o,=6) 

UF:Upflow 
OF :Oownftow 
Pr=0.72 

Gr:=~ 

R~= u;x 

1 ok------;;o-'-a.s,----+---c11.s.-----!,--~'='-""""'!"----..:;~s:=j 
7/=y~· 

(b) Temperature distribution 

(b) 

Fig. 3. Buoyancy effects on forced convection flow and heat transfer (Pr=0.72). 



372 I taru MrcHrvosm and Y oshihiro KIKUCHI 

negative values of u/110. The solutions by the integral equation method agree 

fairly with those by the series expansion method. Although it is seen in Fig. 3(b) 

that in the case of upflow the buoyancy effects obtained by the integral method are 

weaker than those by the series expansion method, agreement will be improved 

if more higher power terms in the power-series expansion are used. 

4. Conclusion 

The effects of buoyancy forces on a forced convection laminar flow with uniform 

internal heat generation along a thermally insulated vertical flat plate were analyzed. 

Comparison of the integral equation method with the series expansion method has 

yielded the following conclusions: 

(I) The stream and temperature functions may be expanded into a power series 

in terms of the parameter Gr;/Re! for Pr;;;;; I, whereas in terms of Gr;/(Re!Pr) for 

Pr<I. 

(2) The solutions by the integral equation method agree fairly with those by the 

series expansion method. 

(3) For large values of the parameter Gr;/(Re!Pr) in Fig. 3(a) the buoyancy 

effects cause flow reversal in a part of the boundary layer of downflow. 

(4) The buoyancy effects on the temperature distribution result in the lower wall 

temperature for upflow and in the higher wall temperature for downflow. 

Nomenclature 

a Thermal diffusivity of fluid 

c Specific heat of fluid 

f Dimensionless stream function 

j,. nth stream function 

g Acceleration due to gravity 

Grx Grashof number defined as g/3( T- T 00)x3/v2 

Gr! Modified Grashof number defined by Eq. (22) 

GrJ Modified Grashofnumber defined by Eq. (46) 

Pr Prandtl number 

q Wall heat flux 

Q Heat generating rate per unit volume 

Re,, Reynolds number defined by Eq. (22) 

T Temperature 

u Velocity in the x-direction 

v Velocity in they-direction 
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x Coordinate along plate measured from leading edge 

y Coordinate normal to plate measured away from plate 

fJ Coefficient of thermal expansion of fluid 

r Buoyancy effects defined by Eq. (7) 

I' Buoyancy effects defined by Eq. (53) 

a Hydrodynamic boundary layer thickness 

IJT Thermal boundary layer thickness 

1/ Dimensionless coordinate defined by Eq. (22) 

(} Dimensionless temperature function defined by Eq. (6) 

(},. nth temperature function of(} 

8 Dimensionless temperature function defined by Eq. ( 45) 

8,. nth temperature function of 8 

;{ Thermal conductivity of fluid 

v Kinematic viscosity of fluid 

p Density of fluid 

,fr Stream function 

(Subscripts) 

w Conditions at wall (y=O) 

0 Conditions at inlet (x=O) 

oo Conditions outside boundary layer 
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Appendix I 

Case of Q=constant and Tw= T0 : 

373 

The fluid contacts with the leading edge of plate with a specific uniform 

velocity u0 and uniform temperature T0, and flows with uniform internal heat 

generation along the vertical plate whose temperature is kept at T0 • 

With respect to the coordinate system shown in Fig. 1, the equations governing 

combined laminar flow of forced and free-convection and heat transfer are 



374 Itaru M1cmvosm and Yoshihiro KIKUCHI 

au+ av = O, 
Bx By 

au au 82u 
u-+v- = v-±g/3(T-T=), 

Bx By 8y2 

u8T +vaT =a8
2

T + Q, 
Bx By 8y2 cp 

(32) 

(33) 

(34) 

. where the plus and minus signs in Eq. (33.) refer respectively to the upflow and 

downflow. The properties of the fluid are assumed to be constant, except the 

density differences needed to form the buoyancy term. The boundary conditions 

are 

y=0: u=v=0, T=T0 , 

y = oo : u = u0 , T = T0 +Qx/(u0 cp) . 
(35) 

Following a procedure,similar to that presented in Section 2.2.1. and expanding 

the stream and temperature functions into a power series in terms of Gr!/ Re!, we 

obtain the following set of ordinary differential equations: 

