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Calculating Method. of Dynamic Stability in a Multi-machine 
System allowing for Margin 

By 

Muneaki HAYASHI* and Satoru !HARA* 

(Received March 18, 1968) 

First, the equivalent circuit of a power system transformed into the form of La­
grangian tree is applied to obtain the basic equations required for criterion of system 
stability. On the next step, the characteristic equation can be obtained by transformation 
of the matrices which consist of the coefficients of basic equations. Furthermore, a new 
concept about the margin of system stability is proposed, and the assessment of system 
stability is carried out by obtainning the root-loci of a characteristic equation. 

I. Introduction 

On calculating dynamic stability in a power system, many excellent results< 1> 

have been obtained about multi-machine problem dealt with by means of Hurwitz's 

criterion etc. owing to the progress of a digital computer with a large capacity of 

memory and quick processing ability. The computing method described in the 

present paper is also in accord with the recent tendencies as described above, and 

furthermore, it has the following features: 

(1) An equivalent circuit<2> transformed into the form of Lagrangian tree from 

a system network using linear graph theory is applied to formulate the relation 

between voltages and currents of each synchronous machine connected to the system, 

and then the basic equation required for the criterion of multi-machine system 

stability can be introduced by simple routine work. By means of this method, the 

basic equations about the stability in a multi-machine system can be deduced easily 

as well as the two machine problem even if the system network is complicated. 

(2) On the next step, after coefficients of basic equations are obtained, the matri­

ces of which they consist are transformed by the same method as the one used in 

the one machine problem which is described in this paper. Since matrix­

transformations are easily applicable for digital computer programming, and the 

troublesome part of analytical processing in the calculation decreases by the trans­

formations, the characteristic equation can be easily obtained. 

* Institute of Electrical Engineering 
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(3) Considering the criterion of the stability of the power system, when all roots 

of characteristic equation lie on the left side of imaginary axis on the Gauss-plane, 

the system has been regarded stable. In this paper, however, a certain critical line 

is specified by two parameters a and µ on the left side of the imaginary axis on the 

Gauss-plane, where a and µ are related with attenuation and frequency of hunting 

in the system. a andµ are used and difined as the margin of the system stability, 

then it is investigated whether all characteristic roots are on the left side of this 

critical line or not, and the system is regarded stable if all roots are on the left side. 

As the examples of computation by this method, one-machine and three-machine 

problems are illustrated and the results are studied. 

2. Deduction of Basic Equations and a Characteristic 

Equation in a One-machine System 

In this section, we formulate the basic equations where one synchronous 

machine is connected to an infinite bus through a transmission line as shown in 

Fig. I and the authers apply matrix transformations to these basic equations. 

These steps will be applied to multi-machine system in the next section. 

Fig. I. Theoritical system of one machine problem. 

2.1 Basic Equations<3> 

For the synchronous machine in the system shown in Fig. l, the vector diagram 

of the voltages and the currents is obtained as shown in Fig. 2, and furthermore 

the relations between these vectors are formulated as the following equations, where 

voltages, currents, fluxes etc. are represented with p.u. quantities, 

of armature windings and of transmission line are ignored. 

(The notations of symbols are shown at the end of this paper). 

e,1 = p,fr,1-,frq• po~ -,frq 

eq = p,frq+,fr ,J • p(J •. ,fr d 

From the view point of the infinite bus, 

and resistances 

( l ) 

( 2) 
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Fig. 2. Vector diagram of a synchronous machine with leading current. 

ed = e1 sin iJ-x8 •iq 

Cq = el COS <J+xe•id 

In steady-state 

YJ'd = Eq-Xd-id 

YJ'q = -Xq•iq 

( 3) 

( 4) 

( 5) 

( 6) 

The voltages of a synchronous machine in a transient state are defined as follows: 

Or 

YJ'fd = eq+x;•id 

YJ'fq = ed-x~•iq 

And 

r:o• PYJ'fd = Efd-Eq 

T~0 • p,fr fq = (xq-x~) • iq-,fr fq 

On the terminal voltage 

The equation of the rotor motion in a synchronous machine is 

( 7 ) 

(7)' 

( 8) 

( 9) 

(10) 

( 11) 

(12) 
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Since the voltage of the infinite bus is assumed constant, then 

(13) 

When an infinitesimal disturbance occures in the system, a small change of some 

variable quantity is represented as follows: 

,frd = ifrdo+Jifrd (14) 

where suffix O means the value in a steady state. 

And the unit time in this paper is 211:fo. 

The equations for small changes in variables ofEq. (3), (4) and (7)' are arranged 

as follows: 

where 

[A1] Jed = [A2] Jo 
Jeq 

Jid 

l 

l 

l 

l 

where a blank means a zero-element. 

