TITLE:

A Stochastic Theory of the Diffusion
of Traffic Flow

AUTHOR(S):
MINE, Hisashi; OHNO, Katsuhisa

CITATION:

MINE, Hisashi ...[et al]. A Stochastic Theory of the Diffusion of Traffic Flow. Memoirs of the
Faculty of Engineering, Kyoto University 1968, 30(2): 197-217

ISSUE DATE:
1968-06-10

URL:
http://hdl.handle.net/2433/280731

RIGHT:

RPRFHWMIERYKFD bV %
Al

KURENAI

Kyoto University Research Information Repository



197

'A Stochastic Theory of the Diffusion of Traffic Flow

By
Hisashi Mine and Katsuhisa OnNO

(Received December 21, 1967)

This paper presents a study of the diffusion of traffic low and an observation by a
moving observer, that is, a Doppler’s effect. First we introduce a time process and a
space process, and we show they are composed Poisson processes under the suitable as-
sumptions. Secondly, we derive ‘transformation formulae between these processes,
interpreting velocity as the measure preserving transformation. Moreover, we-ana-
lyze a Doppler’s effect occurring in an observation by a moving observer, and finally
we demonstrate, in a simple case that the time process is a homogeneous Poisson
process.

Introduction

There seems to be two main approaches to the road traffic flow theory. One
is the car-following theory, that is, a deterministic approach analogeous to hydro-
dynamics, thermodynamics, etc., in case the traffic density is high. The other is
a probabilistic approach in case the traffic density is low, that is, it allows free
travel of cars. In this paper we deal with the latter case.

Now, analyzing the traffic flow, we must take its fundamental characteristics
that are the existence of time and space and the finiteness of cars’ velocities).
We, at first, introduce the time process which is, roughly speaking, the number of
cars passing through an arbiti’arily fixed point with some velocities, and the space
process which is the number of cars existing at an arbitrarily fixed time with some
velocities in a given space interval. -

Under suitable assumptions, we show these processes are Poission processes or
composed Poisson processes. After that, we derive the transformation formulae
between these processes, interpreting velocity as the measure preserving transfor-
mation. Moreover, we analyze a Doppler’s effect occurring in an observation by
a moving observer, and finally we demonstrate, in the simple case that the time

process is a homogeneous Poisson process.

* Department of Applied Mathematics and Physics.
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Time Processes and Space Processes

Consider an n-lane one-way-road with no intersection. Let assume the follow-
ing conditions.
(Condition A) The interaction between cars is negligible. Therefore, each car
drives independently of any others.
(Condition B) The cars drive with their own constant speeds, and for sufficiently
small 4 and sufficiently large H the cars which have velocities less

than % or more than H are completely neglected.

Here we define 5=[0, 5’] as a space interval and T=[0, 7'] as a time
interval. Moreover we define V=(0, oo) as a velocity interval for the sake of
formality, though, under the condition (B), V is [k, H] in practical sense.

Let consider, on the probability space (2¢, Bg, Pg), the following stochastic
process x¢(t, v) which is called the time process at point &.

x¢(t,v):  the number of cars which pass through point £ Z at a time interval

[0, ¢t] and whose velocities belong to a velocity interval [0, v].

From the condition (A), x¢(f, v) is obviously an integral-valued differential
process. Particularly, we denote x¢(f, ) as xg(¢). Then it follows from the
definitions of x¢(¢, ») and x¢(¢) that for arbitrary §E &, vEV and s, ¢ (s<H)E T,

xe(t) —we(s) = xe(t, v) —xe(s, 0) > 0 w.p.l

Further we suppose the following condition (C) under which the process is absolutely

continuous in probability.

(Condition C) For an arbitrary small ¢ <0, a positive number § can be found such
that for arbitrary r=1, 2, --- and s5,<¢, <5, <t, < +++ 5, <8, < T’ for

which 37 (t;—s,) <8, we have 1 Pywg; x(t,) —xe(s;)=0]>1—e,
i=1 i=1

where ¢ is an element of £;.

A. Renyi?» has proved that an integral-valued differential process satistying
the condition (C) is an inhomogeneous composed Poisson process. . Therefore, under
the conditions (A) and (C), so is x¢(t, v). According to the condition (C), x¢(¢, v)
is obviously continuous in probability with respect to ¢, and then it follows from
the definition of x¢(t, v} that there is the standard modification of x¢(¢, v) which is
separable and measurable®. k

Let suppose that x¢(¢, v) is separable and measurable. Moreover, we consider

the following condition:

(Condition D) For (€ Z, v&€EV and 0<s<t < T,
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lim {Pe[wg; xe(t, v) —xe(s, v) 2 1]/ Ploog; xe(t, ) —xe(s, o) =1]} = 1.