,111+_!_ F ,11 - 0 Jo 
2

JoJo - , (36a) 

0o''+Pr(-½-fo0o'-fo'00+1) = 0, (36b) 

+111 +_!_ F +11 +~ + +11 -2 +1 +1 +_!_ (0 -1) = 0 J1 2 JoJl 
2 

JlJo JoJl Pr o , (37a) 

(37b) 

with boundary conditions 

fo(0) = ii (0) = 0 , Jo' (0) = ii' (0) = 0, 00 (0) = 01 (0) = 0 , 

fo'(oo) = 1, Ji'(oo) = 0, 00(00) = 1, 01(00) = 0. 
(38) 

Table 4. J.n(0) and 0.'(0). 

Pr I N(0) N(0) 0o'(0) I 01'(0) 

0.01 0.3320575 -140.0893 0.1109723 -1.607827 

0.1 0.3320575 -10,81024 0.3664485 -0.2286015 

0.72 0.3320575 -0.6809172 1.156209 -0.004574791 

1 0.3320575 -0.3514885 1.418029 -0.01987674 

5 0.3320575 0.1012887 3.989876 -0.1456143 

10 0.3320575 0.09555734 6.295007 -0.1923763 
~ . -· -· 
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,.:iu 
2 .~ 

.... ~ 
0 

II 

"' 

Pr=10 

Fig. 4. Temperature distribution under forced flow. 
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0.2(UF) 
0.HUF)~ 

Uf:Upflow 
DF: Downtlow 

Pr=5 
~ ._ gnax' 
..... r ... -T>-'2 

Re.=¥ 

~--;:-;--'--r--'-=--+------c-½~-,---.1 
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Fig. 5. Buoyancy effects on forced convection flow and heat transfer (Pr=5). 
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Numerical solutions ofEqs. (36) and (37) have been obtained on KDC-II for various 

Prandtl numbers. The numerical values of fn" (0) and () ,.' (0) are tabulated in 

Table 4. 

Figure 4 shows the zeroth temperature functions, i.e., the purely forced con­

vection temperature distributions for various Prandtl numbers. It is seen that for 

large Prandtl numbers the temperature distribution has a peak in a part of the 

boundary layer and that the peak becomes higher with increasing Pr. 

The velocity and temperature distributions obtained for combined laminar 

flow of free and forced-convection are shown in Fig. 5(a) and (b) in the case of 

Pr=5. In this case, it can be seen that the buoyancy effects are negligibly small. 

Appendix 2 

Case of Q=0 and q=constant: 

A fluid flows without internal heat generation along a vertical flat plate with a 

constant heat flux q to the fluid at the wall. Using the coordinate system shown 

in Fig. I, the equations of mass, momentum and energy are respectively 

au+av = O, 
ax ay 

au au a2 u 
u-+v- = J.1-±g/3(T-Too), 

ax ay ay2 

uaT+vaT =a?_"T, 
ax ay ay2 

(39) 

(40) 

(41) 

where the plus and minus signs .in Eq. (40) refer, respectively, to the upflow and 

downflow. The boundary conditions are 

y = 0 : u = v = 0, q = -J.(aTJay) , 

y==: u=u0 , T=T0 

(42) 

A2.1. The Series Expansion Method 

By introducing the stream function defined by 

(43) 

the continuity equation (39) is satisfied. 

The stream function and the temperature function are expanded into 

,fr Grt J= ~ =fo(r;)±-~J;(r;)+···' V J.IXU0 Re;l2 (44) 
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T-T Grt 
e = V O = Bo(7J) ± R si2 81(7/) +···' _{j__ J.IX e,, 

;i Uo 

(45) 

where r;, Gr! and Re,, are, respectively, the Blasius similarity variable, modified 

Grashof number and Reynolds number. These quantities are defined as 

(46) 

The functions fo and 8 0 are associated with the purely forced convection problem, 

whilefi, Bi, ··· give the deviations from the forced convection due to bu~yancy 

effects. 