-er0 •sin B0 

l 

e10•cos B0 

-x, 

x/ 

and [A3], [A,] matrices are given as follows 

(15) 

-xq' 

x, 

l 

and the column matrices which appear in both side of Eq. (15) are shown by the 

sign [ ], because the authors intend to save space, then Eq. (15) is rewritten as 

follows: 

( 15)' 
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From Eqs. (9),....,(12), the four equations for variances of currents, voltages and 

fluxes of a machine can be obtained, and furthermore the following three equations 

which are concerned with angular velocity, effects of governor and A.V.R. are 

obtained, 

pJo = Jco 

JTm= -µm AQJ 
(l+,1·P) 

-K 
JEfd = ---•Aet 

I+pTf 

(16) 

(17) 

(18) 

These equations are combined and arranged in the form of a matrix equation as 

follows: 

[pJo, P4Yfd• pJ,frfq, pJEfd, PAQJ, pJTmJt 

[As][Aed, Aeq, Aid, Aiq, Ao, A,frfd• ,frfq, JEfd, AQJ, JTmJt 

where [As] is as follows: 

Xq-Xq' 

T•o' 

-1 
Tdo' 

1 
Tdo' 

_µm 
T 

(19) 

1 
M 

T 

In [As] matrix, the column corresponding to [Jo] is introduced to compose the 

following matrix [A6]. 

In the next step, in order to substitute Eq. (15) into Eq. (19) in the form of 

matrix multiplication, a compound matrix is formed as follows: 

(20) 

where, [OJ is zero-matrix of ( 4 X 3) order, [ U] is unit matrix of (6 X 6) order. 

Then, [ A 6] has order of (IO X 6) and the following equation is obtained, 
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[ .Jed, .deq, .did, .diq, .dB, .d,fr fd, .d,fr f"' .dE fd, .dw, .d T mJt 

= [Ae][.dB, .d,frfd, .d,frf'I, .dEfd, .dw, .dTmJt {21) 

From Eqs. (19) and (21) 

[p.dB, p.d,fr fd, p.d,fr f'I, p.dEfd, p.dw, p.d TmJt 

= [A5][A8][.dB, .d,frfd, .d,frf"' .dEfd, .dw, .dTmJt 

The definition of matrix [BH] is as follows: 

Then, [ BH] has order of ( 6 X 6), and Eq. (22) is rewritten as follows: 

(22) 

(23) 

Thus, when the system under consideration is affected by the small disturbance, 

the system stability is investigated as follows: At first a secular equation is formed 

as follows. 

det. IP[U]-[BH] I= o (24) 

and from the above equation the polynomial of p is formed 

(25) 

Hurwitz's criterion is applied to the coefficients ofEq. (25), and the stability of the 

system is investigated. In this manner of the computation, matrices [A1], [A2] and 

[A5] are first obtained, and inversion, multiplication and combination of these three 

matrices are carried out, then the required coefficients of the cahracteristic equation 

can be obtained, where very little analytical operation is needed, and the coding and 

programming of computations from Eq. (24) to Eq. (25) and for Hurwitz's criterion 

are prepared as subroutines in the calculation about automatic controll engineering, 

and these computations are executed with simple programs. 

2.3 Margin of the Stability 

By Hurwitz's criterion which is used for the assesment of dynamic stability of a 

power system, the system has been regarded stable, when all roots of charac­

teristic equation lie on the left side of the imaginary axis of the Gauss-plane as 

shown in Fig. 3(a). But the state of system operation, in which a characteristic 

root is on the imaginary axis, or in the neighbourhood of it, is easy to become 

unstable, then in the practical operation it is desirable thait the roots lie on the left 
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Fig. 3. Domains of stable operation defined by various criterions. 

plane apart from the imaginary axis. 

When the domain of the characteristic roots is restricted on the left side from 

the lines specified by a on the Gauss-plane (c.f. Fig. 3(c)) for the purpose of the 

stable operation of a system, in the critical state of stable operation, the root, cor­

responding to the oscillation with time constant 1/a, is located on this line. Then 

the other oscillations have a smaller time constant than 1/a, and the system has 

some margin for stable operation. 

To obtain the critical operating condition under this restriction, (p+a) is sub­

stituted in stead of p into Eq. (25), and a new characteristic equation can be 

formed. Or a new secular determinant is formed from Eq. (24) as follows: 

det. J p[U]+[a]-[BH] I= 0 (26) 

where [a]=diagonal matrix having a as elements 

Then Hurwitz's criterion is applied to the characteristic equation of the above. 

Alternatively to restrict root positions, two lines are specified with angle µ 

against the imaginary axis as shown in Fig. 3(b), where both the frequency and 

the attenuation time of the hunting of the system is restricted. 

For this purpose, 

p = w exp ( -jµ) (27) 

is substituted into Eq. (25), and Bilharz-Frank's criterion can be applied. 

Furthermore both a andµ can be used together as shown in Fig. 3 (c). In this 

paper by means of numerical method, the authors get the root loci with parameters 



Caclulating Method of Dynamic Stability in a Multi-machine System allowing for Margin 271 

P and Q, etc. to obtain the critical condition for various a and µ ( c.f. example of 

calculation). The margin of the system stability can be defined by many different 

ways, but in this paper a and µ are used. 

3. Multi-machine System 

3.1 Formation of the Vector Diagram of Synchronous Machines Using 

a Tree-formed Equivalent Circuit. 

