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Studies on the Responses of Multi-degrees of 
Freedom Systems Subjected to Random Excitation 
with Applications to the Tower and Pier Systems 
of Long Span Suspension Bridges 

By 

Y oshikazu YAMADA* and Hirokazu T AKEMIY A** 

(Received June 9, 1968) 

In this paper the responses of multi-degrees of freedom systems with applications to the 
pier and tower systems of long span suspension bridges due to earthquake motions are studied 
by the stochastic process theory and the results are compared with the direct-integration. 

For the present system, foundation conditon coupled with the pier dimensions has signi­
ficant effects on the structural dynamic characteristics. The response behaviors and then their 
evaluation become complex for some foundation ranges. Here, on the assumption that the 
normal mode analysis can be applied, the direct-effects of individual modes and their cross-ef­
fects to the dynamic response characteristics are investigated by simulating earthquake motions 
to a suitable form. 

1. Introduction 

371 

The asismic design of a tall structure must take both the earthquake charac­

teristics and the system dynamic characteristics, including those of the foundation 

layer on which the structure is constructed, into consideration. They are related 

by the so-called input-output formula in the spectral analysis"; therefore, the res­

ponse through the linear system is easily calculated. 

In this sense, the system dyanmics for a specified model with variation of the 

foundation layer are first found out. The response analysis due to the stationary 

excitation is made on typical cases on the basis of the results obtained in section 2; 

i.e. system natural frequencies are in proximity and sufficiently separated. In the 

former case the closeness of natural frequencies and the value of damping factor 

play an essential part in the system behavior and make the complexity of the res­

ponse analysis. That is, even in the system to be analyzed in the normal mode 
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co-ordinates, the coupling terms between them make a great contribution to the 

system response against the proposal by Jennings, R.L. and Newmark, N.M2>., and 

the larger the damping factor gets, the more their effects increase. The shape of 

distributed error caused by dropping out these terms differs greatly according to 

where the proximity occurs. On the other hand, they are negligibly small in the 

latter case. 

After getting the informations on response evaluation in connection with the 

system natural frequencies, the response characteristics which permit the estimation 

of safety of the system in random excitation are of interest. Hence, in section 4, 

the investigations on the stochastic quantities and deterministic problems of earth­

quake motions are made, bringing out the data on their mathematical formulation 

as non-stationary random excitations. The input characteristics thus constructed 

analytically have the properties that they are varied to some extent in the 

parameter regions. Then, the time-evolving response characteristics due to them 

are evaluated provided that the system characteristics are time-invariant. 

In the last section, for corroboration of the spectral analysis, comparison is made 

between the results obtained by it and the ones direct-integrated by ,8-method for 

the actual earthquake motions. 

2. Dynamic Characteristics of the System 

As for the system considered, a tower and pier system of long span suspension 

bridges is continued to adopt3 •4> in this paper, the dimensions of which are listed 

on Table 1. The numerical computations are carried out on its idealized system 

with ten degrees of freedom as shown in Fig. 1. The free vibration motion without 

damping is governed by 

[M]{X} + [K]{X} = o (2.1) 

where [M] and [K] are square symmetric matrices. Eq. (2.1) can be written in 

terms of the normal mode co-ordinates by putting 

{X} = [V] {Y} 

where the square matrix [ V] is defined such that 

[V]T[K][V], [V]T[M][V] are diagonal matrices 

[V]T[M] [V] is unit matrix 

In Eq. (2.1), it may be more difined as 

[ VF [K] [ V] = ['w2,.J 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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Table. I 
Values per one shaft 

B (ml H(ml A(m2 J I<m4 J C(ml 

3.00 5.0C 1.62 3.75 2.50 

3.50 5.75 2.25 6.65 2.88 

4.00 6.50 2.70 10.99 3.25 

4.50 7.25 3.15 17.15 3.63 

5.00 8.00 3.60 25.60 4.00 

5.50 8.75 4.07 36.85 4.38 

6.00 9.50 4.50 51.44 4.75 

6.50 10.25 4.95 70.00 5.13 

7.00 11.00 5.40 93.17 5.50 

Fig. I System considered 

Total 

IC/!Cm-3> W(ton) 

