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On the Resistance between the Two Disc Electrodes 

Applied to an Infinite Plate Conductor 

By 

Takeshi KIYONo* and Masaaki SHIMASAKI* 

(Received June 27, 1968) 

The problem of disc electrodes is discussed on the basis of a Fredholm integral equation 
of the second kind. To compute the resistance between the two electrodes, numerical analysis 
is carried out utilizing the Laguerre-Gauss quadrature formula. The result is compared with 
that obtained from Riemann's solution which contains a physical contradiction. 

A formula of infinite integral involving a Bessel function is also given. 

1. Introduction 

463 

Though any problems of electro- or magnetostatic fields may be described as 

boundary value problems of the Laplace-type equations, rigorous solutions to these 

problems are in most cases extremely difficult. The Laplace-type equations may 

be solved numerically but sometimes ad hoc technique is used to obtain a solution 

of more convenient form easily. It is important however to verify whether the final 

solution exactly satisfies the boundary conditions when such a special mehtod is 

adopted. 

The problem of disc electrodes treated in this paper is an example, if not typi­

cal, which shows how correct treatment of boundary conditions is important and 

how analytical considerations prior to numerical computation may be helpful. 

As shown in l), Riemann's solution to this problem does not satisfy exactly 

the boundary conditions and consequently leads to a physical contradiction. Even 

the method of images leads to the same fallacy. This problem may be reduced 

to a Fredholm integral equation of the second kind but it seems impossible to solve 

the integral equation analytically. 

In this paper the integral equation is solved numerically to compute the re­

sistance between the two electrodes. This approach seems to be easier than that 

* Department of Electrical Engineering II. 
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of solving the Laplace equation directly. Though numerically, the relation between 

the resistance and the thickness of the plate is shown and the difference between 

Riemann's solution is discussed. 

We also give a formula of infinite integral involving a Bessel function which 

was obtained as a by-product of computation of the resistance. 

2. Statement of the Problem 

As shown in Fig. 1, we con­

sider an infinite plate of thickness 

2 h and of finite electrical con­

ductivity u. This plate is bound­

ed by two paraUel planes z = 

±h, and to these planes two i­

dentical perfectly conducting discs 

of radius a are applied as elec­

trodes so that their centers lie in 

the z-axis of cylindrical coordi­

nates as shown in Fig. 1. Be­

tween these electrodes we force a 

constant electric current I to 

flow. It is required to find the 

potential at any point and to 

z 

Z=h 

Fig. 1 Setup of the problem of two disc 
electrodes. Two electrodes are mounted 
coaxially on a conducting plate (shaded) 
of infinite extent. 

compute the resistance between these electrodes. 

The boundary conditions to be fulfilled at z= ±h are: 

av= 0 az ' 

V =±Vo, 

(r> a); 

(r < a). 

( 1 ) 

( 2) 

Here Vo, a constant, is the potential of the electrode at z=h, and - Vo is 

that of the other electrode at z= -h. 
Condition ( 1) shows that at the plate surface away from the disc there is no 

electric current flowing out into vacuum. Condition (2) is simply the requirement 

that the perfectly conducting electrode be an equipotential body. 

3. Summary of the Previous PaperD 

In Riemann's solution quoted in the book of Gray and Mathews2J, the con­

dition ( 1) and the condition 
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av 1 1 az = 2 1ra-a. v a2 -r 2 (z = ±h, r<a) ( 3) 

are adopted as boundary conditions in place of conditions (1) and (2). The above 

condition (3) results from the assumption that the normal component of the elec­

tric field at the electrode surface is identical with that of the case where a single 

disc electrode, providing a current source of 2/, is immersed in an unlimited medi­

um of conductivity a-. These conditions lead to the expression of the potential 

V in the plate: 

V I f°" sinh xz . si~ Xa . ]o("r)d". 
= -2 1ra-a o cosh xh I\, I\, I\, 

( 4) 

As a matter of fact, this solution does not satisfy the condition (2) i.e., V = 

constant at the electrode surface. Therefore, Riemann's solution (4) does not 

describe the actual physical situation of two disc electrodes facing each other. 