The analysis of each machine connected to a multi-machine system is same as 

the one-machine problem fundamentally, but it is different from the one-machine 

problem in that the phase relations 

between voltages and currents of the 

machines and the power flow among 

then have to be studied. When the 

network of the system is complicated, 

the investigation of the relation be­

tween quantities of the machines 

becomes very troublesome. In this 

paper, in order to avoid such diffi­

culties, the authors use a tree-formed 

equivalent circuit of a power system by 

means of linear graph theory. (3> In 

this equivalent circuit as shown in Fig. 

4, a bus of the system is adopted as the 

reference point and for simplicity the 

earth capacitances of lines are included 

#. 
I 

Fig. 4. Equivalent circuit having the form of 
Lagrangian tree in n-machines system. 

equivalently in the impedance loads at the line terminals, or otherwise are ignored. 

In this paper, the latter is adopted. 

Under the assumption described above, the realtion between voltages and cur­

rents in the system are given as follows: 

(28) 

where [vE]: Column matrix which consists of the bus voltage measured from 

the reference point 

[iE]: Column matrix of the line currents corresponding to [vE] 

[ZE]: Impedance matrix of (n-1 ), (n-1) order for an n-terminal system 

From the equivalent circuit described above, th_e relations between the reference 

bus voltage and D-, Q,- axis of each synchronous machine are shown in Fig. 5, and 
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Fig. 5. Vector diagram of each component of terminal voltage in 
synchronous machine connected to multi-machine system. 

Fig. 6. Vector diagram of armature current of each 
synchronous machine in multi-machine system. 
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the current vectors are shown in Fig. 6. To obtain these relations, the bus voltages­

and currents have to be computed by power flow calculation in the power system 

beforehand. 

3.2 Establishment of Fundamental Equations and the Deduction of a 
Characteristic Equation 

According to the vector diagrams shown in Fig. 5, 6, the authors formulate the 

relation between the bus voltage and the current of i-th synchronous machine and 

ones of the reference in the case of n~2 as follows (c.f. Fig. 5, 6) 

[
eR0 •sinb;] = [ c~so;,. sino;,.][eR0 sino,.] 
eRo•COS O; -sm O;,. cos o;,. eRo cos o,. 

where eRo =voltage of the reference bus in a steady state 

o;=angle between eRo and Q;-axis 

o;,.=o;,.-o; 

n=number of reference bus 

and the voltage relation is as follows<3>. 

Then, 

ff-1 

eRo cos o; = eq;-~ xu,•i1,•sin au, 
•=1 

where x,.;, x;,.=0 (i= 1--n) holds according to the definition of ZE. 

Eq. (29) is rewritten as follows: 

[
eR0 •sin o;] = [ c~s o;,. 
eR0 •coso; -sm o;,. 

Since au, means the angle between i,. and Q;-axis, 

a;,, = b;,,+tan-1(id1,/iq1,) 
where i, k=l--(n-1) 

According to Eq. (29) ', (30) 

ff-1 

ed;+ ~ X;1,•i1,•cos a;1, = ed,.•cos b;,.+eq,.•sin o;,. 
•=• 

eq;-~ X;1,•i1,•sin a;11 = -ed,.•sin b;,.+eq,.•cos o;,. 
•=• 

And the sum of all current flowing into the network is zero, then, 

(29) 

(30) 

(29)' 

(31) 

(32) 

(33) 



274 Muneaki HAYASHI and Satoru lHARA 

(34) 

where the saffix 'i' is selected arbitrarily within n. ( c.f. Appendix) 

The transient voltages of synchronous machines are formulated similarly to 

the one-machine problem as follows: 

Eq. ( 7) becomes 

,jrfdi = Eq;-(xa;-x;;)ia; = eq;+x:u•ia; 

( 8) ,frfqi = ea;-X~;•iq; 

( 9) T~oi' p,jrfdi = Efdi-i/rfa;-(Xa;-X~;) •ia; = Efa;-Eq; 

(10) T~0;• p,jrfqi = (Xq;-X~;)iq;-,frfqj 

where i= 1,.._,n 

} (35) 

If T~0;=0 i.e. Xq;=X~; is assumed for simplicity, the equation corresponding to Eq. 

(10) is not needed. The above assumption (T~0;=0) is adpoted here for simplicity 

and for reduction of the storages for the computor programming. 

(II) e~, = e~;+e!; 

(19) '1Efdi = -K;•'1e,;f(I +pTf;) 

Relative angular acceleration is, 

p'18;; = '1w;; 

The equation for the relative motion between i-th machine and n-th one is 

(12) p28;,. = -(Pa;/M;)p8;,. 

+{M,.(PM;-PE;)-M;(PM .. -PE,.)}/ M;• M,. 

where, it is assumed for simplicity that 

(Pa;/M;)=constant for all i. 

In the above equation, the governer action is ignored, that is, 

Thus, the mechnical input is constant even if pw; varies slightly. 

