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On the Noninteracting Control of Linear
Time-Variant Multivariable Systems

By

Hidekatsu TokuMARU* and Zenta Iwar*

(Received June 28, 1968)

In this paper, we show two results with respect to the noninteracting control problem in
multivariable linear systems.

In the first half, we show that the noninteracting control problem is a variational one.
Necessary and sufficient conditions for the linear (time-variant and time-invariant) multi-
variable control system to be the noninteracting control system are shown with the aid of
variational method used in the theory of invariance.

In the second half, it is shown that it is possbile to obtain the noninteracting control sys-
tem by state variable feedback. Sufficient conditions for the noninteracting control system
to be constructed by state variable feedback are obtained by using the concept of relative

orders.

1. Introduction

The control of a multivariable plant is of considerable practical importance.
Particular interest has been taken in so-called noninteracting controls, designed
so that each system output was independently controlled by one of the inputs of the
system.

The noninteracting control of time-invariant linear systems has been discus-
sed by many authors.!®  In this paper, we will discuss the noninteracting con-
trol of the linear time-variant multivariable system. Since the system is time-vari-
ant, usual diagonalization techniques which are used in time-invariant systems
cannot be applied. Therefore, we will use a variational method to otain the con-
dition for the system to be a noninteracting control system.

Several definitions and formulations of the problem are shown in § 2. In
§ 3, a necessary and sufficient condition for th linear time-variant multivariable

control system to be a noninteracting control system will be given. In §6, we
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will discuss the design problem of the noninteracting control system. Sufficient
conditions for the noninteracting control system to be constructed by state variable
feedback will be given by using the concept of relative orders. Iliustrative example
will be shown in §7.

2. Definitions
Let the linear ordinary differential equation
(% = A(t)x+B(t)v, x, = x(0),

2.1)
v=0C'(t)x (

represent the characteristics of the control system where x is an n-th state vector,
v is an r-th input vector and y is an r-th output vector. A(¢), B(t) and C(¢) are
nXn, nXr and nxXr matrices, respectively. The transposed matrix C(¢) is expressed
by C’(t). We assume that the elements of A(¢), B(t) and C(f) are analytic
functions and n>r.

. v - LY,
Definition 1 w | *=Ahx+ Bt !
If, for any x,€ X°, for any t€ T 2, y=Cibra Y2
) | = |
and for any inputs o1, -+, vi_1, Vis1, I i
3 . I
-+, v, where they are piece-wise Ve Yr
continuous functions of ¢, the value Fig. 1 The multivariable control system

of the i-th output y; taking (2.2) into

account is independent of ui, -+, 0i-1, 0is+1, -, 0, and is determined only by
Xxo, ¢ and v;, then it is said that the output y; is (X° T')- independent. Here X°
is a set of possible initial values for the system (2.1) and the set T of times ¢ is an
interval [0, +]JC[0, o).

Definition 2

If every output yi(i=1, --- r) is (X°, T)- independent, then we say that the
system is (X°, T)- independent. '

When the system is (X°, T')- independent, each output y; is never influenced
by the inputs o1, -+, vi1, vis1, -+, v,. However, the effect of the i-th input »; which
has influence on the i-th output y:; cannot be estimated from the notion of the
(X° T)-independence. The noninteracting control means that the i-th output
i should be independently controlled by the corresponding input »;. Thus, we
have the following defifinitions.

Definition 3 '

If the system (2.1) is (X°, T')- independent and each output y; is independently

influenced by the corresponding input »i(: =1, ---, r), then we say that the system
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(2.1) is the (X° T')- noninteracting control system.
Definition 4

If X=R" and T= [0, oo), then it is said that the system (2.1) is the com-
plete noninteracting control system. Here R* is the whole space.

3. The (X°, T)-Independence

Rozonoér has shown that the invariance problem is essentially a variational
one. By using his method, the problem of the (X°, T)-independence results in
a similar variational problem.

Let us consider vectors © and & such that

0 U1
0 Ui-1
b= v |, =0 |, d+rb=v
0 Vit
0 vy

and let the arbitrary increment of the vector function &(¢) be 4;t(¢). Under
this the functional y:(¢) generally receives 4;y:;(¢). Now, let the i-th column of
B(t) and C(¢) be b;(¢) and e;(¢t)(¢=1, -, r), respectively. Then, the following

relation is obtained.”® Here (a, b) is the scalar product of @ and b.