This can be made more definite by applying the method of images which leads to 

the same fallacy. 

The exact potential V is expressed in the form 

where 

V = Vor B(u)•sinh /;u· Jo(pu)du, 

z = a/;, r = ap. 

( 5) 

(6) 

The function B(u) may be determined by a Fredholm integral equation of the second 

kind: 

B(u) = j(u)+ rB(x)K(x, u)dx, 

where 

( ) 2 sm u 
ju=~· ucoshtu 

K(x u)=J_• e-
0 {sin(X+u)+sin(X-u)} 

' ;,r cosh tu x+u X-u 

h = at. 

The relation between I and Vo is given by the equation 

I= a-s:(-E.)z=h21rrdr 

= 21ra-aV0Jo° B(u)cosh tuj,(u)du. 

( 7) 

(8) 

( 9) 

(10) 

(11) 
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4. Numerical Solutions of the Integral Equation 

Although the problem has been reduced to a Fredholm integral equation of 

the second kind, its analytical solution cannot be obtained easily. Therefore we 

have to find a way to solve it numerically. 

To solve an integral equation, it is important to find a near approximation for 

the integral. From Eqs. (7), (8) and (9), we may write B(u)oc 1/cosh tu, and hence 

B(">,.,)K("?,.,, u) oc exp( -2 n). 

Therefore by the Laguerre-Gauss quadrature formula, the integral on the right­

hand side of Eq. (7) may be estimated quite efficiently. Putting 2 t"?,., =x, we have, 

n 

~ LWjB( ;} )ccxj, u), (12) 
j=l 

where 

(13) 

and Xj and Wj denote the nodes and weights of the Laguerre-Gauss n-point formula. 

Substituting Eq. (12) into Eq. (7), we have 

n 

B(u) = j(u)+ L WjB( ;~ )ccxj, u). (14) 
j=l 

Substituting u= {~ (i = 1, 2, •··, n) into Eq. (14), we have a system of linear 

simultaneous eqations of B( ;~) 's: 

. 
( Xi ) _ ( Xi ) ~ ( Xj ) ( Xi ) B 2t - f 2t + /..J WjB TI G Xj, TI (i=l,···,n). (15) 

j=l 

If we define an n x n matrix C = (cii) by 

(16) 

we have from Eqs. (15) 
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=(1-C)-'~ . (17) 

B(~) · 2 t 1 (i~L 
Once B( ;;t) 's are determined, B(u) may be computed by Eq. (14) for any 

value of u. 

Now we describe the relation between this method and the method of succes­

sive approximation referred to in 1). 

Expanding B( u) as 

B(u) = f(u)+B,(u)+Bi(u)+ ······, (18) 

we have 

(19) 

where Bo(u) = f(u). If we estimate the right-hand side of Eq. (19) by the 

Laguerre-Gauss quadrature formula, we have 

n 

B;(u) ~ I>jB;-,( ;i) G(xi, u). (20) 
j=I 

Substitution of u= ;;t into Eq. (20) gives 

B;-,(:'t) l f ( ;,t) 
: = C = c;i (21) 

B ( 
Xn ) i 

! i-1 2t _i 

From Eqs. (18), (21), we have 

if (ft) 
I I 

i = (I +c+c2+···) i 

,-J (~) 
. 2 t 

= (J-C)- 1 [ • (22) 

B ( ;~ ) _; I 1 ( ;·t L :i(;"t) 
provided that the right-hand side of Eq. (22) converges. 