For the electrical output of the i-th machine, 

(37) 

(38) 

(39) 

(40) 

(41) 

(42) 

For the small distubance in the system, Eqs. (20) "-'( 40) are linearized similarly to 

the one-machine problem, and the work for linearization becomes complicated 

when the number of machines connected to the system increases. ( c.f. three­

system machine in Appendix) 
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(15) [A/'][Jedi, Jeq;, Jidi, Jiq;], 

[At][JB;.,, J,frfdi, J,fr,q;], 

where i = 1--n 

(43) 

[A]/", [At] have respectively order of (4n, 4n) and {4n, (3n- l)}, but if T~0;=0 is 

assumed, [At] has order of {4n, (2n-_1)} 

Eq. (15') is rewritten as follows: 

(15') [ Jedi, Jeqi, Jidi, Jiq;], 

= [ A."][ JB in, J,fr /di, J,fr fqi]t (44) 

where [A."] has order of {4n, (3n- l)} but if T~0;=0 is assumed, {4n, (2n- l)} 
Similarly to the one machine problem 

(21) [pJBi.,, pJ,fr /di, pJ,fr /qi, pJEfdi, pJ0 i.,]t 

= [ As"][ Jedi, Jeqi, Jidi, Jiqi, JBin, J,fr /di, J,fr /qi, JEfdi, JCt.>;n]t (45) 

where, [As"] has order of {(5n-2), (9n-2)}, but if T~oi=O is assumed, {(4n-2), 

(8n-2)}. 

Because Eq. (45) does not have the column corresponding to JBiJ in Eq. (19), 

the constitution of [As"] is different from one-machine problem and has the form 

as follows: 

where [00 "] and [Ot] are zero-matrices and have order of {(4n), (2n- l)}, 

{(4n- l), (n-1)} reaspectively and [U"] is a unit matrix and has order of {(4n- l), 

(4n- l)}. When T~oi=O (i= 1--n) is assumed, [00 "] and [Ot] have order of 

{(4n), (2n- l)} and {(3n- l), (n-1)} respectively. 

And then similarly to the one machine problem, [BH"]=[As"][As"] where 

[BH"] is a square matrix of order of {(5n-2), (5n-2)}, if T~0;=0 (i=l--n) is 

assumed, the order is. {(4n-:2), (4n-2)}. Secular determinant for [BH"], the 

characteristic eq~ation and criterion for system stability can be obtained similarly 

to the one machine problem. 

4. Examples and Study of the Results 

4.1 One Machine Problem 

The system parameters in the theoretical system as shown in Fig. 1 are assumed 

as follows: 
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xd = x" = 1.6 (p.u) 

x; = 0.24 x~ = 0.9 X8 = 0.4 e, = 1.0 

r;0 = 7.3 (sec) T~0 = 1.6 (sec) M = 7.6 (sec) µm = 20 

?" = 1.0 (sec) 

where time is multiplied by 211:.fo=377 as described above, then 

T' (radian) =211:fo (radian/sec) X T (sec) 

is used. 

Furthermore in this unit system, Pd=60 (dimensionless) is assumed and Kand 

Tf are shown in the figures as parameters. 

For the initial value of the system, e10 is set under the condition that 

e,=I.0 (constant) is held for various P, Q. 
The root loci of Eq. (25) under the condition described above are shown on 

the Gauss-plane in Fig. 7 where K = 15.0, Tf=25 sec and P, Q are parameters. 

Numerical analysis by Hitchcock-Baistow method, Newton Method e.t.c. are used 

here. In the figu~e, T,, T2 and T3 mean inverses of 211:foa,, 211:foa2 and 21efoa3• 

Since Eq. (25) is the 6th degree polynomial in p with real coefficients, it has 6 roots. 

But the authors pay attention to only one of the 6 roots that is the nearest to the 

0 0 .. .. .., .., 
Q IC) 

II II 

1--"' i3' 

-0.4 -0:3 -0.2 -0.1 

x,o-3 

Tf= 25 sec 
K=l5 

<Q. 0.6 

(P=ot+j,S) 

0.0 0.1 0.2 

d. ( I/rad, l 

0.3 0.4 

Fig. 7. Loci of complex roots of characteristic equation in one-machine system 
(parameter P, Q) (1st). 
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imaginary axis of the Gauss-plane. Only the group of characteristic roots con­

sidered is selected and shown in Fig. 7. 

From the root loci, it becomes clear that the root ( e.g. point A) traverses the 

critical line from the stable domain to the unstable domain in Fig. 7 as Q increases 

(i. e. consumption of leading reactive power increases) along the straight line AB 

in Fig. 8. If the point (P, Q) which corresponds to the root on the specified critical 

line in Fig. 7 is obtained, it is the point on the critical operating line in Fig. 8. 

Active· power (Pl 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 -o.o ,-----r-----.----:---,-----,-.----.-/-:---

'o-0.2 

... .. 
~-04 0. . 

.. 
i 
u 
~-0.6 
a: 

A 

-0.8 B 

1'" 

Tf = 25sec 
K=15 

Fig. 8. Domain of stable operation in one-machine system allowing for 
margin (parameter a,µ on P-Qplane). 