4iyi(x) = (ei(x), dix(r)) = ~ [ [H(x, p, 515+ div)

—H(x, p, 9+9)dt = — [} (B(0), BA1) doi1)dt, (3.1)
where H is the Hamiltonian,
H=(p, A(t)x+B(t)v) (3.2)

and p(t) is a solution of the adjoint system:

p=—A'(t)p, p(r) = —ei(7). (3.3)

The fulfillment of the (X° T)-independence’s requirement always means that
the increment of the functional y:(¢) should disappear. Therefore, the criterion
of the (X° T)-independence takes the form of the identity

4;yi(t)=0, for all tc T, (3.4)
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which should be true for all ©(t), 9(t) and 4;v(¢).
[Lemma 11

A necessary and sufficient condition for that
4iyi(t)=0, t=r (3.5)
is that, for each j (j=1, -, r; j=1), the n vectors
bi(t), Qbi(t), -+, Q" by(1) (36)
are linearly dependent on T and
(e:(£), Q*bi(2)) =0, 3.7
k=0,1, -, n—1
PR AR
hold at {=r, where Q is an operator such that

Q=D—A(¢); D:I(%), I: unit matrix. (3.8)

[Lemma 21

A necessary and sufficient condition for that
4ipi(t)=0on T (3.9
is the satisfaction of the relations
(ei(2), Q*b;(t)=0,on T (3.10)

k=0, 1, -, n—1
j: 1, vy 1 jﬂ‘:i

Proof of Lemma 1.) From (3.1), it follows immediately that (3.5) is satisfied
if and only if the relations (p(¢), ;(¢))=0 for all te T (j=1, -, i—1, i +1, -,
r). We calculate (n—1) derivatives of the function

zi(t) = (p(1), b;(1)). (3.11)

For the first derivative, (3.3) tells us
2;(1) = (b, b))+(p, b)) = (b, —A(1)b))+(p, b))
= (p, (D—A(t)b;) = (p, Qb)). (3.12)

Differentiating (n—1) times and each time performing such an operation, we
obtain

zi®(t) = (p(t), Q*b(t)), (3.13)
k=0, -, n—1.
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By virture of z,(t)=0 on T, all derivatives of the function z;¢) vaniish for all
teT. Therefore

z;®P(¢) = (p(t), Q*b4(t))=0 on T. (3.149)

Since p(¢) is a solution of (3.3), p(¢)= 0 for all t€ 7. Hence from (3.14), b,(¢),
Qb;(t), -, Q»'b{t) are linearly dependent for all i€ 7. In particular, at t=r,
taking into account the boundary condition p(r)= —ei(r), we have
2i®(r) = —(ei(r), QHb(1)]r=) = 0, (3.15)
k=0,1, -, n—1
Jg=1 -, r;j=i
The sufficiency will be shown in the following. The vectors b;(¢), Qb;(1),
, Q7'b,(t) are linearly dependent for all t&7T. Thus there exsist scalar
functions no(t), M(t), -+, Au-1(¢) which do not vanish simulteneously for any
t& T such that

n—1
Y AL£)Q,(t) = 0, for t€ T . (3.16)
0

By multiplying p(¢) scalarly, we obtain

D r1Xp(E), Qb1 =0, tET.

Hence,

Z A()2i(1) = 0. ' (3.17)

That is, z;(t) satisfies the homogenéous equation (3.17). Therefore according to
the boundary condition (3.15), we have

z{t) =(p(t), b;(¢))=0, on T.

Thus, the lemma is proved.

The proof of Lemma 2 can be done without difficulty from the proof of Lemma 1.
[Lemma 3] . .

If (ci(t), Q*b4(t))=0 on T, then (Q*e;(t), b;(¢)) =0, on T, holds. The
converce is also true. Here § =D+ A(t). (The proof of this lemma is shown in
reference [7].)

From these lemmas, we have the following theorem.