0.667 177 

0.433 455 

0.296 585 

0.212 731 

0.156 893 

0.119 1071 

0.0923 1266 

0.0733 1476 

0.0590 852 

7506 
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The diagonalization of Eq. (2. 1) is evident and the normalization of co-ordinates 

as specified in Eq. (2.4) ensures that all generalized mass is unity. Eq. (2.1) then 

becomes 

(2.6) 

The system dynamic characteristics in connection with foundation conditions 

are detected by use of this equation. Fig. 2 shows the variation of the lower natural 

frequencies against the foundation constant and Fig 3. illustrates the aspects of nor­

mal mode shapes modified by it. It is recognized from the latter that if the natural 

frequencies get closed each other, the corresponding normal mode shapes come to 
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be alike. Form Fig. 2 the proximity of natural frequencies occurs only between 

two adjacent ones due to the inertia force of the pier and the reaction of the foun­

dation layer, practically between the fundamental and the second, and between 

the second and the third. In this state the vibration phenomenon becomes complex 

as a matter of course. 

Hence, the investigations have to be made in the following cases. One is in 

the proximity of the natural frequencies in the foundation constant region II, VI 

in Fig. 2 and the other is in the condition ofthier being well separated in region IV. 

Each case corresponds to the foundation KV=KH=KHV=8 kg/cm3, KV=55 

kg/ems and KH=KHV=9.5 kg/cm3, and KV=30 kg/ems KH=KHV=lO kg/cm3, 

respectively. 

3. Response of the System due to Stationary Random Excitation 

It is not possible to extend the normal mode method of analysis to the general 

case of a damped system with multi-degrees of freedom without considerable com­

plications, because the damping force induces a coupling motion between the normal 

modes, especially in the system with nearly equal natural frequencies". No coupl­

ing phenomenon between them arises,. however, if the damping force is distributed 

in such a form as proportional to the inertia force, the elastic force or their special 

combination6>. These different damping types come from the different treatment 

of the damping factor. There, the damping term in the normal mode co­

ordinates is presented as 
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[VF[C] [V] = .S'[I] 

= ,8" ['-w2,._J 

= ,8 ['-w,] 

(3.1) 

(3,2) 

(3.3) 

which are denoted here by the damping type 1, damping type 2 and damping type 

3, respectively. The damping effects of these types are set to equal at the fun­

damental mode. 

In the above cases the analysis can be extended fairly easily to the normal mode 

method, including the effects of damping. The governing equation in terms of 

normal mode co-ordinates is expressed as 

{Y} + [VF[C] [V] {Y} + [VF[K] [V] { Y} 

{Q} = [VF{F} 

{Q} (3.4) 

(3.5) 

where the external force {F} can only be explained in the stochastic meaning. The 

Eq. (3.4) is solved as 

{ Y} = ['-h,]@{ Q} 
or 

g {Y} = ['-H,] · 9' {Q} 

(3.6) 

(3.7) 

where the asterisk @ means the convolution integral and g' { •} signifies the Fourier 

transformation of { •}. ['-h,] is the diagonal matrix of impulsive response function. 

Its Fourier transformation ['-H,-J is a frequency response function matrix, of which 

element Hi( w) is in general complex and has the form according to the type of damp­

ing term; 

damping type I 
I I 

H iC w) = ~ · { ( w ) 2} . { , w } 1- - +z 2,8--
Wj w/ 

(3.8-a) 

damping type 2 
I I 

HiCw) = --2 • 2 

Wj {1-(:J}+i{2,8"w} 
(3.8-b) 

damping type 3 
I I 

H iC w) = w i"- · { ( w ) 2} . { w } 1- - +z 2/3-
Wj Wj 

(3.8-c) 

The response in terms of the original co-ordinates is then 

g (X} = [V]g {Y} = [V]['-H,]9' {Q} = [V][''H,][V]T9' {F) (3.9) 

In Eq. (3.9) the frequency response function matrix [V]['-H,][VF is not of course 

diagonal but symmetric. Here, one may write 

(3.10) 
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Then, 
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g {X} = [Jl]<:f {F} (3.11) 

In these equations [Jl] makes the frequency response function matrix in the response 

co-ordinates and is called the receptance matrix. The relationship of Eq. (3.9) 

or Eq. (3.11) forms the basis connecting the spectral density of random excitation 

and that of the system response. 