Thus under the conditions of (µ = 0, TD= I 0, 15, 25 sec.) and (TD = oo, 

µ=0°, 10°, 20°, 25°, 30°), the critical operating states represented by P and Qare 

shown in Fig. 8. Furthermore, the roots shown in Fig. 9 as well as in Fig. 7 are com­

plex ones, but they are far from the imaginary axis and out of the question. Each 

of the two groups of roots shown in Fig. 7 and 9 has its conjugate root group which 

lies symmertrically to the real axis. Since the critical lines for criterion are also 

symmertric to the real axis, only either one of the conjugate roots is disccused here. 

The critical operating line on the P-Q plane obtained by the method described 

above coincides with one obtained by the method of Hurwitz or Bilharz-Frank 

criterion. The root-loci shown in Fig. 10, 11 are groups of real roots taking Q as a 

parameter, and all lie on the left side far from the ones shown in Fig. 7, then, they 

are out of the stability criterion. 

Fig. 12 shows the root-loci with parameters Qand K under constant P. Using 

this figure, the critical operating line is obtained as shown in Fig. 13. 
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22 

Tt=25sec 

K = 15 1.4 
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Fig. 9. Loci of complex roots of characteristic 
equation in one-machine system 
(prarameter P, Q) (2nd). 

Fig. 10. · Loci of real roots of characteristic 
equation in one-machine system 
(parameter Qon a--P plane) (1st). 

Q. 

0.8 -,._ ., 
l: 
0 

0.6 a... ., 
> 

-+-
0 

0.4 <t: 

0.2 

-2.5 -2.0 -1.5 3 
XIO d ( I/rad. ) 

Fig. 11. Loci of real roots of characteristic equation in 
one-machine system (parameter Q on a-P 
plane) (2nd). 
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IO 
C\I 

ci 
II 
C 

0.10 

P: 0.55 
T( 10.0 sec 

0 
q 
I 
II 
C 

(P=Cl..+jp) 

-0.40 -0.30 -0.20 -0.10 0.0 0.1 0.2 

CX(1/rod.) 

Fig. 12. Loci of complex roots of characteristic equation in one­
machine system (parameter Q, K) 

Goin of AVR <Kl 

0 5 10 15 20 
0.00 ,-----.--------,-----,--------,--

9, -0.25 

-­., 
3: 
0 
a. 

-~ -0.50 

0 
0. 
~ 

g>-075 
'ci 
0 
Q) 

.J 

-1.00 

T0 < ½ l : 25 sec. µ : 20° 

no morgine 

Fig. I 3. Domain of stable operation in one-machine 
system allowing for margin (parameter T1 , 
on K-Qplane). 

4.2 Three Marchine System 

For the theoretical three machine system shown in Fig. 14, the tree-formed 

equivalent circuit is formed, where #3-bus is regarded as the reference bus. When 
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Fig. 14. Model system of 3-machine problem. 

resistances and earth capacitances of lines are ignored, the impedance matrix for 

the equivalent circuit is obtained as follows: 

:11'2 

j0,251 j0.126 

j0.126 jD.439 

where Z1=Z2 =j0.250, Z 3 =j0.252 and Z,=j0.592 are assumec;l in Fig. 14. 

The constants of the synchronous machines are assumed as the following table. 

The constants of synchronous machines 

I :11'1-, :11'2-Machine I :11'3-Machine 

Xd 1.6 o.s 
Xq 1.6 o.s 
xd' 0,24 0.12 

xq' 1,6 o.s 

Tdo 
, 

7.3 sec 7,3 sec 

M 7,6 sec 15,2 sec 

Active power of fl-machine (P1 I 

g ' 
0 

0.2 0.4 0.6 0.8 1.0 1.2 

., 
C 
:c 
0 
C -0.2 
E 
..!.. 

Tf = 5 sec( for 3 machines) et2 = I.I 
K = 20 ( ) 

---- no margine 
=II= 
.... -0.4 0 

... ., 
3' 
0 
a. -0.6 ., 
> :;: 
0 
C 

-0.8 '! 

Fig. 15. Domain of stable operation in 3-machine system 
allowing for margin (parameter P2 on P1 -Q1 plane). 
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And Pd=60 (dimensionless, c.f. preceding section) is assumed and the constants of 

AVR is shown in Fig. 15. 

To determine the initial condition for the computation of dynamic stability, 

the calculation of the power flow of the system is necessary. In the computationi 

# 1-bus is P- Q node ( i.e. Pu Q,1 are specified and et1 is calculated) and # 2-bus is 

P- V node (i.e. P2, e12 are specified and Q,2 is calculated). 

In this paper, P2 is taken as a parameter and shown in Fig. 15, and for #3-synchro-

-ci 
0.18 0 

$. Tf = 5 sec 

CQ. K = 20 

0.16 
., 
·x 
0 

~ 0.14 0 
C: 

·01 
0 
.§ 

- 0.12 

-0.10 -0.08 -0.06 -0.04 -0.02 0 0.02 · x10·3 

Real axis CX ( Vrad. ) 

Fig. 16. Loci of complex roots of characteristic equation in 3-machine system 
(parameter P, Q). 
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nous machine (motor), e13= 1.1 and P3, Q3 are obtained from the power demand in 

the system. 