Numerical solutions were obtained for several values oft from Eqs. (17), (14) 

utilizing the Laguerre-Gauss ten-point and twenty-point formulas. Results by 

ten- and twenty-point formulas were mutually in good agreement especially for 



468 Takeshi KIYoNO and Masaaki SHIMASAKI 

Blul 

I. 5 

1.0 

0.5 

0 

0 2 3 4 5 6 
u 

Fig. 2 Numerical solution of the integral equation (7) for t=0.5. 

Blul 

1.5 

1.0 

0.5 

0 

0 2 3 4 5 6 
u 

Fig. 3 Numerical solution of the integral equation (7) for t = 1.0 and 
intermediate solutions by the method of successive approximation. 

0.8 ---~---~---~---~--~ 

B IU) 

0 0.2 0.4 0.6 0.8 1.0 
u 

Fig. 4 Numerical solution of the integral equation (7) for t = I 0. 
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large values of t. Figs. 2, 3 and 4 show the typical results for t = 0.5, 1.0 and 10.0 

respectively. 

To test the accuracy of this method, the result for t = 1.0 was compared with 

results obtained by other methods. The methods compared are as follows: 

1) A method to refine the approximate solution obtained by ten-point formula 

by substituting it into the integral equation (7). Transforming the integral part 

of Eq. (7) into 

m 

r"B('Jl,)K()I,, u)d)I, = '"1Jkh B('J1,)K()I,, u)d)I, 
j O W Ck-l)h 

k=l 

(23) 

the first m terms of Eq. (23) were estimated by applying the Legendre-Gauss eight­

point formula repeatedly and the last term was estimated by the Laguerre-Gauss 

twelve-point formula, where h=0.5, m= 12. 

2) The method of successive approximation. The fifth-order approximate 

solution was computed by the Simpson quadrature formula with step size h =0.1. 

Thus: 

5 

B(u) = ~ B,(u). 
i=D 

Although the convergence was not necessarily sufficient, the values of B;(u)'s (i = 

1, •··, 5) showed good agreement with those by the Laguerre-Gauss quadrature 

formula. 

5. A Formula of Infinite Integral Involving a Bessel Function 

We give a formula of infinite integral involving a Bessel function which plays 

an important role in computation of the resistance between the two electrodes. 

The formula is: 

J
00 sin (x+k) s•/ 2 

J.(x) k dx = cos (n<f,+k sin <f,)d<f, 
o x+ o 

(24) 

where k is real. 
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As a special case, we have for n =I, 

We now give the proof. 

Since 

we have 

sin(x+k)_ = J
1
cost(x+k)dt 

x+k o 

i • sin ( n sin -1 (-})) 

Va2-b2 

J~J.(at)sin btdt = 
1 

oo or 0 

a•cos( n;) 

(_ cos( n sin-1(-~)) 

. Va2-b2 

foJ.(at)cos btdt = oo or O 

J~ J .(x) sinx~;k) dx 

= s:dt tJn(x)cos t(x+k)dx 

= J1{cos kt c_~_(n~r1-1f2 - sin kt sin(nsin-1t)_} dt 
O VI-t 2 VI-t 2 

-J1 cos(kt+nsin-1t) d 
- o i/I-t 2 t. 

If we write t = sin cf,, we have Eq. (24): 

r sin (x+ k) s•/2 

Jn(x) k dx = cos(ncf,+ksincf,)dcf,. x+ o 

Considering 

2s•/2 

1
-;; 

0 
sin n0 sin(z sin 0)d0 

J.(z) = 
2 s•/2 - cos n0 cos(z sin 0)d0 
7T: 0 

n: odd 

n: even 

a>b 

a=b 

a<b 

a>b 

a=b 

a<b, 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 
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00 