[ Theorem I
A necessary and sufficient condition fot the system (2.1) to be (X°, T)-
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independent is the satisfaction of the set of relations

(ei(t), Q*by(1)) =0, teT. (3.18)
i=0, 1
E=0,1, -, n—1
VD VTP S J S R

Proof.) The necessity is apparent from Lemma 2. Thus we only need to

show the sufficiency.
Now let the functions F:(t) be

Fu(t) = (Qrelt), x(t), k=0, -, n—-1. (3.19)

According to Lemma 3 and (3. 18), ei(t), Qei(t), -, Q" 'et) are lineraly
dependent for all t& 7. For simplicity, we assume that the vectors ei(t), Qei(t),

, Q*-1ei(t) are linearly independent on T where s is an integer such that 1<
s<n—1. It follows that there exist scalar functions Ao(¢), -+, A«(¢) which do not
vanish simultaneously for any ¢ such that

MOQre(t) = Y a()Qie D). (3.20)

j=0

By multiplying x(¢) scalarly to (3.20), we have

Mmmm:ZMmmmy (3.21)

j=0
Differentiating (3.19) with respect to (2.1) and using the relations (3.18) and (3.21),
we have the following system of differential equations;
O Fig=Fi+(edt), bi(t)i(t)

) Fi,:—l = Fi,s—l—}-(Q‘“zc,‘(t), (1)) t) (3.22)

; A()Fi o1 = X:(t)z7\,-(t)F.'j(t)+h,(t)(Q“lc;(t), b()ilt).

N

The solutions of these simulteneous differential equations only depend on the
initial conditions F,;;(0) = F;;(x,) and the i-th input »:(¢). That is, the i-th ouptut
yi(t)=F;t) does not depend on &t). Thus the theorem is proved.

4. The (X°, T')-Noninteracting Control System

In this section, we will discuss the conditions for the system (2.1) to be a (X°, T)
-noninteracting control system.
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[ Theorem 2]
Let

M‘(t) = [(c"(t)9 b'(t))) (C,'(t), Qb'(t)), B (ci(t)) Q,”_lbi(t))]-

i=1, ey 1

Then, a necessary and sufficient conditions for the system (2.1) to be the (X°, T)-

noninteracting control system are the satisfaction of relations

(ci(t)a Q,kbf(t)) = 03 te T’ (41)
i=1, ey
E=0, -, n—1

J=1, i1, 041, )7
and
rank M (t;) =1, for some ¢; € T. (4.2)
t=1, -, r _ ‘
Proof.) Necessity. Suppose that the relations (4.2) do not hold. That is,
we assume that )
(e(t), Qrbi(t)) =0, for all tcT. (4.3)
k=10, -, n—1
By Lemma 3, relations (4.3) are equivalent to the relations
(Q*e(t), bi(t)) =0, for all t&T. (4.9)

Taking into account (4.1) and (4.4), (3.22) can be rewritten in the form:

Fiw=Fi,

Fiso=Fi (4.5)

MO0 = 21 ) A OF (1)

j=0

(4.5) shows that the i-th output yi(¢)=Fi(f) has no relation to all inputs 2., -+,
v,. Thus the conditions (4.1) and (4.2) are necessary.

Sufficiency. Since 8:(¢) and ei(¢) are analytic functions, we can take a finite
interval (¢:,, ti;) such that (¢:, ¢:,) C T, ti€(tiy, ti,) and rank M;(¢)=1 for all
t&(tiy, tiy). That is, if (ei(t:), Q*bi(¢:)) = 0 for some k(0<k<n—1), then (ei(t),
Qrbi(t)) =0 for t&(tiy, ti,). Hence, if 0:(t) %0 on (¢iy, tiy),

(Q*ei(t), bBL)ot) %0 on (ti, ti). (4.6)
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From this fact and (3.22), we can show that the i-th output y; depends upon
the corresponding input v; on 7. The theorem is thus proved.

Conditions given in Theorem 2 do not depend on the initial condition x,. It
means that Theoremi 2 also shows the condition for the system (2.1) to be the com-

plete noninteracting control system.