For the criterion of dynamic stability, attention is paid only to the group of 

the nearest root to the imaginary axis. The root-loci of the characteristic equation 

of the three-machine system are shown in Fig. 16 and 17. From the root distribu-

Real axis 

----- ll- I root group 

-·-lt-2 

-----,-#3 

0 
a, 
<I) 

IO 

d 
II 
~ 

........ _ .... Ir.:::, 
............. So 

K = 10 ---------
o,=-0.75 

E2= I. I 

Er I. 

-0.5 -0.4 

CX ( Vrad. 

-0.3 

---.... _ 

-· K= 10 

-0.2 -0.1 

<I) 

·x 
C, 

XI03 ;".' 
C, 
C: 

"CJ 01 
C, 0 

-
~ E _, - 1.4-

~ I 

I~ 
io 

0 ., ., 
0 

Fig. 17. Loci of complex roots of caaracteristic equation in 3-machine system 
(parameter K, Ti), 

tion shown in Fig. 17, it is clear that the frequency of the oscillation in the system 

increases as K ( the gain of A VR) increases and the root comes nearer the imaginary 

axis as T1 (the time constant of AVR) increases, where the time constants and gains 

of three machines are assumed to be the same in all. 
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4.3 Further Consideration on the Calculating Method for Stability 

Criterion 

When Bilharz-Frank criterion is applied to dynamic stability in a power system 

specifying a and µ arbitrarily, the P, Q point of stable operation sometimes can not 

be found anywhere. It often occurs especially when the margin is large. And 

the following results are obtained from the numerical computation: 

The n-th degree characteristic equation has n roots, which are classified as follows: 

( 1) Groups of high frequency and short attenuation time. In one-machine 

system positions of them do not change so much against changing P, Q. The 

movement of these roots scarcely affect the system stability. 

(2) The group of real roots which are stable and do no affect the system stability 

as group (l ). 

(3) The groups which have the minimum absolute value and the behavior of 

which decide the system stability. 

In this paper, attention is paid only to group (3) for system stability criterion 

as described above. When the values of a and µ are too large; group (3) does not 

move to the left side of the critical line, even if the P, Q point largely changes and 

stable operation of the system is impossible with the specified margin in such a case. 

When Bilharz-Frank's criterion is used to get the critical curves of stable opera­

tion in the P-Q plane against various values of a and µ, the criterion must be 

carried out at every point in the neighborhood of the cruves in order to search 

them. Because the procedure of this criterion is very troublesome and it must be 

repeated so often, the work increases exceedingly. 

Once, however, the root-loci are drawn varying the values of P and Q as par­

ameters, the critical curves of stable operation can be obtained easily against any 

values of a and µ as described here. They can be obtained only by making the criti­

cal line specified by a andµ across the root-loci to find the values of P and Qat the 

cross points. This procedure is not so troublesome. 

The methods of Hurwitz and Bilharz-Frank seem to be sometimes used to avoid 

the impossibility or the difficulty of solving high order characteristic equations. 

But, recently, digital computers have come to possess high abilities and have made 

it easy to calculate roots of high order equations. 

Therefore, there are some advantages now in calculating the roots of them 

directly. 

5. Conclusion 

The deduction of the characteristic equation of the dynamic stability in multi-
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machine system becomes easier as follows. ( 1) By the application of an equivalent 

circuit, the establishment of basic equations can be carried out as easily as in a 

two-machine system. (2) On the next step, the matrices which consist of the 

coefficients of the basic equations, are transformed by the same method as discribed 

for the one-machine system in this paper, and the necessary characteristic equation 

can be obtained. (3) This method is advantageous for a digital computer, and the 

part of analytical processing in the calculation decreases by means of these matrix­

transformations, and therefore the programming for the computer becomes simpler. 

Furthermore, it has been proposed that the parameters to restrict the at­

tenuation and the frequency of the oscillation in the system should be introduced 

as the margin of stability. Along with this opinion, the method to get the critical 

condition for stable operation and the examples of the computation for one- and 

three-machine systems have been shown. The results of the examples have also 

been considered in this paper. 

This method shows great advantages in studying the stability criterion allowing 

for the margin. 
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Nomenclature 

Nomenclatures are defined mainly according to reference 5 

et 

Cq 

e,1 -

e1 

Eq 

1/r,1 

1frq 

1f'fd 

1f'fq 

X,1 -
Xq 

terminal voltage of synchronous machine 

direct axis voltage 

quadrature axis voltage 

voltage of infinite bus 

induced voltage at no load 

direct axis flux linkage in armature winding 

quadrature axis flux linkage in armature winding 

direct asis field flux linkage 

quadrature axis field flux linkage 

direct axis synchronous reactance 

quadrature axis synchronous reactance 
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direct axis transient reactance 

quadrature axis transient reactance 

direct axis current 

quadrature axis current 

open-circuit generator field time constant in direct axis 

open-circuit generator field time constant in quadrature axis 

lcv2 where I is per-unit inertia constant 

prime mover torque 

active power 

reactive power 

angle between quadrature axis of machines 

angular position of direct axis with respect to stator 

gain of AVR 

Tf - time constant of A VR 

µm gain of governor 

, time constant of governer 

Pd damping coefficient of generator 

The subscript zero denotes initial operating condition 

Appendix 

When T~0;=0 (i=l"'-'3) is assumed in three-machine problem, the elements 

of matrices [A/], [A/] and [A/] are obtained as follows: 