cos(z sin 0) = J o(z)+ 2 L J 2m(Z) cos 2 m0 (32) 
m=l 

00 

sin(zsin0) = 2L]2m+iCz)sin(2m+l)0, (33) 
m=O 

we arrive at the final results. That is, for even n, we have 

00 

Jr/2 • " s•/2 
0 

cos(n¢+ksin4>)dcf> = ; J.(k)-2w ]2m+1(k) 
0 

sinn¢sin(2m+l)cf>dcf> 
m=O 

and for odd n, 

r•/2 71: s•l2 cos(ncf>+ksincp)dcf> = --2 J.(k)+Jo(k) cosnq,dcf> 
., 0 0 

00 

" s•/2 + 2 W J 2m(k) 
0 

cos nq, cos 2 mcpd cf> 
m=l 

00 

= _ !!____j.(k)+(-)C•-D/2_]o(k) +2n(-)C•-Dl2'"1 (-)m ]2m(k) . 
2 n W n2-(2m)2 

m=l 

In case of n= l, Eq. (25) may further be simplified to 

by the formulas such as 

(34) 

00 

sink= 2L (-)m ]2m+1(k). (35) 
m=O 

6. Resistance Between the Two Electrodes 

From Eq. (11), the resistance R between the two electrodes may be written 

m the form 

R = 2Vo/I = Ro/S, (36) 

where 
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Ro= _l_ (37) 
2a-a 

S = ;J:-B(u)•cosh tu· J,(u)du. (38) 

As t tends to infinity, B(u) tends to f(u) and therefore S to 1 and R to Ro which is 

twice the resistance of a single electrode. This may be expected because for suf­

ficiently large values oft, the two electrodes can be treated as two independent elec­

trodes. The quantity S can be considt.red to express the dependence of the re­

sistance on the thickness t of the plate. 

The integrand of Eq. (38) is proportional to u- 312 for a large value of u and 

is slow to converge. Utilizing Eqs. (7) and (26), Eq. (38) may be transformed 

into a more convenient form for numerical quadrature. We have 

S = ;J:-J(u)cosh tuj,(u)du+; J:-{J:-B(:>..)K(x, u)dx} cosh tuj,(u)du 

= 1 +__!__J
00

e-tlB(x)d:>.. f"°°{ sin(X+u) + sin(X-u)} j,(u)du 
2 o Jo x+u x-u 

= I+ f~e- 0 B(X) si~ X dx. (39) 

Considering B(x) oc exp (-tx) as :>..----,, oo and writing 2t:>..=x, we have by the 

Laguerre-Gauss quadrature formula, 

I. 0 .-------,---,------,-----,------,---

o/R. 

2 3 
t 

4 5 6 

(40) 

Fig. 5 The normalized resistance 

R/ R 0 between the two elec­
trodes. Approximation based on 

Riemann's solution R'/Ro=l-2 
(ln2)/(nt) is also shown. 
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where Xj and Wj denote the nodes and weights of n-point formula respectively. We 

give the numerical results of R/Ro by ten- and twenty-point forumlas in Fig. 5*. 

7. Discussions 

As mentioned in section 3, the electrode surface in Riemann's solution is not 

equipotential. Therefore, strictly speaking, we cannot define the resistance be­

tween the electrodes in Riemann's solution. But ifwe write R=(2V/I)a=h, we have 

from Eq. (4). 

(41) 

Expanding as 

(42) 

and 

(43) 

we have 

R/Ro = l- ~a f (-)m- 1J~e-2mhi{1-(~
2
+ ~

2
)x2+ ······}dx 

m=I 

_ 2a a3 
( 3 r2)'1 (-)m- 1 (r 5 as) 

- l-~log,2+ 61rha 1+2 a2 LJ ma +Ohs' hs 
m=l 

2 log, 2 l ( 3 r 2) l f"" v2 (rs as) 
= l- 1rt + 61rt 3 l+2 a2 • 2Jo e-+Tdv+O h•' h5 ' 

(44) 

where 

* The computer system KDC-11 (HITAC 5020) at the Kyoto University Computation Center 
was used for this numerical calculation. 
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1 r" v2 

2Jo e•+l dv ~ 1. (45) 

Thus the resistance obtained by Riemann's method is not constant but depends 

on r especially for small values oft. As Gray and Mathews adopted only the first 

approximation R/Ro=l-2(ln2)/(1rt), they seem to have overlooked this physical 

contradiction. 

