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On the Iteration Method for the Optimal Transmission 
System Planning 

By 

Takao OKADA* and Yoichi KAwAI* 

(Received March 6, 1969) 

The optimal transmission system design problem can be formulated by an integer 
linear program when the construction cost characteristics are expressed by a staircase 
function. 

In this paper, we deal with the iteration method to obtain more accurate approximate 
solution of integer linear program and the procedure to solve effectively the large linear 
program by use of a decomposition principle and a network flow theory. Two examples 
on this problem are presented. 

1. Introduction 
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The development of mathematical theory and digital computer has enabled 

more difficult transmission system planning considering load growth and topological 

situations. The method for solving a transmission system planning by means of 

integer linear programming with zero-one variables has already been presented in 

the previous publication, <1 > where the cost characteristics for a construction of 

system elements are expressed by a staircase function. The integer linear program 

obtained in this fashion has an enormous number of constrained equations and to 

find its solution may be rather laborious even if we use a high speed electronic 

computer for a calculation. 

This paper deals with the iteration method to obtain an approximate solution 

of integer linear program and the procedure to solve effectively the large linear 

program by use of a decomposition principle and a network flow theory. 

2. Formulation of Power System. Planning 

as Linear Program.s<1> 

The transmission system which consists of power plants, substations, trans­

mission lines and loads can be represented by the directed network in which trans-
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mission lines correspond to arcs and power plants, substations and loads correspond 

to nodes. We can suppose that each are and some nodes have capacities; it may 

be thought of intutively as representing the maximal amount of transmitted 

electric power. In this network, there are multiple sources and multiple sinks, 

and several nodes have capacities. 

However, by the addition of two nodes and several arcs, the network can be 

reduced to the extended network with a single source and a single sink. If the given 

transmission system is that of Fig. 1, the extended network is shown in Fig. 2, 

whereg(x), d(x), l(x) and t(x) are respectively capacities of power plants, substations, 

loads and transmission lines. 

In order to investigate whether the demand can be fulfilled from the supplies 

in the transmission system, calculate the maximal flow from source s0 to sink t0 on the 

extended network shown in Fig. 2. Let Fm be the maximal power flow obtained 

L 

Fig. 2. Extended network for the transmission 
o

3 
system shown in Fig. 1. 

Fig. 1. Transmission system. 

from the calculation and ifwe put the overall supply power and load power as G and 

L, these are written as 

G = ~ g(x) 
•ES 

L = ~ l(x) 
>E'l' l ( 1 ) 

where S and T are sets of all sources and all sinks, respectively. If F m=L~ G, 

the demands can be filfilled from supplies. 

When we intend to design the transmission system to satisfy the increasing 

demand, the extended network corresponding to the transmission system involved 

plants, substations and transmission lines to be constructed in the future must satisfy 

the condition 

( 2) 
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If the cost characteristics are given by a staircase function, we must study 

a special type of integer linear programming problem in which the integer variable 

has to be either O or l, depending on whether or not some increase of the system 

element is used. 

At present, several methods are available for solving integer linear programs. 

<2 >,<3>,<4> Particuraly, B. Ealas' algorithm represents a combinatorial approach to 

the problem of solving integer linear programs with zero-one variables and it seems 

to work very efficiently. 

3. Iteration Method 

As mentioned in the previous section, a transmission system planning could be 

formulated as integer linear programs in the case where cost characteristics are given 

by a staircase function. However, if we assume that the construction cost is 

proportional to the capacity for an increase as shown in Fig. 3, the optimal (minimal 

cost) expansion planning can be reduced to the problem of constructing network 

flows that minimize cost as follows: 

Minimize the linear function 

subject to the linear constraints 

where f;; 

Cf1l 
LJC;;: 

F 

A 

f;;~C;; = C;~>+aC;; 
f;;'i?;,.0 

power flow from node i to node j 

(i = s0 ) 

I 
( i =I= S 0 , t0 ) 

(i = t0 ) 

(i, j) EA 

(i, j) EA 

capacity of the system element (i, j) being already constructed 

capacity of the system element (i, j) for an increase 

total demand, i.e. flow value from source s to sink t 

unit construction cost of the system element (i, j) 

set of all arcs 

( 3) 

( 4) 

In the network flow theory, this problem is called the minimal cost flow problem 

which was first studied by Ford and Fulkerson. <5 > They introduced the primal 

dual algorithm for solving effectively the minimal cost flow problem. 