5. (X° T)Independence and (X°, T')-Noninteracting
Control in Time-Invariant System

In this section, we consider the linear time-invariant control system written

in the matrix form

{JE: = Ax-+Bv

Yy Crx (5.1)

where x is an n-th state vector, g is an 7-th output vector, v is an r-th input vector.
A, B and C are nxn, nXr and nXr constant matrices, respectively. Then, the
‘conditions for the system (5.1) to be the (X°, T)-noninteracting control system are
immediately obtained from the preceding results. )

Let b; and ¢; be the i-th columns of B and C, respectively. Then we have the
following theorems.
[ Theorem 3] ‘

A necessary and sufficient condition for the system (5.1) to be (X°, T')-independ-
ent is the satisfaction of the relations

(c,', A"bj) =0. (52)
i=1,, 7, k=0,-,n—1, j=1,, i1 i+, 7
Proof.)
(ei(t), Q*bi(2)) = (—1)(ei, 4*b))

holds. Thus from Theorem 1, (5.2) is a necessary and sufficient condition.
[ Theorem 4]
Let

M;= [(c,~, b,’)‘, (ei, Ab;), -y (€5, A"“‘bi)] .
i = 1, ~." r
Then, necessary and sufficient conditions for the system (5.1) to be the (X°, T)-
noninteracting control system is the set of relations
rank M; =1, i=1,-,r
and (5.2) hold.
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Proof.)
(ei2), Q*bi(t)) = (—1)¥ei, A*by)

holds. From this fact and Theorem 2 we can immediately prove the theorem.

6. Design of the Noninteracting Control System
by State Variable Feedback '

Until now, we have assumed that the equation of the control system has already
been given. Thatis, (2.1) and (5.1) were the equation of the control system. How-
ever, in most cases, equations which are given to us are not those of control systems
but the equation of a plant. Thus, it is necessary for us to consider the design pro-
blem of the noninteracting control system. In this section, we will consider such
a design problem. That is, for a given plant we construct a noninteraéting contor]
system by state variable feedback. For this purpose, results obtained in the pre-
ceding sections are very useful. In the following, we will discuss the conditions
which are imposed on the feedback when we use the linear state variable feedback

control to realize the (X° T')-noninteracting control system.

6.1 Time-Variant System
Let

x = F(t)x+G(t)u
{ 6.1)

v = H(t)x

be the equation of a plant written in the matrix form. Here, x, ¥ and u are an
n-th state vector, r-th output vector and r-th control vector, respectively. F(t), G(¢)
H(t) are nxn, nxXr and n Xr matrices, respectively. We assume that they are analy-
tic functions and n>r. v

If, P(¢) is an nXr matrix and S(¢) is an nonsingular r Xr matrix, then the sub-

stitution of
u=P)x+Stu,

‘where v represents the new 7-th input vector, into (6.1) shall be called the linear
state variable feedback®®. Then, the equation of the control system is given as
follows (Fig. 2):

{:‘c =(F)+G@)PNx+G()S(t), 6.2)
y=H{)x. '

Now, according to Theorem 2 and Lemma 3, necessary and sufficient conditions

for the system to be the (X9 T')-noninteracting control system is as follows:
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v u | %=F(tx+6(Hu y

) s y=H'(hx
L

Ph

Fig. 2 The noninteracting control system by state variable feedback

(R*hi(t), G()S(8)) =0, teT, (6.3)
i=1 7
k=10, n—1

J=1 i1, i+, 7
rank M (t) = rank [(hdt), G(t)S(t)), -,
(Rr-'Ri(t), G@)S@))] =1, (6.4)
for some t,€T, i=1,:-,r

where h;(¢) is the i-th column of H(t), G(t)S(¢); is the j-th column of G(¢)S(¢) and
R=D+F'(t)+P(t)G'(t). Thus the relaization fo the noninteracting control system
results in the determination of the feedback pair fo matrices P(¢) and S$(¢) which
satisfy the relations (6.3) and (6.4). Therefore it should be necessary to consider
the existence of such feedback pair of matrices P(¢) and S(t).