When these expansions are substituted into Eqs. (43), (40) and (41) and terms 

are grouped according to powers of Gr!f Re~l2, the following set of ordinary dif­

ferential eqations is obtained for Jo, 8 0,fi and 8 1 : 

Bo"+ Pr (fo8o'-Jo'8 0) = 0, 
2 

+ 111 +__l_ F •"-f--2 F +11 _1_ +1 
•

1 -f--8 - 0 J1 
2

JoJ1 J1Jo 
2

JoJ1 o-, 

with boundary conditions 

fo(0) =fi(0) = 0, fo'(0) =fi'(0) = 0, Bo'(0) = - 1, 

Jo'(oo) = 1, Ji'(oo) = 0, 8 0(00) = 8 1(00) = 0. 

(47a) 

(47b) 

(48a) 

(48b) 

e '(0) - 0 1 
- ' (49) 

Numerical solutions ofEqs. (47) and (48) have been obtained on KDC-II for various 

Prandtl numbers. The numerical values of fn" (0) and 8 n(0) are tabulated in 

Table 5. 

Table 5. f.''(0) and 0.(0). 
··-

Pr I N(0) I fi"(0) I 0 0 (0) 
I 81(0) 

0.01 0.3320575 20.37142 12.89298 -58.21213 

0.1 0.3320575 6.621191 4.983698 -11.77136 

0.72 0.3320575 2.450472 2.439788 -2.781628 

I 0.3320575 2.059825 2.178790 -2.150799 

5 0.3320575 0.8377988 1.263940 -0.5607496 

10 0.3320575 
I 

0.5547342 1.002121 --0.3019560 



378 Itaru Mrcmvosm and Yoshihiro KIKUCHI 

For purely forced convection, the dimensionless wall temperature 8 0 (0) 1s 

related approximately to Pr by 

8 0 (0) = 2.18Pr-0
·
33s 

8 0(0) = 1.67 Pr-0
•
445 

(0. 72 ~Pr~ 10) , 

(0.0025~Pr ~0.025). 

A2.2. The Integral Equation Method 

(50a) 

(50b) 

When the boundary layer thickness is introduced, the velocity and tem­

perature distributions may be written as polynomials satisfying the boundary 

conditions 

where o and oT are respectively the hydrodynamic and thermal boundary layer 

thicknesses and I' is the factor accounting for the buoyancy effects: 

I' _ Prg(iq 
- u

0
cp1/ · 

I' =0 implies absence of the buoyancy effects. 

(53) 

Integrating Eqs. (40) and (41) with 1espect toy with Eq. (39) held in view, we 

obtain 

(54) 

(55) 

If the Prandtl number is not far from unity, the thermal boundary layer 

thickness oT may be assumed to be equal to the hydrodynamic o. Substituting 

o for oT in Eqs. (51), (52) and (55), we obtain 

d ~s d ~s (aT) - uTdy-Ty=s- u4Y = -a - . 
dx o dx o By y=o 

Inserting Eqs. (56) and (57) into Eq. (58), we have 

(56) 

(57) 

(58) 



Buoyancy Effects on Forced Convection Flow and Heat Trans/er 

( 37 ±~ras)da2 

630 24192 dx 

a 

379 

(59) 

Integrating under o=O at x=0, we obtain 

X = !!_00
2

( 37 ±-l_l _I'03 ). 

a 630 12096 

If the buoyancy effects are neglected, I' =0, then we have 

37 U00
2 

x=----. 
630 a 

(60) 

(61) 

The dimensionless wall temperature thus can be expressed by 

1 . /630 1 
B(O) = z'V 3y p-;:~2.06. (62) 

This value 1s m good agreement with e 0(0) = 2.18 for Pr= I obtained from 

Eq. (50a). 

Figure 6 shows the buoyancy effects on the velocity and temperature dis­

tributions in the case of Pr=0. 72. The solid lines are the solutions by the series 
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Fig. 6. Buoya?cy effects on forced convection flow and heat transfer (Pr=0.72). 
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expansion method and the broken lines are those by the integral equation method 

with assumption of or=o. The parameter GrZ/Re!l2 represents the buoyancy 

effects. 

The velocity distribution shown in Fig. 6(a) becomes steeper for upflow (or 

flatter for downflow) with larger values of Gr!/Re!l2
• The buoyancy effects 

also cause flow reversal for large Gr!/Re!l2 in downflow. It is seen that on account 

of the buoyancy effects the temperature near the wall is lower for upflow ( or higher 

for downflow) in Fig. 6(b). The buoyancy effects obtained by the integral equation 

method are smaller for upflow (or larger for downflow) compared with those by 

the series expansion method. 