The symbol [SF] and [SXJ may be used to denote the spectral density for 

the excitation and the system response. If [Jl*] is the matrix of which elements 

are the complex conjugate of those of Eq. (3.10), then it leads to 

(3.12) 

The following technique, however, will be preferable for the system to which the 

normal mode method can be applied, clarifing the correlation between the normal 

modes. It follows that from Eq. (3.11) 

(3.13) 

where [SQ] and [SY] represent the input and output spectral density matrices in 

the normal mode co-ordinates. This is particularly a simple relationship, because 

the frequency response function matrix is diagonal. Then, the response power 

spectral density of the original coordinates is from Eq. (2.2) as 

(3.14) 

From Eq. (3.12) or Eq. (3.13) the response power spectral density depends on two 

factors; one is the characteristics of the system itself and the other those of the 

external forces. The former is expressed only by the natural frequencies and 

the damping factors. Considering Eq. (3.13) can, therefore, reveal something 

essential to the specified system behavior in random exictation in terms of their 

fundamental characteristics. 

If it can be assumed that the excitation is "white" (it means the elements of 

(SF] are independent of frequency), which may be sufficient to investigate the con­

tributions of direct- and cross- spectral density of normal modes to the system res­

ponse'>, then the mean-square-response depends on n2 integrals defined by 

Jjk = J~ HjH*k dw (3.15) 

and the respose in the original co-ordinates is obtained as 

(3.16) 

The integral is carried out according to each type of damping term as follows; 
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for the damping type 3 

f.k _ 2mJ3jWj+/3kWk) 
J - (wk 2 -w/)2+4((3jWj+/3kWk)(/3jWk+f3.wj)WjWk 

(3.17) 

The corresponding integral arising from the direct spectral density is a special case 

and it is found as 

(3.18) 

Similarly, 

for the damping type 1 

(3.19) 

ljj = -n: 
4(3/w/ 

(3.20) 

for the damping type 2 

(3.21) 

f,.,· = -n: 
4/3/'wl 

(3.22) 

Comparing the integrated values for each different type of damping term, it 

is understood that the contributions of the direct- and cross-spectral densities to the 

total spectral density are increased in magnitude in ascending order of the damping 

type I, damping type 2, damping type 3. (This tendency can be observed directly 

in the mean-square-response in Fig. 6.) 

In the case of two lower natural frequencies becoming close to each other, the 

order of the cross-spectral densities (the non-diagonal elements of Eq. (3.13)) is 

increased in comparison with the direct ones (the diagonal elements of Eq. (3.13)). 

The conditions where the order of the cross-spectral density is negligibly small 

to the direct one are found. They are according to the type of da!Ilping 

term; 

damping type I { I - ( ~ rr :}> 8 /3? 
Wj w/ Wj>Wk (3.23-a) 

damping type 2 1- ( ~) 
2 

:}> 4 /3" -2w -2 { ( ~) 

2 

+ 1} . 
Wj J J OJj ' 

Wj>Wk (3.23-b) 

damping type 3 1-(:;r :}> 4/3/{(:;)+2} Wj> Wk (3.23-c) 

They indicate that the larger the damping factor is, the more sufficiently the natural 
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frequencies concerned have to be separated. This condition becomes severe in 

ascending order of the damping type 1, damping type 3, damping type 2. 

It is quite evident that the lower vibration modes play a dominant part in the 

system response. Moreover, it is the lower modes that can be affected by the cir­

cumstances surrounding the system. (see Fig. 2 and Fig 3) Hence, the ratio of the 

mean-square response totaled only by the direct effects of individual normal 

modes to the one by both their direct and cross effects is calculated at each section 

of the system against the damping factor with w2/w1, w,/w2 as parameter. They 

are plotted in Fig. 4, where the curve A corresponds to the case of the first mode 

and the second in proximity, and the curve E the second and the third in the same 

condition while the curve C of thier well separation. The ratio is distributed along 

the whole system at the first proximity as in Fig. 5-(a) and at the second as in Fig. 