If we approximate the cost characteristic by a linear function as shown in 

Fig. 4, a solution of the minimal cost flow problem can be considered as a first 
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Cij Oij staircase cost ch. 

Cij.1Cij ---------------------------

a,/31 __ T____________________ I 
.10;/31 J 

a;/2) C--t--------------~--, i 
40iJ.< 2> ,.. ... <'aPproximate c~st ch. 

, ' I 
(I) l ,, l I 

a,j ---r----- , , : : 
dOi/ll ,,,,,,,., l 1 ! 

,,/ : : I 

0 Cij 0 Cij(I) Cij<Zl 

Fig. 3. Construction cost characteristic. Fig. 4. Approximation of cost characteristic 

approximate solution of a corresponding transmission system planning which 

may be described in an integer linear programming problem. 

Using the results of the minimal cost flow problem, we may determine the 

capacity of each system element in the optimal transmission system as follows. If 

the power flow f;; of arc (i, j) is greater than the arc capacity C';:11
> and less than 

cgi, in an approximate solution (i.e. solution of the minimal cost flow problem), 

the arc capacity is taken as the value cg> and iff;; is equal to or less than C;~>, the 

arc capacity is taken as the value C;~i, namely, 

c<kl 
C - { i;, 

ij - c<O) 
tj' 

if c;y <Ji;;;::; q~> 
if Jij;;::;c;~> } ( 5) 

Now, to improve the accuracy of the approximation, we consider the following 

procedures. First find the power flow pattern {f;;} associated with the flow value 

Fin the network corresponding to the transmission system constructed by the above 

mentioned procedure. When the arc capacity is taken as the value cg>, we 

introduce the utilization factor given by the following equation 

( 6) 

and calculate utilization factors for all arcs. 

Let us group all arcs into the following two sets, one contains the arcs where 

(7) 

another contains the arcs where 

( 8) 

where /3 is a predetermined constant. We modify the unit construction cost a;; 

by the following equations 
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cm c<Ol 
a' - a tJ - tJ 
,, - ij c<.k-1) cco) + , (C<k> c<k-1)) 

!J - tJ "'ij !J - IJ 
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l ( 9) 

Substitute the new unit construction cost given by Eq. (9) into Eq. (3), we solve 

again the minimal cost flow problem. Then, another approximate solution will be 

obtained. 

In like manner, we can obtain successivelly many approximate solutions, but, 

unfortunately, we can not always expect a more accurate solution by the iteration. 

Therefore, after several iterations we intend to adopt the minimal cost flow solution 

as the approximate solution of integer linear programs. 

, Next consider the long term design of electrical transmission system. If the 

period over which the optimal design sequence is required is be divided into n 

intervals, an electrical transmission system must satisfy n constraints imposed by load 

demands in each interval. The optimal long term planning for load growth 

should have the lowest cost of accumulation of annual requirements. Therefore, 

the planning problem is to find the economically optimal sequence and if the 

cost characteristics are expressed by a staircase function, we can formulate this 

problem as a large scale integer linear programming problem. The linear program 

obtained in this fashion has an enormous number of constrained equation and this 

method does not suit practical use. 

In order to find an approximate solution for the problem with staircase cost 

characteristics, we assume that the construction cost is proportional to the capacity 

for an increase. Then the planning problem will be exprestied as the minimal 

cost flow problem which is written as follows: 

Minimize the linear function 

subject to the linear constraints 

l 
pchJ 

zJ Ut'J' -JI;') o 
(i,j)E.A -

k 

J,Ck) "1 c<•l < c<O) 
IJ - "'-i tJ = tj 

S=l 

_pchJ 

(i = s0) 

(i=l=s0, t0), (k = 1, 2 ,··, n) 

(i = t0) 

(i, j) EA, (k = 1, 2 ,··, n) 

(i,j)EA, (k = 1, 2 ,··, n) 

(i, j) EA, (k = 1, 2 ,··, n) 