Under the conditions (A), (C) and (D), x¢(¢, ) is an inhomogeneous Poisson
process. We denote the characteristic functions of x¢(t) and x¢(¢, v) as @¢(t; z) and
oe(t, v; z), respectively. It follows that

tog g4(t; 2) = || oe(w) dutee—1) (1)

log 94(t, 1 2) = | o¢*(w 1) du(e*—1), (@)

where p¢(t) and pg*(t, v) are non-negative valued Lebesgue integrable functions
defined for almost everywhere with respect to . Moreover we suppose that og(t)
and pg* (1, v) are Borel measurable. We define a time velocity distribution function
Fe(t, v) as follows:

Fy(t, 9) = lim {E[x(t, 3) —xe(s, )][EBlxe(t) —xe()]}  for 0<s<t<T’. (3)

Obviously Fy(t, v) is a non-decreasing function, continuous from the left and bounded
by Oand 1. It follows that F¢(¢, v) is a distribution function. If E[x(t) —x¢(s)]=0,
Fy(u,v) for u< (s,¢)] is a suitably chosen function of » satisfying the above mentioned
properties. Thus defined Fg(t, v) is equivalent to the following definition under
the condition (D) ‘

F(t, v) = 18121 {Pe[o; xe(t, v) —xe(s, v) = 1]/ Pe[wg; xe(t) —xe(s) = 11} .
According to equation (3),

og*(t, v) = Fe(t, v) og(t)  for ¢, ae. (4)
Consequéntly,

S:bg*(u, v) du = S:F;(u, v) pe{u) du

Moreover, from equation (2),

log ge(t, 03 2) = | Fetw, o) s duee—1) (5)

Let assume the following condition:

(Condition E) A time velocity distribution function Fg(f, ») has not a singular
part®.

Under the condition (E), Fg(t, v) is decomposed as follows:
Fy(t, o) = Fé(t, 0)+F¥ (4, 0)

where F¢?(t, v) is purely discontinuous and F¢° (¢, v) is absolutely continuous. Further,
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Fé(0) = 3 fé6n) and B0 = [ fis o) o]

0;E0)
where 2, is a point of discontinuity of F¢*(t, ) and f¢(t, v;) is a jump of F¢(4, v) at
v;, and fi(t, v) is a non-negative valued Lebesgue integrable function defined for
almost every v. ' -
(Condition F) A time velocity density fun:ctions Si(t; v;) and fi(t, v) are con-
tinuous in ¢. ‘
" Under the condition (F), fi(t, ;) and fi(t, v) are measurable functions on T'x V.
Therfore, from equation (2),

log @y(t, v; 2) = j: {, 2, /e v,-)+S:f§(u, v) du} og(u) du(é*—1)

0

Here, we define a random interval function x¢(I, K) as follows:

x¢(I, K), the number of cars which pass through a point §E€ £ in a time interval

I=(s, t] and whose velocities belong to a velocity interval K= (v, w].

If K=V, we denote x¢(I, K) asx¢(I). Further, we denote the characteristic function
of x¢(I) and x¢(I, K) as ¢¢(I; z) and ¢¢(I, K; z), respectively.

If ,NI,=¢ and K,NK,=¢, then x(I,, K) and x(I,, K) are mutually in-
dependent, and so are x¢(/, K,) and x(l, K,), according to the Condition (A).

Therefore, we have for m=0, 1, 2, -
log ¢¢(1; z) = Slpg(u) du(e*—1) (7)
Plwg; x(I) = m] == exp (— Slpe(u) du) (Slp;(u) du)™fm! (8)
log (1, K; z) = S; {2 /fw v.~)+SKfe<u, o) do} pg(u) du(é*—1)

—{ = wwmmwdnt| [ i 0 o dutnis—1y., (9)

Viek

and
Pilors 5t K=l = oxp [ = [ { 33t 00+ { futw 0 o} e ]
X [ SI {V,-EexfEd(u’ v;)+ SKfe(u, v) dv} ot(n) du]m/m! . (10)

In what follows, we ignore the condition (D). Then, similarly to equations
(1) and (2), we have
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n t g .
log e(ts 2) = 23 [ outus € dutete—1), (1
and tog e(t, 03 2) = 23 | ou (w05 € duere—1) S

where o4(t; &) and o *(2, v; §) are non«inegafi\{e valued: Lebesgue integrag'ble and
Borel measurable functions defined for almost every £, and are given hy

pu(t; &) = lim {Pylog; x(t) —x(s) = K1/ (t—9)}
and (03 €) = lim {Pylog; x(t, 0) —xl(s, 0) =k]/ (=9} .
Then we define a function Fy(t, v; §) as follows:
Fi(t, 03 &) = lim {Pyog; x(t, ) —e(s, 0) = Kl Plog; xe(t) —x(s) =41} . (13)

Fy(t, v; £) is a non-decreasing function, continuous from the left, and bounded by
0 and 1. It follows that F,(s, v: €) is a conditional distribution function. If
Pywg; x(t) —xp(s) =k]=0, Fi(u, v; &) for uE (s, t] is a properly chosen function
satisfying the properties as described above.