In case the thickness t is very large, say, greater than l O where the mutual 

interaction of two electrodes is very small, their approximation R/Ro= 1-2 (ln2)/ 

(1rt) shows a good agreement with the exact result. But for small values of t, 

such is not the case. This follows from the fact that in Riemann's solution, the 

mutual interaction between the two electrodes is not taken into consiedration. 

On the other hand, Fig. 5 shows that the exact resistance R for small values of 

t is given by R=Rot, which seems quite reasonable. 
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Appendix 

Numerical results are given in Tables 1, 2, 3, 4, and 5. 
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u 

0.000 

0200 

0.400 

0.600 

0.800 

1.000 

1.200 

1.400 

1.600 

1.800 

2.000 

2.200 

2.400 

2.600 

2.800 

3.000 

3.200 

3.400 

3.600 

3.800 

4.000 

4.200 

4.400 

4.600 

4.800 

5.000 

5.200 

5.400 

5.600 

5.800 

6.000 

6.200 

6.400 

6.600 

6.800 

7.000 

Table I. Numerical solution of the integral equation (7) for t=0.5 
by the Laguerre-Gauss N-point formula. 

B(u) 

N=lO N=20 

0.1483813 E + 01 0.1483765 E + 01 

0.1467262 E + 01 0.1467215 E + 01 

0.1418724 E + 01 0.1418680 E + 01 

0.1341397 E + 01 0.1341357 E + 01 

0.1240164 E + 01 0.1240131 E + 01 

0.1121016 E + 01 0.1120989 E + 01 

0.9904149 E + 00 0.9903949 E + 00 

0.8546983 E + 00 0.8546855 E + 00 

0.7196010 E + 00 0.7195951 E + 00 

0.5899328 E + 00 0.5899329 E + 00 

0.4694142 E + 00 0.4694194 E + 00 

0.3606487 E + 00 0.3606581 E + 00 

0.2651957 E + 00 0.2652081 E + 00 

0.1837048 E + 00 0.1837192 E + 00 

0.1160851 E + 00 0.1161006 E + 00 

0.6167849 E - 01 0.6169415 E - 01 

0.1942480 E - 01 0.1943994 E - 01 

-0.1199270 E - 01 -0.1197863 E - 01 

-0.3402539 E - 01 -0.3401281 E - 01 

-0.4816193 E - 01 -0.4815115 E - 01 

-0.5585422 E - 01 -0.5584535 E - 01 

-0.5846380 E - 01 -0.5845691 E - 01 

-0.5722619 E - 01 -0.5722119 E - 01 

-0.5322959 E - 01 -0.5322638 E - 01 

-0.4740545 E - 01 -0.4740387 E - 01 

-0.4052791 E - 01 -0.4052773 E - 01 

-0.3321994 E - 01 -0.3322093 E - 01 

-0.2596434 E - 01 -0.2596625 E - 01 

-0.1911776 E - 01 -0.1912035 E - 01 

-0.1292656 E - 01 -0.1292962 E - 01 

-0.7543372 E - 02 -0.7546701 E - 02 

-0.3043568 E - 02 -0.3046987 E - 02 

0.5590634 E - 03 0.5557021 E - 03 

0.3297765 E - 02 0.3294580 E - 02 

0.5239786 E - 02 0.5236868 E - 02 

0.6475007 E - 02 0.6472420 E - 02 



476 Takeshi KIYoNo and Masaaki SHIMASAKI 

u 

0.000 

0.200 

0.400 

0.600 

0.800 

1.000 

1.200 

1.400 

1.600 

1.800 

2.000 

2.200 

2.400 

2.600 

2.800 

3.000 

3.200 

3.400 

3.600 

3.800 

4.000 

4.200 

4.400 

4.600 

4.800 

5.000 

5.200 

5.400 

5.600 

5.800 

6.000 

6.200 

6.400 

6.600 

6.800 

7.000 

Table 2. Numerical solution of the integral equation (7) for t= 1.0 
by the Laguerre-Gauss N-point formula. 