(IO) 

( 12) 

(13) 

(14) 
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where a<k) 
IJ 
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(i, j) EA, (k = I, 2 ,··, n) (15) 

unit construction cost of the system element (i, j) in kth interval 

f/J' power flow from node i to node j in kth interval 

u;~' capacity of the system element (i, j) to be constructed in kth interval 

pc•) : total demands in kth interval 

cg' : capacity of the system element (i, j) being already constructed 

v\Y maximal capacity of the system element (i, j) which is allowed to 

be constructed in kth interval 

Using the above-mentioned iteration procedure, we have many approximate 

solutions of the problem with staircase cost characteristics and can adopt a mqre 

accurate solution as a solution of a large scale integer linear programming problem. 

3. Procedure to Solve a Large Linear Progra1n 

In this section we deal with the procedure to solve effectively the large linear 

program described by Eqs. (10)-(15)°. The given problem is a minimal cost flow 

problem with multi-commodities. At present, we can not see the refined mathe­

matical technique applied to this problem such as a primal dual algorithm for 

the minimal cost flow problem with one commodity flow. 

In the minimal cost flow problem given by Eqs. (10)-(15), when u)~' is not 

restricted, that is, vW is equal to infinity, it is shown that this problem may be 

effectively solved by use of a decomposition principle and a network flow theory. <6 > 

In this paper, we will follow this method. 

The dual problem of the primal problem given by Eqs. (10)-(15) is written as 

follows: 

Maximize the linear function 

subject to the linear constraints 

~ r<•' a<kl <a<k) 
£...J IJ - IJ = iJ 
S=k 

Ti~'~O 
a;y~o 

(i, j) EA, (k = I, 2 ,···, n) 

(i,j) EA, (k = I, 2 ,··, n) 

(i, j) EA, (k = I, 2 ,··, n) 

(i, j) EA, (k = l, 2 ,···, n) 

(16) 

( I 7) 

( 18) 

(19) 

(20) 
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where aik), r;~) and a\~) are dual variables corresponding to Eqs. ( 11), ( 12) and 

(13), respectively. 

(I) (\) 
<Xi /ij 

~ 0 

A : incidence matrix of the network 

Fig. 5. Coefficient matrix of dual problem (k=2). 

The coefficient matrix of the dual problem is shown in Fig. 5. For this 

problem, the constraints consist of independent sets of equations which refer to the 

same time interval and these subsets are tied together by a small set of equations. 

We can apply a decomposition principle for this dual problem. Namely, the dual 

problem will be divided into the following n decomposed subprograms of maximizing 

subject to 

a?> -at-r~J ~o 
ri~>~o 

(i, j) EA 

and one special subprogram of 

maximizing 

subject to 

~ "C"1 V(i),.(k) 
- L..I L..I tj Vt} 

k=1 (i, j)EA 

(21) 

(22) 

(23) 

(24) 

We note that the variable aW in the last subprogram is only restricted by 

Eq. (24), then, the solution of the last decomposed subprogram may be infinity. 

Now considering the dual problem for the decomposed subprogram given by 

Eqs. (21) and (22), we have the following problem of 
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minimizing 

z,. (25) 

subject to 

(26) 

(i=l=s, t) (27) 

(i, j) EA (28) 

This is a maximal flow problem and we can solve easily by the labelling method. <7> 

Hence we may solve the dual problem given by Eqs. (25)-(28) instead of the 

primal problem given by Eqs. (21) and (22). 

4. Examples 

Let us consider the transmission system shown in Fig. 6. G, T and L are 

power plant, transmission line and load, respectively and the number appearing 

on the elements is a capacity being already constructed of each element. The 

number in a bracket on the bus is a node number when a transmission system is 

represented by the directed network. Now we assume that only the system element 

indicated by asterisk can be allowed to be constructed in the future. Figure 7 

shows a unit capacity and a construction cost of system elements. 

Making use of the iteration procedure described in the preceeding section, we 

get approximate solutions where we select /3=0.6. Figure 8 shows these results 

and we shall adopt third result as the optimal plan. In this plan generator 

G3 and transmission lines T, and T 8 will be constructed and a total construction 

cost is 15,676 X 10 6 yen. From a combinatorial method we can prove that this 

result is a optimal (minimal cost) plan<8 >. 