From eq. (35) 

J,frfdi = Jeq,+x~1-Jid, (i = l"'-'3) 

Jed1-x~1-Jiq, = 0 (i = l"'-'3) 

i= 1, n=3 are substituted in eq. (32), (33), 

Jed1 -(cos 0130) •Jed3-(sin 0130) • Jeq3+x11 .Jiq1 

-(X12• sin 0120) • Jid2+ (X12• cos 0120) • Jiq2 

= { (eq30. cos 0130-Cd30. sin 0130) + (id20· cos 012o+iq20• sin 0120) • X12}Jo13 

-(id20' COS 0120+iqw • Sin 0120) •X12• Jo23 

Jeq1 + (sin 0130) •Jed3-(cos o130) •Jeq3-x11 .Jid1 

-(X12•COS 0120) -Jid2-(X12•sin 0120) ,Jiq2 

= {-(eqao. sin 01ao+edao' cos 01ao) +x12(iq20· cos 0120- id20. sin 012o)}Jo1a 

+ ( -iq20 • COS0120 +id2o • sin 0120) •X12 • Jo23 

Similarly, i=2, i=3 are substituted in eq. (32), (33), 

Jed2-( cos 0230) • Jed3- (sin 0230) .Je93-(x21 • sin 0210) • Jid1 

(App. 1) 

(App. 2) 

(App. 3) 

(App. 4) 



286 Muneaki HAYASHI and Satoru lHARA 

+ (X21 cos 8210) • .diq1 +x22' .diq2 = -(idlO. cos 8210+iq10' sin 8210)X21. J813 

+ {(eq30. cos 8230-edao' sin 82ao) + (id10' cos 8210+iq10 •sin 8210) •x2JJ82a (App. 5) 

where, J812 is eliminated in the above equation by the realtion of 812 =813-823· 

(similarly in the following) 

.deq2+ (sin 8230) .Jed3-( cos 8230) .Jeq3-(X21 • cos 821) • Jid1 

-(X21 • sin 8210) • Jiq1 -X22 • Jiq2 = ( -iq10 • COS 8210 +id10 • sin 8210) •X21 • J81a 

+{-(edao • cos 8230 +eq30 • sin 8230) + (iq10 • cos 8210 + iq10 • sin 8210) • x21}J823 (App. 6) 

When i=3 in eq. (34), 

(sin 8130) ,Jid1+(cos 8130) .Jiq1+(sin 8230) .Jid2 

+ ( cos 8230), ,di~+Jiq3 = ( -idlO. cos 8130 + iq10. sin 8130). J813 

+ ( -id2o• cos 8230 +iq20 • sin 8230) .J823 (App. 7) 

( cos 8130) • Jid1 -(sin 8130) .Jiq1 + ( cos 8230), ,did2-(sin 8230) • .diq2+Jida 

= (iq10' cos 8130+id10. sin 8130). J813+ (iq20. cos 82ao+id20' sin 8230). J823 (App. 8) 

Eqs. (App. 1 )---(App. 8) are arranged and rewritten similar to eq. ( 43), then 

matrices [A/], [ A/] can be obtained. Furthermore, 

pJ81a = Jw13, pJ82a = Jwza (App. 9) 

i=l---3 is substituted in eq. (36) 

p.d,frfdi = {(xd,-Xd;)/T:o,}.Jid, 

- (l/ r:o,) .J,fr fdi+ (1/ r:o,) .JEfdi 

i= 1,_,3 is substituted in eq. (38) 

pJEfdi = ( -K,• edio/ Tf, • etio) • Jed,-(1 / Tf,) • JEfdi 

-(K, • eq.f Tf, • etio) • .deq, 

n=3, i=l---2 are substituted in eq. (40), 

pJw1a = - ( id10/ M1) • Jedi - ( iq10/ M1) • .deq1 + ( idao/ Ma)• Jeda 

+ (iqao/Ma) ,,deqa-(ed10/ M1) • Jid1 -(eq10/M1) • .diq1 

+ (eqao/Ma) • .diqa+ (ed30/M3) • Jid3-(Pd1/M1) .Jw13 

/JJCtJ2a = -(id20/M2) •.ded2-(i~o/M2) •.deq2+(id30/Ma) •Jeda 

+ (iqao/ Ma)• .deqa-(ed20/ M2) • Jid2- (eq20/ M2) • .diq2 

+ (ed30/ Ma)• Jida+ (eqao/Ma) • .diqa- (Pd2/M2) • Jw23 

where, (Pd1/M1)=(Pd2/M2) 

(App. 10) 

(App. 11) 

(App. 12) 

(App. 13) 

Eqs. (App. 9)---(App. 13) are arranged and rewritten as eq. (45), then matrix 

[ A/] can be obtained. 