Concerning this problem, the concepts of relative orders of the multivariable
system play an important role3~®. Let define positive integers p; (i=1, -+, r) such
that

hR{(1)G() = R/)(QGE)} = - = R/){Q Gt} =0
R)(Q G} =0, t€T (6.5)

where the prerator Q =D—F(t). Note that, according to Lemma 3, the relations
of (6.5) are rewritten in the form:

R/(t)G(t) = {QR(e)} G(t) = - ={Qrihi(t)}'G(t) =0
{Qrik(t)}'G(t)x0, teT 6.5y

where Q=D+F’(t). Then we will have the following existence theoem.
[ Theorem 5]
Let

{Qrrh, ()G (2)

Then, if rank K(¢)=r for all ¢t € T, there exists a feedback pair of matrices P(¢) and

Plhl ’G
Kt — [{Q Q) (t)]
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S(t) which satisfy the relations (6.3) and (6.4).
Proof.)) From the definition of relative orders, the following relations

RRjt) = (Q+P)G"(tHhi(t) = Qht), ‘
{ Rhjt) = R*ht), (6.6)
Reinj(t) = Qeikgt) (j=1,-,71)

hold. Thus,

{RR(t)}'G(t) =0,
{ ............ 6.7

{Rei-tR(1)}'G(t) =0
hold. Now let us choose a feedback pair P(¢) and S(¢) such that

{P*(t)= —N*){K () 6.8)

S*(t) = K(t)™
where
N¥(t) = [Qr1+hu(t), -, QrrhA(2)] .
Then, from (6.5)’ and (6.8),

Reivhy(t) = (Q +PX)G'(N{Q ik it))
= Qeithi(t)+ P*()G (1) {(Q*ihit))
= Qrivth(t)~ N*){K' ()} [G'(t){Q ik (t)}]
= Qritthy(t)— N*@){K'(t)} K (t);
= Qe N*(t)e;
= Q”i“hj(t)— Q_"i“hj(t) =0
holds where K’(t); is the j-th colunm of K’(¢t) and e; is the j-th unit vector.
Hence,
Rest*hy(t) =0 for all t€ T, (k=1,2, ) (6.9)
J= ey r
holds. In addition to this fact.

{Reik (1)} G(£)S*(2) = [{Q*ihs(2)} G()IK(2)™

= ei, = (0> 0, l) 0, "y 0)3
7 (6.10)

(] = 1) B T)

holds. From (6.9) and (6.10), we can immediately obtain the relations for all
teT;
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(RRAD, GOSW) = 0,

P= ey, j=1, 1, k=0, n—1; k% p;
‘ (Rpjhi(t)s QQ):Q_(QJ) = 0’ .] = 19 ey Ty J 1
k(RPih.-(t), G)S@))=1.

These relations satisfy the conditions of the noninteracting control (6.3) and (6.4).
Thus the theorem is proved.

The theorem just proved shows the sufficient condition for the (X°, T")-non-
interacting control system (or complete noninteracting control system) to be reali-
zable with linear state variable feedback.

_ 6.2 Time Invariant System
Let

x=Fx+Gu

. (6.11)
y=Hx

be the equation of a plant. In this case, the matrices F, G and H are contsant.
Orders of vectros and matrices are the same as (6.1).
Let the feedback be

u=P'x+Sv v (6.12)

where [S ]2 0 and v is an new r-th input vector. By substituting (6.12) into (6.11),
we can obtain the equation of the feedback control system;

x = (F+GP)x+GSv,
{ (6.13)

y=H'x.
Hence from Theorem 4 the conditions for the control system (6.13) to be the (X°, T)-

noninteracting control system (or complete noninteracting control system) are
given as follows;

(hi, GS ;) = (B, (F +GP")GS ;) = ---

= (hi,(F+GP"-'GS ;) = 0, (6.14)
i= 1:"'5’: j: 1,"',7';]-#1.
rank [(Bi, GS:), -+, (Bi, (F +GP'P'GS:)] = 1, (6.15)

i: l, -.-,r

where h; is the i-th column of H and GS;is the j-th column of GS.
The relative orders of the system (6.11) are defined by the relations
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{hf'G = h'FG = - = B/F*-'G = 0,
hi/FeG % 0.

Thus, the existence of the feedback pair of matrices P and § which satisfy the rela-
tions (6.14) and (6.15) can be considered in the same manner used in the preceding
section.

[ Theorem 6]

Let
hl’F"G
K =  eesees
h,/Fe:eGJ .