Next consider a long term design of the transmission system shown in Fig. 9. 

We adopt two years as the period considered for a planning and estimate the 

demand of each load at the end of .each year as shown in Table 1. Unit capacity 

and construction cost of a system element (i,j) which may be constructed in each 

year are shown in Fig. 10, where dotted lines show approximate cost characteristics 

and numbers appearing on them are unit construction costs of system elements. 

We assume that the cost characteristic is linear and by the iteration method in 

the preceeding section we calculate approximate solutions, where /3 is 0.6 and a 

number of iteration is two. Table 2 shows calculated results. Then we shall adopt 

the first result as the optimal plan. 



On the Iteration Method for the Optimal Transmission System Planning 353 

(9) 

1j 800MW 

t MW 
Gs 480 (71 MW E) I 1j4 1210 

,..__, I 

lj3 1210MW 

(IS) 

--1 ___ L9680MW 

Fig. 6. Model transmission system (1). 

M¥ (---r--- 1s:io t------------~ 1s:io ~-- ----r-
12,220 ~ ~ ~ 

0 250 5l0Mw O 1220 l700Mw O 480 9S0Mw 

Cal G3 Cb) G5 Cc) Gs 

M¥ 1 M¥ 
1,872 M¥L 

2.400 
l,05S----x= 

0 9SOMW 0 720MW 0 960 l,920MW 

Cdl T4 Ce) T7 Cf) Ts 

Fig. 7. Unit capacity and construction cost of system elements. 

Total cost 

M¥ 

3.000 

2.000 

1.000 

0 5 

No. of Iteration 

Fig. 8. Total construction 
cost. 
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G1 BOOMW (2) 
sooMw 

(4) 

Tg___ 
-LI 

T1 IOOOMW T
5 

300MW 

G2 IOOOMW (5) 
~- ~ T3 600MW L2 (:j 

I 
~T6 OMW 

~4_9ooMW --L3 
I 

(3) (6) 

Fig. 9. Model transmission system (2). 

10 
1,000 I 

[7---,..L••• 
700 

7 

"r±-- . 
'z',---~I0~0----1 

T2 

100 

(a) first year ( bl second year 

Fig. 10. Unit capacity and construction cost of system elements. 

Table 1. Estimation of demand power. 

I L1 (MW) I L 2 (MW) I L3 (MW) 
--

I 

------

---T --··--··· ·------

first year 500 

I 
550 1,000 

second year 600 600 1,200 

Table 2. Calculated results. 
----- ---- -· 

System elements to be constructed Total cost 
No. of Iteration 

I 

--

(M¥) first year second year 
--

I I I 
1 

(1,2) (1, 3) (1, 2) (1, 3) 
37,950 

(3, 6) (5,6) (2, 4) (3,6) 
------ ... 

.-1~_ 
I 

----

I 

--------

2 
(1, 2) (1, 3) (I, 2) (1, 3) 

37,960 
(3,6) (5, 6) (3, 5) (3,6) 

--- - --- -· ---- -- ·--· 
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5. Conclusions 

The optimal trnnsmission system design problem can be formulated by an 

integer linear program, if we assume that the cost characteristics for a construction 

of system elements are expressed by a staircase function. 

In this paper, we describe the iteration method to obtain more accurate ap­

proximate solution of integer linear program. Assuming that the construction 

cost is proportional to the capacity for an increase and solving the minimal cost 

flow problem, we obtain an approximate solution. Next calculating utilization 

factors we modify the unit construction costs by Eq. (9). We solve again the 

minimal cost flow problem and we have another approximate solution. In like 

manner, we can obtain successivelly many approximate solutions. After several 

iterations, we shall adopt the minimal cost flow solution as the approximate solution 

of integer linear program. 

Using a decomposition principle and a network flow theory we show an effective 

method to solve a large scale linear program. Since we can formulate the long 

term design of transmission system as a large linear program, this method can be 

applied to the long term design. 

From the results of the two examples, we are assured that the iteration method 

is a useful procedure to obtain more accurate approximate solution of integer 

linear program. 
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