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On a Generalized Problem of Disc Electrodes. I. 

By 

Takeshi K1v0No* and Masaaki SHIMASAKI* 

(Received December 20, 1968) 

A problem of disc electrodes is discussed on the basis of dual integral equations both 
for an electrostatic problem and for a steady current field problem in the unified manner. 
It is shown that two well-known problems, 

1) the plate condenser problem and 
2) the disc electrode problem for steady current 

may be treated as special cases. 

1. Introduction 
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Although the method of series expansion of potential m eigenfunctions is 

powerful for the Dirichlet and Neumann problem of Laplace's equation, it is 

usually difficult to determine coefficients of series expansion for mixed boundary 

value problems in which two or more boundary conditions are involved. Some 

important classes of mixed boundary value problems may be reduced to dual 

integral equations. The general treatment of mixed boundary value problems 

by dual integral equations is given by Sneddon1>. 

At first we describe an electrostatic problem of disc electrodes as a general 

case. The solution may be easily interpreted as that of an appropriate steady 

current field problem. After the general treatment, two important problems 

are discussed as special cases. 

2. Statement of the Problem 

As shown in Fig. 1, we consider an infinite plate of thickness 2t and of dielectric 

constant c1 in uniform space of dielectric constant c2' We use the cylindrical 

coordinates of Fig. 1. Two identical conducting discs of radius 1 are mounted 

coaxially as electrodes on this plate. The electrodes are maintained at prescribed 

potential V0 and -V0 respectively. We attempt to find the distribution of potential 

m the whole space and compute the capacity between two electrodes. 

If we denote the potential for z~t, t~z~ -t and -t~z by v+, Vand v-
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Fig. 1. Setup of two disc electrodes for an electro
static problem. Two disc electrodes of 
radius I are mounted coaxially on an 
infinite plate. For a steady current prob
lem, c; should be exchanged into a;. 

respectively, the boundary conditions to be satisfied are: 

V± =V, z = ±t 
V± = ±V0 , z = ±t, O::;;p<I 

av± av 
c--=c-2az 1 az' 

z = ±t, p>l. 

3. Integral Equations 

( 1 ) 

( 2) 

( 3 ) 

In view of symmetric setup of the problem, the potential may be described in 

the following integral forms: 

v+ = Vo [ u~ 1 vz-t)U -e~(Z+f)U} L(u) lo (pu) du' 

V = Vo r u~ 1 {eCZ-t)U _e~(Z+f)U} L(u) lo (Pu) du' 

v- = V0 J~ u~1 {ecz-tiu_eCz+fJ"}L(u)lo(pu) du, 

These functions have the property on the plane z=t 

and z=-t 

( 4) 
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Therefore condition (1) is satisfied for any function L(u). The function L(u) should 

be determined so that conditions (2) and (3) may be satisfied. Substitution of 

Eqs. (4) into Eq. (2) gives 

[ u-1 (1-e-2
'") L(u) J 0 (pu) du = I , 

Since 

- = -V0 (l-e- 2'")L(u)J0(pu)du av±I 1= 
8z z=±t o 

av 1
1 = Vo r= (1 +e- 2

'") L(u) lo(Pu) du, az z=±t Jo 

condition (3) is expressed as 

where 

Ifwe write 

and 

e1 -e2 IC=--

e1 +ez 

p>l, 

( 5 ) 

( 6) 

( 7 ) 

( 8) 

( 9) 

we have {l-exp(-2tu)}L(u)={l+k(u)}M(u) and Eqs. (5) and (6) lead to dual 

integral equations, 

[ u- 1{1 +k(u)} M(u) J 0(pu) du = I , 

[ M(u)J 0 (pu)du = 0, p>l. 

(10) 

( 11) 

According to Sneddon2>, the dual integral equations may be reduced to a more 

convenient form. If we write 

u f' M(u) = V 11: Jo v cos uvh,(v) dv, ( 12) 

the dual integral equations ( 10) and ( 11) are reduced to a Fredholm integral 

equation of the second kind 

(13) 
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where 

(14) 

and Kc(/;) denotes the Fourier cosine transform of k(u): 

( 15) 

Ifwe definef(x) by 

( 16) 

we have from Eq. (13) 

( 17) 

Substitution of Eq. ( 16) into Eq. (12) gives 

2 ~1 M(u) = - u f(v) cos uvdv. 
7r: 0 

(18) 

Taking both sides of an electrode into consideration, the charge density a(p) on 

the upper electrode is expressed by 

a(p) = -€2- +c1-av+l avl 
8z z=t oz z=t 

= (c1+c2)V0 [ M(u)j0 (pu)du 

If we denote the total electric charge on the upper electrode by Q, we have 

Q= ~>1r:pa(p)dp 

= 4(c1+c2)V0 ~>(v) dv, 

where use is made of formulas such that 

~:J1 (u) cos uvdu = 1, v<l . 

( 19) 

(20) 
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The capacity C between the two electrodes is given by 

(21) 

The integral equation for M(u)/u may be derived from the integral equation 

(17). Multiplying both sides ofEq. (17) by (2/n) cos ux and integrating from O to 

1, we have 

So far we have considered an electrostatic problem but we can treat an 

appropriate steady current field problem in the same way by exchanging c; into 

a;. In this case we can compute the inverse of the resistance between the two 

electrodes by Eq. (21). 

4. Special Cases 

We now show that two well-known disc electrode problems may be treated as 

special cases. 

1) K=O. We consider the case in which the whole space is filled with uniform 

medium of dielectric constant c (=c1 =c2). This problem has been discussed as 

that of a plate condenser by many authors. From Eqs. (22) and (9) with K=O, 

we have 

where y(u) =M(u)/u. This is identical with the result by Nicholson3 >. Substitu

tion of Eq. (9) with K=O into Eq. (15) gives 

K (,) - - . I 1__2t_ (24) 
C - 'V 7I: e+4t20 

From Eqs. (24) and (17), we have 

1 ~I 2t f(x) -- ---f(u) du = I . 
11: -1 (x-u)2+4t2 

(25) 

This is identical with the result by Love4 >. 

2) K= 1. We now consider the steady current problem. We assume that the 

plate of finite conductivity a, is bounded by vacuum at z= ±t. Thus we have 

0"2=0. 



236 'r AKESHI K1v0No and MAsAAKI SmMAsAKl 

Kiyono and Tsuda5> pointed out that the well-known solution of Riemann to 

this problem was incorrect because it led to a physical contradiction. 

Substitution of JC= 1 into Eq. (9) gives 

Ifwe write 

C-tU 

k(u) =- --. 
cosh tu 

B(u) = _l _. M(u) , 
cosh tu u 

we have from Eqs. ( 4) and (8) 

V = V0 [ B(u) sinh zuj0(pu) du, 

From Eqs. (22) and (27), we have 

(26) 

(27) 

izl ~t. (28) 

B(u) = ~ sin u +_!_ f= ~ {sin (u+J) +sin (u-J)} B(J) dJ. (29) 
TC u cosh tu TC Jo cosh tu u+i u-J 

This is identical with the result established by Kiyono and Tsuda. Eq. (29) may 

be solved numerically with the aid of the Laguerre-Gauss quadrature formula. 

The numerical computation of the resistance between the two electrodes and the 

difference between Riemann's solution are discussed in 6). 

I) 

2) 
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