Then a necessary and sufficient condition fot rhe relations (6.14) and (6.15) to be
satisfied by P and S(].5|=0) is that

rank K =r.

(See Appendix 1).

The theorem just proved shows that the concept of relative orders plays a very
important role in the problem of the noninteracting contorl. This fact has already
been indicated by P.L. Falb and W. A. Wolovich®, and authors®. Falb and
Wolovich has introduced the concept of ““decoupling” to the multivariable system.
“Decoupling” and the (X°, T')-noninteracting control defined here are similar con-
cepts. For example, the conditions for the time invariant system (6.11) with a
state variable feedback (6.12) to be a (X°, T)-noninteracting control system are
consistent with the conditions for which the control system (6.13) is the decoupling
system. However, “decoupling” is only defined in the time invariant control sys-
tem represented by the system (6.11) with feedback (6.12). Hence, it seems to be
difficult to consider the general expantion of the concept of ‘““decoupling”. On the
other hand, the (X°, T)-nonintreacting control defined in this paper can be
applicable to the general continuous linear systems. And even if the system
under consideration is nonlinear, the (X°, T)-noninteracting control may be
realizable®. Hence, we may conclude that the concept of (X° T')-noninteracting

control is a more general concept than that of “decoupling”.

7. Selection of P(t) and S(¢)

If, K(t) is nonsingular for all t& 7, then, by choosing P(¢) and S(¢) such as
(6.8), the system can be decoupled. However, the matrices P(t) and S(¢) which
satisfy the conditions (6.3) and (6.4) are not unique. It is possible to exploit this

nonuniqueness to obtain various desired closed loop pole configurations.



On the Noninteracting Control of Linear Time-Variant Multivariable Systems 605

Now, let us choose matrices P(¢) and S(¢) such that

P*(t) = —(N*(t)+ N.()K'(t) ! (7.1)
S**(t) = K(t)! (7.2)

where
Nl(t) = [i 7"1in}"1(':), ) ‘Z’ Arj Qih’(t)]

and A;; are arbitrary constant. We will show that matrices P**(¢) and S**(¢)
satisfy the noninteracting conditions (6.3) and (6.4). According to the definition
of relative orders,

Rej(t) = Qhyt)

Rpl:hrj(t) = Qriht)
Rei*hi(t) = (Q +P**@)G'(4)} {Q*ihi(2))}
= Qri*thi(t)+P*)[G'){Q iki(t)}]
= Qri**hi(t)— N*@){K(t) " [G'(){Q kit )}]
— NAOK'(4) G (¢)(Qriki(t)]

= Qrivhi)= Qi) - ) Ma QML)

k=0
2]

- Z A Q*hi(t)

k=0

I

Reivth(t) = {Q+P**(t)G’(t)}{—i’*ﬂ‘z""f”)}

k=0

= - ijM‘k Qr k1)

k=0

— E A POIG ()G *hiE)} ]

k=0
2]
= - Zhik Qrh(t)
k=0

+ Y N O KO} [G((Q Rt) ]

k=0
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2] _ o
R ZON SOOI YN
k=0

s
= —Z A @ h(t)
k=0

+ o, N* K ()} [GH8){Q ik s(2)}]
F N N KN G @)D rihi(t)} ]

ej-1

RS ORI ¥O)

I

(2
X0 Q0 HRA) + X)) M| QL))
k=0

12
= E Njoshie—nj, w-1} QRRi(t)

k0

- ixekah,{t)’

hold. Here NioiNik—Njp-1 = Njr, Mj,-1 = 0.
Hence Rei**hj(t) (k=1,2,---) can be expressed by a linear combination of &j(t),
th(t), e, Q_Pih,’(t). Thus,
(R} G)S**(t) =0, k=0,1,-, pj—1,
{Reih ()} G(8)S**(8) = (Qriki()}'G()K (1)
=(0,-+,0,1,0,--,0)
i

(Res+ R} G(OS*(E)
= =Y A QM) G (1)

= —Njp; (Q iRt} G (1)K (2)!
= (0, R O: '—2&!’!’]’, 0: ) 0)