B(u) 

N=lO N=20 

0.1015904 E + 01 0.1015906 E + 01 

0.9894333 E + 00 0.9894353 E + 00 

0.9153848 E + 00 0.9153866 E + 00 

0.8075296 E + 00 0.8075314 E + 00 

0.6827646 E + 00 0.6827661 E + 00 

0.5561601 E + 00 0.5561612 E + 00 

0.4383606 E + 00 0.4383615 E + 00 

0.3353044 E + 00 0.3353051 E + 00 

0.2492049 E + 00 0.2492054 E + 00 

0.1798356 E + 00 0.1798359 E + 00 

0.1256212 E + 00 0.1256214 E + 00 
0.8439842 E - 01 0.8439855 E - 01 

0.5388195 E - 01 0.5388203 E - 01 

0.3191979 E - 01 0.3191981 E - 01 

0.1661363 E - 01 0.1661364 E - 01 

0.6359641 E - 02 0.6359628 E - 02 

-0.1546241 E - 03 -0.1546469 E - 03 

-0.3975325 E - 02 -0.3975351 E - 02 

-0.5916903 E - 02 -0.5916931 E - 02 

-0.6598966 E - 02 -0.6598992 E - 02 

-0.6481655 E - 02 -0.6481678 E - 02 

-0.5897617 E - 02 -0.5897637 E - 02 

-0.5079797 E - 02 -0.5079812 E - 02 

-0.4184884 E - 02 -0.4184896 E - 02 

-0.3312596 E - 02 -0.3312606 E - 02 

-0.2521229 E - 02 -0.2521235 E - 02 

-0.1839892 E - 02 -0.1839897 E - 02 

-0.1277947 E - 02 -0.1277950 E - 02 

-0.8321042 E - 03 -0.8321061 E - 03 

-0.4916283 E - 03 -0.4916291 E - 03 

-0.2420356 E - 03 -0.2420359 E - 03 

-0.6761427 E - 04 -0.6761412 E - 04 

0.4694616 E - 04 0.4694657 E - 04 

0.1155835 E - 03 0.1155840 E - 03 

0.1503649 E - 03 0.1503654 E - 03 

0.1613144 E - 03 0.1613151 E - 03 
·-~·---- -·----·--· - ------ ------ ---- --~~-
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Table 3. Numerical solution of the integral equation (7) for t= 10.0 