5-(b) with damping factor as parameter. In the former case the error caused by 

dropping out the cross terms between the normal modes cannot be negligible in 

proportion to the damping factor and the height of the system. In the latter case 

a fairly large extent of error is also noticed at the upper part and lower but not at 

the central part. On the other hand, in case of the natural frequencies sufficiently 

separated, this error becomes negligibly small over the whole system. In all cases 

the ratio less than 1.0 appears at the pier top, which is due to the orthogonality 

condition of vibration mode. These results coupled with the mode shapes in Fig. 
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3 substantiate the fact that the normal modes in proximity should occur in phase 

and that the ones sufficiently separated in quadrature. 

The responses obtained from Eq. (3.16) are illustrated in Fig. 6 with various 

damping factors, corresponding to the above three cases. In view of these figures 

it is recognized that the assumption of vibration damping together with the disposi­

tion of natural frequencies has significant effects on the response. 

4. Simulation of Earthquake Motion as Non-Stationary 
Random Excitation 

The earthquake motions evidently have a non-stationary stochastic process 

by nature. It is essential for the later investigation of the precise system response 

to present these motions in a mathematical expression. 

Let the generalized earthquake acceleration be synthesized in a form•i 

( 4.1) 

where a1, •••,a. are the random parameters, or the integral criteria of the seismic forces, 

such as the nature of the earthquake itself, the distance from the epicenter and the 

characteristics of foundation layer. +( ai, · · ·, a,; t) is the deterministic function of 

time (which gives the envelope of accelerogram) and g(a,+1, ···,a.; t) is a stationary 

random function of time and is further assumed to be subject to the Gaussian process. 

For a rough approximation, the following expression is adopted in this paper 

such as 

(4.2) 

and its derivative in a form 

j(t) = ,ir(a1, a2; t )g(a,, a,, a,; t )+'l/r(a1, a2; t )g(a,, a,, a,; t) ( 4.3) 

The observation of the actual accelerograms gives the exponential form to the deter­

ministic function. 

( 4.4) 

where H(t) is the Heaviside unit step function, and a1 and a2 are the positive con­

stants through which the rapidity of buildup and decay of the seismic force intensity 

can be controlled. The st,:1tionary Gaussian process g(t) is assumed to have the 

zero mean and the following cross-variance•i. 

(4.5) 



Studies on the Responses of Multi-degrees of Freedom Systems Subjected to Random Excitation 
385 with Appl,ications to the Tower and Pier Systems of Long Span Suspension Bridges 

where ©(ro) is the power spectral density of a stationary part only. 

(4.6) 

( 4.7) 

Since g(t) is 

the Gaussian process with mean zero, g(t) is also the Gaussian process with mean 

zero. It then follows that 

E {f(t)} = E {j(t)} = 0 (4.8) 

The cross-variance betweenf(t) and/(t), and the variance of/(t) are 

E {f(t1)/(t2)} = 1'r(t1Nr(t2)E {g(t1)g(t2)} +,Jr(t1),Jr(t2)E {g(t1)g(t2)} (4.9) 

E {/(t1)J(t2)} = +(t1rJ,-(t2)E {g(t1)g(t2)} + {,Jr(t1Nr(t2) 

-+{t1),Jr(t2)} E {g(t1)g(t2)} +,Jr(t1),Jr(t2)E {g(t1)g(t2)} (4.10) 

Now the stationary Gaussian process g(t) may be replaced as the response of 

the system with a second order differential equation to which the Gaussian white 

noise n( t) is input. 