(Res+ (1) G ™E) = (0, +++, 0, Nnj, 0, -+, 0)

hold. From these, we have the following relations. That is, for s = j,

(BRAL), GS*™ (1)) =0 _ (1.3)
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k=0,1,---,n—1
5 = l, ey T
j=Ler

and for s=j,

(Ri(t), G@)S**()) =0

(Rei~th(t), G()S**(2);) =0 )

(Reik(t), G(£)S**(2);) =1 (7.4)
(Reitth(t), G(IS**(t)) = Afy)

(Rr='h(t), G@IS(t))) = A5

hold, where X;‘,’,’j, .y 7&}2;”‘2’ are constants determined from Xjo, v, Njp;.  (7.3)
and (7.4) satisfy the conditions (6.3) and (6.4).
Example. Let

J'C: = X2
%2 =Z S2i(t)x; +Z &2 u;
i=1 j=1 ' (7.5)
J.ta = X4
4 2
x4 =E Sai(t)x; +E 84t hu;
j=1

j=1

{y; = hux1+hiaxs

(7.6)
Y2 = haixy+ haoxs

be a system of differential equations of a multivariable plant. For this plant, we
will design a noninteracting control system. In the following, we assume that

§x0, 4t)x0, for all tecT (7.7)

where
8 = huhaz—hizhay, A1) = gu(t)gt)— goa(t)gult).

(1) Relative orders
h/'G(t) = (0,0)

{th} 'G(t) = (hugn()+hzga(t), huga(t)+ hizg ()
Rk/'G(t) = (0,0)

{th} 'G(t) = (haga(t)+ haa g u(t), horgaa(t)+heagao(t))



608 Hidekatsu ToxuMARU and Zenta Iwar

where

Ry = (h1, 0, 12, 0),
hz’ = (hzx, 0, }lzz, 0),

0 0
G(t): gz‘ét)) g:;(t)

gult), gult)
Hence, p1= p.=1.
(ii) Feedback pair P(t) and G(t)

By assumption (7.7), |K(¢)|=284¢)*0 for all t&T
where

{Qhi} 'G(t)J
K =
)= [{th}'G(n
_ [ﬁxlgzl(t)+hng41(l ) }lugzz(l)—I—}lngn(t)]
ha1 g 2a(8)+ ez g os(2), ha1g2a(t)+ hosgaa(8)) .

Therefore we can take a state variable feedback # as follows;
u = {P**()}'x+S**(t (7.8)

where
P*¥(t) = — (N*(t)+ N, )} (K'(e)}
S*H(t) = K(1),
N*(t) = [Q%h, Qh]
b fa(t)Fhefu(t), hafa(t)+heafut)
Vb fat)Fhaafat), ke fat)+he fut) |
T b f o) F R fat), ho fas(t)+ b fos(2) |
hus f o)+ huo foat),  hosfau(t)+hoe fos(t)),
Dok +rQ R, Azokz+naQ R
Aolui, Xzo}lnw
Ay, Aziha |
Mokt Xzohzz.
Aihiz, leth.

I

Nu(2)

(iii) The equation of the noninteracting control system

By substituting (7.8) into (7.5), we can obtain the equation of the closed loop

control system:
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[

Xz

% {(M1oharhoz —Naohiiohes)x:

L X =
+(M11hihze—Narhizhan )xe
+ (11— Nz0)P1zhazxs
+(7\11—7\121)h12h22x4}
h h
o | 0
.1{73 = X4

Xe = %‘{(7\,20—7\,10)}!11}121)& SR TR WTY Y P

+(A2oh1rhzz~ Aiohrzhai)xs
+ (lehuhzz —A1 1h12h21)x4}

g, 4,
Y1 = huxs+ Rioxs
(7.10)
V2 = haxi+ Reaxs .
By differentiating (7.10) with respect to (7.9), we have
{_yl = Ao 1 +7\.u):)x+l)1 s 7.11)
Yz = A2 Yzt+Aa1 y2tvz.

Thus, the multivariable control system (7.9) and (7.10) is a noninteracting control
system.
(iv) Stability
A necessary and sufficient condition for the system (7.11) to be a stable system
is apparent. That is,

Nig<<0, iy <0, i=1,2. (7.12)

This condition can be obtained directly from (7.9) by applying the Routh-Hurwitz’s
condition. Taking into account the fact that a;; are arbitrary constants, it is

possible to stabilize the noninteracting control system (7.9).