by the Laguerre-Gauss N-point formula. 
_ _. __ ~---

B(u) 
u 

N=lO N=20 

0.000 0.6659423 E + 00 0.6659425 E + 00 

0.020 0.6527985 E + 00 0.6527984 E + 00 

0.040 0.6158376 E + 00 0.6158376 E + 00 

0.060 0.5614195 E + 00 0.5614192 E + 00 

0.080 0.4973940 E + 00 0.4973942 E + 00 

0.100 0.4308479 E + 00 0.4308479 E + 00 

0.120 0.3669087 E + 00 0.3669087 E + 00 

0.140 0.3086008 E + 00 0.3086009 E + 00 

0.160 0.2572702 E + 00 0.2572702 E + 00 

0.180 0.2131481 E + 00 0.2131482 E + 00 

0.200 0.1758313 E + 00 0.1758313 E + 00 

0.220 0.1446140 E + 00 0.1446140 E + 00 

0.240 0.1186925 E + 00 0.1186925 E + 00 

0.260 0.9727648 E - 01 0.9727649 E - 01 

0.280 0.7964340 E - 01 0.7964338 E - 01 

0.300 0.6515898 E - 01 0.6515898 E - 01 

0.320 0.5328023 E - 01 0.5328026 E - 01 

0.340 0.4354942 E - 01 0.4354943 E - 01 

0.360 0.3558452 E - 01 0.3558452 E - 01 

0.380 0.2906885 E - 01 0.2906886 E - 01 

o.400 0.2374105 E - 01 0.2374106 E - 01 

0.420 0.1938601 E - 01 0.1938602 E - 01 

0.440 0.1582710 E - 01 0.1582710 E - 01 

0.460 0.1291942 E - 01 0.1291942 E - 01 

0.480 0.1054429 E - 01 0.1054429 E - 01 

0.500 0.8604512 E - 02 0.8604512 E - 02 

0.520 0.7020552 E - 02 0. 7020552 E - 02 

0.540 0.5727337 E - 02 0.5727337 E - 02 

0.560 0.4671659 E - 02 0.4671658 E - 02 

0.580 0.3810019 E - 02 0.3810020 E - 02 

0.600 0.3106851 E - 02 0.3106851 E - 02 

0.620 0.2533092 E - 02 0.2533093 E - 02 

0.640 0.2064992 E - 02 0.2064992 E - 02 

0.660 0.1683150 E - 02 0.1683150 E - 02 

0.680 0.1371715 E - 02 0.1371715 E - 02 

0.700 0.1117741 E - 02 0.1117740 E - 02 
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Table 4. Numerical solution of the integral equation (7) for I= 1.0 by the 
Laguerre-Gauss IO-point formula and the refined solution. 

----------

u 1--------------B_(~u);...--_ I 

_____ ;...--_____ N_=_IO _____ ~[ ____ R_efi_n_e_d_S_o_lu_t_io_n_ ---1 
0.000 0.1015904 E + 01 I 0.1015905 E + 01 
0.100 0.1009197 E + 01 0.1009198 E + 01 
0.200 0.9894333 E + 00 0.9894345 E + 00 
0.300 0.9576372 E + 00 0.9576384 E + 00 
0.400 0.9153848 E + 00 0.9153862 E + 00 
0.500 0.8646332 E + 00 0.8646345 E + 00 
0.600 0.8075296 E + 00 0.8075308 E + 00 
0.700 0.7462324 E + 00 0.7462335 E + 00 
0.800 0.6827646 E + 00 0.6827657 E + 00 
0.900 0.6189110 E + 00 0.6189119 E + 00 
1.000 0.5561601 E + 00 0.5561608 E + 00 
1.100 0.4956864 E + 00 0.4956870 E + 00 
1.200 0.4383606 E + 00 0.4383611 E + 00 
1.300 0.3847792 E + 00 0.3847797 E + 00 
1.400 0.3353044 E + 00 0.3353049 E + 00 
1.500 0.2901064 E + 00 0.2901068 E + 00 
1.600 0.2492049 E + 00 0.2492052 E + 00 
1.700 0.2125064 E + 00 0.2125066 E + 00 
1.800 0.1798356 E + 00 0.1798358 E + 00 
1.900 0.1509621 E + 00 0.1509623 E + 00 
2.000 0.1256212 E + 00 0.1256213 E + 00 
2.100 0.1035296 E + 00 0.1035297 E + 00 
2.200 0.8439842 E - 01 0.8439849 E - 01 
2.300 0.6794144 E - 01 0.6794147 E - 01 
2.400 0.5388195 E - 01 0.5388197 E - 01 
2.500 0.4195693 E - 01 0.4195694 E - 01 
2.600 0.3191979 E - 01 0.3191978 E - 01 
2.700 0.2354196 E - 01 0.2354195 E - 01 
2.900 0.1094375 E - 01 0.1094373 E - 01 
3.100 0.2706288 E - 02 0.2706257 E - 02 
3.300 -0.2345770 E - 02 -0.2345802 E - 02 
3.500 -0.5138140 E - C'2 -0.5138173 E - 02 
3.700 -0.6383272 E - 02 -0.6383304 E - 02 
3.900 -0.6616801 E - 02 -0.6616828 E - 02 
4.100 -0.6231376 E - 02 -0.6231400 E - 02 
4.300 -0.5506597 E - 02 -0.5506615 E - 02 
4.500 -0.4634610 E - 02 -0.4634626 E - 02 
4.700 -0.3741456 E - 02 -0.3741469 E - 02 
4.900 -0.2904417 E - 02 -0.2904427 E - 02 
5.100 -0.2165852 E - 02 -0.2165860 E - 02 
5.300 -0.1543974 E - 02 -0.1543980 E - 02 
5.500 -0.1041059 E - 02 -0.1041063 E - 02 
5.700 -0.6495471 E - 03 -0.6495500 E - 03 
5.900 -0.3564475 E - 03 -0.3564495 E - 03 
6.100 -0.1464090 E - 03 -0.1464102 E - 03 
6.300 -0.3762463 E - 05 -0.3763194 E - 05 
6.500 0.8620387 E - 04 0.8620349 E - 04 
6.700 0.1365315 E - 03 0.1365313 E - 03 
6.900 0.1582719 E - 03 0.1582718 E - 03 
7.100 0.1604332 E - 03 0.1604333 E - 03 
7.300 0.1500940 E - 03 0.1500942 E - 03 
7.500 0.1326129 E - 03 0.1326130 E - 03 
7.700 0.1118828 E - 03 0.1118829 E - 03 
7.900 0.9059533 E - 04 0.9059544 E - 04 
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Table 5. The normalized resistance Rf Ro 