(4.11) 

Let the mean value of n(t) be zero and the correlation be 

( 4.12) 

The frequency response function of Eq. ( 4.11) is then 

( 4.13) 

in which the parameter roo, µo are chosen to represent the characteristics of the input 

power spectral density, in other words, the conditions of the foundation layer in 

addition to the seismicity. The Eq. (4.13) is related to the power spectral density 

©( oo) in such a form as 

©(oo) = DIHo(oo)l 2 (4.14) 

Hence, the cross-variances of the external forces with non-stationrity in the form 

ofEq. (4.2) are calculated by use of Eq. (4.5) to Eq. (4.7) and Eq. (4.14), and the 

power spectral densities by Eq. (4.9) to Eq. (4.10) and Eq. (4.14). The latter 

have the expression of 

Sl(t, oo) = DJ<0l(t){Li<0l(t)K 1(00)-L<0l(t)K .(oo)} /4W1 

Si l(t, ro) = DJ<0>(t ){L1 m(t )K 1(00)-L2°i(t )K .(oo)} /4 W 1 

(4.15) 

+ DJ<1>(t ){Li <0>(t )K a(oo)-L<0>(t )K .(oo)} /4 W 2 ( 4.16) 
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S i(t, w) = Dj<D(t){Li Ol(t)K 1(w)-L2 m(t)K ,Cw)} /4W1 

+D[j<IJ(t){Li COl(t)K 3(w)-L2 c0l(t)K ,(w)} 

- j<0l(t){L, 0 >(t)K 3(w)-L2 °l(t)K ,(w)} 

,_ j<0l(t){L,m(t)K 6(w)-L 2°>(t)K 6(w)} ]/4W2 (4.17) 

J<Ol(t) = (e-«1t-e-«2t), j(l)(t) = ft j<Ol(t) 

K -(w) _ (a;+ µo)wo+ µo(w+wo) + (a;+ µo)wo- µo(w-wo) 
1 

- (a;+ µo) 2 +(w+wo)2 (a;+ µo) 2 -J;-(w-wo)2 

w+wo w-wo 
K;+.(w) = (a;+µo) 2 +(w+~~)2 (a;+µo)2+(w-wo) 2 

K ( ) (a;+µo)wo+µo(w-wo) + (a;+µo)wo-µo(w+wo) 
i+

4 w = (a;+µo) 2 +(w-wo)2 (a;+µo) 2 +(w+wo)2 

W2 = µowo 

(i=l,or2) 

The abstraction of the stochastic characteristics, i.e. the auto-correlation func­

tion and the power spectral density is made on several earthquake accelerograms 

for description of eatrhquake motions in a mathematical way as in Eq. ( 4.2). One 

of them is presented in Fig. 8-a, Fig. 8-b for the EL CENTRO earthquake, 1940 

NS component in Fig. 7. On inspection of these spectral densities, they generally 

have one conspicuous peak at about I to 2.5 c/sec (6.3 to 16 rad/sec) with the max­

imum value of 200 cm2/sec5 to 600 cm2/sec5 and a very marked decrease about 3 
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Fig. 7 EL CENTRO earthquake 1940, NS component 
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c/sec (25 rad/sec), and then they vanish about more than 10 c/sec (60 rad/sec). 

It might be emphasized that the input power spectral density, being taken into 

consideration of the natural frequencies of the structure, is practically confined 

within the frequency band, zero to 5 c/sec (zero to 30 rad/sec). 

The formulation of the spectral density of the stochastic function g(t), which 

is replaced in this paper by the output through the second-order differential equa­

tion of the white noise n(t) input, makes the system response analysis more analyti­

cally. Its assumed function ([)(w) is plotted in Fig. 9-b with the parameter of D= 

8.0 x 106 cm2/sec5 wo= 12.6 rad/sec µo=3.86 rad/sec. The artificial earthquake 

generated by its power spectral density10> is presented in Fig. 10 and its auto-cor­

relation function is in Fig. 9-a. As the coefficients of the deterministic function 

"1/r(t), the values of a1=O.25 and a2=0.5 are taken as Fig. 11 

The external forces constructed from the foregoings, which have the time­

evolving stochastic process, will approximate to the first several seconds of the EL 

CENTRO earthquake 1940 NS component. The variation of the former power 

spectral density is shown in Fig. 12 with time as parameter. 