8. Conclusions

In this paper, the noninteracting control of linear (time-variant and time-
invariant) multivariable control system is studied.

We showed first that the problem of the noninteracting control is essentially
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a variational one. Then, we discussed the design problem of the noninteracting
control system. It is shown that it is possbile to obtain the noninteracting control
system by state variable feedback. Sufficient conditions for the noninteracting

control system to be constructed by state variable feedback are given by using the

concept of relative orders.

1))
2)

3)

4)

3)
6)
7)
8)
9)

10)
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Appendix 1

1. Necessity. Suppose that there exists a feedback pair of matrices P and

S(]810) which satisfy the relations (6.14) and (6.15). Now, from the definition

of relative orders, we have

R/F+GP")i = h/Fi : j=0, -, pi A
R/(F+GP') = h/F*i(F +GP")i-%i : j= pi+1,,n—1
Hence, for j (0<j<pi—1),
R/GS=0
{ h/(F+GP")GS = h/FGS = 0 (A.2)
h/(F+GP"#i-1GS = R/Fri-iGS =0 i=1,-,71

hold. When j=p;,

h/(F+GP"YiG = h/FriG % 0.

Thus, according to the nonsingularity of S,
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R/(F +GP'YiGS = h;F?GS = 0 (A.3)

hold. (Here, pi<<n—1. If p,=n—1, then (6.12) never hold.) Now from (6.14),
we have

hi/'F?iGS = [h/F*riGS;, .-, h/FriGS ]
= [()’ ey 0’ h;”F”QﬁSt‘, 0, 07.

Hence, by (A.3),
R/FPiGS:i = a;x0,i=1,-,r

should hold where «; are nonzero scalars. Thus we can obtain the following re-
lations. That is,

h/FrGS | =Th/FrG)S=KS =[a: O

h/FerGS h,/FerG 0 a
Taking into account the nonsignularity of S, we have
= | §-1 .
K| =18 |;a, %0.
2. Sufficiency. Let us choose the feedabck pair of matrices such that
P= —NX'), §=K-!
where
-
N’ = |
R,/ Fertt

Then the sufficiency can be proved without difficulty by using the same manner
used in the proof of Theoem 6.

Appendix 2 ((X, T)-noninteracting control and
diagonalization method)

The multivariable control system (6. 13) can be written in the transfer function
matrix from:

Y(s) = H'(sI-F—GP')-'GSV(s) (A4)

where Y(s) = L{yg@)}, V(s)= L{o@)}. If, (X°, T)-noninteracting control holds,
that is, if Theorem 5 holds, (A.6) will be diagonalized with respect to ¥(s) and V(s).
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This fact will be shown in the following. By using the Laplace’s theorem, (A.4) can

be expressed in the following form:
y(t) = [ H'o(t, )GSo(r)d (A5)

where
o(t, v) = exp{(F +GP')(t—)}.
From the definition of exponential function, we have

H'o(t, 7)GS

= Y L HF + GPIYGS(t =)
k=0

Hence,

)= | {i kl_, h{/(F+GP'y G(S Xt —f)k}v(f)df . (A6)

Let us consider the integrand in (A.6). Let us choose matrices P and § such that

P'=—K-'N', §=K-

where
h/Feoi+t
N
h,/Fer+t
Then,
/h;’GS =0

E R{/(F+GP'yi-1GS = 0 ’_

| R{(F +GP'WGS = R/F#GS = (0, 0,1,0, - 0)

| k/(F+GP'yi*'GS = (h/F*i*'+h/F*iGP")GS (A7)
| = (R/'Fei**—h/F?FK -*N')GS

i = (h/Fei*1—h/F*i*1)GS

; =0

" R(F+GPyi*:GS=0

hold. By using (A.7) to (A.6), we have
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yi(t) = J: #(t —rPivit)dr .

Hence,

1Pi

i) = £{2

ofuo).

holds. Thus, we have
1

§P1+1

Y(s) = . V().

0 Tgerl
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