R/Ro 
R' /Ro= 1-2-(ln 2)/(11:t) 

N=lO N=20 

0.100 -0.2441338 E + 00 0.8208976 E - 01 -0.3412712 E + 01 

0.200 0.2018067 E + 00 0.2134419 E -t- 00 -0.1206356 E + 01 

0.300 0.2998587 E + 00 0.2981674 E + 00 -0.4709040 E + 00 

o.400 0.3689218 E + 00 0.3688071 E + 00 -0.1031780 E + 00 

0.500 0.4290431 E + 00 0.4290570 E + 00 0.1174576 E + 00 

0.600 0.4807292 E + 00 0.4807199 E + 00 0.2645480 E + 00 

0.700 0.5252381 E + 00 0.5252339 E + 00 0.3696126 E + 00 

0.800 0.5637791 E + 00 0.5637768 E + 00 0.4484110 E + 00 

0.900 0.5973188 E + 00 0.5973170 E + 00 0.5096987 E + 00 

1.000 0.6266537 E + 00 0.6266523 E + 00 0.5587288 E + 00 

1.200 0.6752263 E + 00 0.6752257 E + 00 0.6322740 E + 00 

1.400 0.7135043 E + 00 0.7135037 E + 00 0.6848063 E + 00 

1.600 0.7442391 E + 00 0.7442384 E + 00 0. 7242055 E + 00 
1.800 0.7693429 E + 00 0.7693429 E + 00 0.7548493 E + 00 

2.000 0.7901655 E + 00 0.7901648 E + 00 0. 7793644 E + 00 

2.500 0.8292189 E + 00 0.8292189 E + 00 0.8234915 E + 00 

3.000 0.8562905 E + 00 0.8562899 E + 00 0.8529096 E + 00 

4.000 0.8911378 E + 00 0.8911372 E + 00 0.8896822 E + 00 

6.000 0.9268923 E + 00 0.9268923 E + 00 0.9264548 E + 00 

8.000 0.9450270 E + 00 0.9450264 E + 00 0.9448411 E + 00 

10.000 0.9559680 E + 00 0.9559680 E + 00 0.9558729 E + 00 

15.000 0.9706102 E + 00 0.9706102 E + 00 0.9705819 E + 00 

20.000 0.9779486 E + 00 0.9779486 E + 00 0.9779364 E + 00 