5. Response of the System Due to Non-Stationary 
Random Excitation 

As has been mentioned, the earthquake motions are the excitations of which 

stochastic quantities are time-evolving. The response through the linear system 

is of course subject to the same type distribution if the external forces have the non-
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stationarity with Gaussian. It is, therefore, desired for the precise evaluation of 

the system response to obtain the response characteristics with time t as parameter. 

On the other hand, the application of the stochastic process theory to the st­

ructural response analysis leads successfully to the estimation of the system safety 

against random excitations. It is necessary for that purpose to obtain the variance 

of displacement, velocity and the cross-variance between them with time-evolving. 

Now in this paper, the structural responses due to the external forces synthesized 

in the preceeding sectoin are evaluated by use of the following relationships. 
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[Si] = [V] [H] [VF[Si] [V] [H*F[VF 
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(5.1) 

(5.2) 

(5.3) 

The response power spectral densities calculated are presented in Fig. 13, which 
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correspond to those at time 2. 78 sec. It is understood that the contribution of the 

pier part to the second mode is great in view of these figures. At the lower part 

of the tower the contribution of the second mode to the response is primary, at the 

central part the first mode and near the tower top the second. As the relults of the 

inverse Fourier Transformation of the power spectral densities, three kinds of stochas­

tic quantities are obtained. The root-mean-square responses in Eq. (3. 16) are 

shown in Fig. 14-1, those of the first derivative in Fig. 14-3 and the cross-variances 
between them in Fig. 14-2. It is recognized that the closeness of the natural fre-
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quencies exerts an influence on the order of cross-variance. In the first proximity 

it is greater than in the second. They will be conveniently utilized to discuss 

the system safety for the critical response level as mentioned in reference 11). 

6. Comparison Between the Response Obtained by the Stochastic 
Analysis and the one by Direct-integration 

The direct-integrated response gives the exact solution to the system with a 

general type of damping. Here, in this paper the damping effect of Type 3 is con­

sidered and the /:?-method of numerical caluculation12i is adopted. As for the ex­

ternal force, the EL CENTRO earthquake, 1940 NS component (Fig. 7) is utilized. 

The responses direct-integrated corresponding to three typical foundation 

conditions in Fig. 2 are shown with various damping factor in Fig. 15, where three 

kinds of response evaluations are taken; i.e. direct-integrated response, root-mean­

square response of individual normal modes and their absolute sum. 

Comparison between the results obtained by the stochastic analysis in section 

3 and the ones direct-integrated gives the same informations but the maximum 

response values have to be made about three times in the former case. More­

over, the responses due to the non-stationary excitation obtained in section 5 not 

only present the same vibration aspects as the ones by direct-integration, but also 
give the necessary stochastic characteristics for the evaluation of the system safety. 

From the facts above metnioned the spectral analysis will be well proposed to 
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the ase1sm1c structural design, including the earthquake parameter a,,···, as m 

Eq. (4.2), while the response analysis by direct-integration for a certain earthquake 

motions represents a special one. 
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From the results of the analyses in this study, the following conclusions may 

be derived. 

1) Inertia moment of the pier coupled with tht; foundation constant has sig­

nificant effects on the structural dynamic characteristics to such an extent that the 

normal modes have a good cross-relation. It is the function of the disposition of 

natural frequencies and the value of damping factor. Especially, the system 

with nearly equal natural frequencies presents, due to it, much of different 

response aspects from the ones obtained by the well-known response spectrum. 

However, in the system of their being well separated the cross terms become 

negligibly small. As for the damping effects, they act for the increase of the 

corss-relation in both cases. 

2) Assumptions of vibration damping term affect the response at the relation 

of the system natural frequencies. Investigation on the system with general damping 

term has to be made for this reason. 

3) The formulated mathematical expression of non-stationary random ex­

citation is effective with some parameters for its application to the system response 

analysis. 

4) The stochastic process theory guaranteed by the direct-integration is well 

proposed for the analysis of the structural integrity of a product. 
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