Matrices [A/], [A/], [A/] and [A/1 are shown as follows: 



[A/] Matrix 
-------~-----~----------------------------------------,----------~ 

.Jed1 I .Je•1 I .Jed2 I .Je•2 I .Jed3 I .Je.3 I .Jid1 i .Ji•1 I .Jid2 I .Ji•2 I .Jida I 

-~-1.0! I I I ! I -X•1 I 

------------1-----1------1------f------l------l------l------l------l 

1.0 : I , xd{ 

1--1 !---+---1---1---

1 I i.o I 
----------------1------l------1 

i i l O I I 
! I . 

, I ---f----- ~i 

, ____ -----'i ____ l ___ ---1_ 1.0 l-------l------1------1------1------"-----'----x_•a __ 
i 
I 

! 

I I I 
1----l---------__;-----+----~------l------1------1------1------1-----·1------

I 

1.0 

1.0 sin 8130 -cos 8130 

__ 1_.o __ f----- _____ l,I_ -----l----c_o_s_8_130--l----s-in_8_13_0_, ______ 1 ___ x_1_1 --I---X-12_s_in_8_120-I--X1_2_c_o_s_8_120_f------l-----

, ____ ,l _________ ~,--s-in_82_30_, __ -_c_o_s_8_23_0_,_-_x2_1_c_o_s_8_21_0_,_-_x_2_1_s1_·n_8_2_10_, ___ -_x_22 __ 1 ______ 1-_____ I-_____ , 

I I I 1.0 ' -cos 8230 -sin 8230 -x21 sin 8210 x21 cos 8210 x22 
----~---- _____ , _____ l ______ , ______ , _____ -l------l------1------11------1------1 

! I 

cos 8 130 -sin 8130 -sin 8230 1.0 

I ------------ ----'----------------'-----~-----~-----'-----~-----~---~ 

sin 8130 cos 830 1.0 
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[A/] Matrix 

4813 I 4823 4,fr /dl 4i/r1,2 

------
1.0 

---

1.0 

------

al a2 
---

a3 a, 
------

a5 a6 
---

a7 aa 
------------

a9 alO 
------

au al2 

Muneaki HAYASHI and Satoru IHARA 

4,fr /d3 

1.0 

---

---

a 1 = -eq30 sin 8 130 -edao cos 8 130+ (iq20 cos 8 120-id20 sin 8 120)x12 

a2= (-iq20 cos 8 120+i,20 sin 8 120)x12 

a3 =eq30 cos 8 130-e,30 sin 8 130 + (id20cos 8 120 +iq20 sin 8120)x12 

a,= (-id2o cos 8 12-iq20 sin 8 120)x12 

a5= (-iq10 cos 8 210 +i,10 sin 8 210)x21 

a6= -e,30 cos 8 230 -eq30 sin 8 230+ (iq30 cos 8 210 +i,10 sin 8210)x21 

a1= (-i,10 cos 8 210 -iq10 sin 8 210)x21 

a8 =eq30 cos 8 230 -edao sin 8 230 + (i410 cos 8 210 +ino sin 8 210)x21 

a9=in0 cos 8 130+i,10 sin 8 130 

a10=iq20 cos 8 230 +i420 sin 8 230 

au= -i,10 cos 8 130+in0 sin 8 130 

a12= -i420 cos 8230 +iq2o sin 8230 

[A/1 Matrix 

[Aa3] 
(12 x5) 

[O] 
(10x2) 

[O] 

(12x5) 

[U] 

(10 X 10) 
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[A.3] Matrix 

I ,:Jed1 I ileu I ,:Jed2 I 4eq2 I ,:Jed3 I 4eq3 I ,:Jid1 I ,:Ji•1 I ,:Jid2 I ili,2 

pill1u 

-----------
pill123 

p,:Jyr /dl Xd1 1 -Xd1 
Tdoi' 

p,:1,jr /d2 Xd21 -Xd2 
T',02 

----- ------
p,:1,jr/d3 

pilE1d1 _ K1ed10 _ K1e,10 
T11e110 T11e110 ------

p,:1E/d2 _ K-;!d20 - K'/!•20 
T1'J!120 T1'J!120 

pilE/d3 Kseds _ Kse,s 
-T13e1s T13e,s 

pilw13 
_id10 _i.10 jdSO i,so _edlO _e•10 

Ml M1 Ms Ms Ml M1 

pilw2s _i,20 _i•20 jdSO i.30 _ed20 _e,20 
M2 M2 Ms .Ms M~ M2 

I ,:lids di,s I ,:J,jr /dl I ,:J,fr /d2 I ,:J,fr /dS I ,:JE /dl I ilE1d2 l,:JE/dsl dw13 I 4W23 

pill1u 1.0 

pill12s 1.0 

p,:1,jr /dl - 1.0 1.0 
Td011 

Tdo11 

p,:Jyr /d2 1.0 1.0 
- Tdo21 T,021 

p,:Jyr /dS Xd21 -Xds 1.0 1.0 
Tdo21 - Tdos' Tdos' 

--- --- ---

p,:JE/dl - 1.0 
T11 

p,:1E/d2 - 1.0 
T12 

----

p,:1E/d3 - 1.0 
-T/3 

- ------

Pilw13 ed30 e,so _P,1 
Ms Ms M1 

PilW2s e,so e,so _Pd2 
Ms Ma M2 