Therefore, we have

ou* (8, 03 &) = Foult, v; &) ou(t; €)  for aied 9
and then,

[L w3 &) du = [ Fatw, 03 €) oufus €)

It follows from (3) and (14) that, for a time velocity distribution function Fy(t, ),
we have

Fe(t, 0) = ’; kFy(t, 0; &) ou(t; £)/ gikm(t; €.

IfFl(t, V5 5)="'=Fn(t’ v f)a then Ff(t’ v)=Fb(t9 Vs 6): k=1,2,+n ]
Let suppose that F(t, v; &) satisfies the conditions (E) and (F). Similarly to
the equation (7)~(10), we have, for m=0, 1, 2, .-

log e(1; 2) = 31| pulus &) du(ee—1), - (15)

Pe[ws;xe(1>=m]=exp{—§j,pk<u;e>du} 3,0 o dara

ORR PR L P
(16)

log e, K; 2) = 31 | 5 ¢ v.,f>+§ a5 €) ol o &)l —1)
and S : 17
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Pilog n(, K)=m] = exp { =31 (3 fid(a, 055 &)+
=1J1 VEs :

[Srwoomawon) 5 B[] (St

[ St 03 €y o) outus )} prat] (18)

where r,, r,, -+, 7,, are non-negative integers. We have considered the time process
x(1, K) above.

In what'follows, we consider a space process. First, we define a space process
2:(J, K) on a probability space (2,, B,, P,,) as follows:

2:(J, K), the number of cars which exist in space interval J=({, £] at time ¢

and whose velocities belong to a velocity interval K=(», w].

Similarly to x¢(1, K), we denote y,(J, K) as y,(J) for K=V, y,(&, v) for J=[0, ] and
K=(0, v] and y,(&) for J=[0, £] and K=V respectively. Moreover we denote
the characteristic functions of y,(J) and y,(/, K) as ¥,(/J; z) and ¥, (/J, K; z),
respectively. Under similar conditions to (C), (D), (E) and (F), we have the
following equations similar to the case of ¢¢(1; z) and ¢¢(1, K; z) for m=0,1,2, -

tog ¥:(Js 2) = | a(myanien—1), (19

Pog sl ))=m = exp (| wman)( [ amyan) imt, (20)

log v, K 2 = | { Setn o+ [ atnoafamane— @
and PJo,in(J, K)=m) = exp| ={ | e o+

[ an ool wman|[] [ Serono+{ e asjaman]m, @

where g#(¢, v) is a purely discontinuous part of a space velocity distribution
function G,(£, v) defined similarly by equation (3), and g,(£, v) is a Radon-
Nykodym’s derivative of an absolutely continuous part of G,(¢, v).

Under similar conditions to (C), (E) and (F), we have the following equa-

tions:

log ¥i(J5 2) = 31| aa(ns Dane*e—1), | (23)

k=1

Plogn(l)=m =op {-3| wmindrf 3 M

R O T

(S,‘*(’“ z)dn)"‘/r,,! , (24)
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tog v, K5 2) = 31| { et 000+ autr, 03 ) o)

W(n; 1) dn (1) (25)
and  Plogn( K)=nl = esp[ =23 {53 a0 000+

[ vnalumnan] 5 A]

(R I

S]{"‘;ngd(,y, v;; t)+SKg,,(77, v; t)dv} Ae(n3 t) dn]rk/r,,! . (26)

Various Transformations

We deal with the transformations from a time process to a space process, from
a time process to a time process, from a space process to a time process and from a
space process to a space process. At first, we define that x?(I, ;) is the number
of cars which pass through a space point § in a time interval I with a certain
constant velocity »;. Similarly we define y,2(J, v;).

Now we propose to interpret the notion of velocity as a one to one measure
preserving transformation, in case the car traffic flow satisfies the condition (B).
That is, for 6 <<{ <€, r<s<t, y,€V, I=(r, 5], J=(0,{] and m=0, 1, 2, ---,

Py[wg; x4 (1, v;) =m) = Pilag; x (I+(E—0)v;, v;)=m], (27)
where  I4+(E—8)o; = (r-+(E—0)[;, s+(E—0)ui] ,

Pylwg; % (1, v;)=m] = Pyloy; 32 (J', v;)=m], (28)
where  J' = [64(t—s)n;, 0+ (1—7)2)) ,

P,lw,; 3], v)=m] = Plos; y* (J+(t—r) v, v;)=m], (29)
where JH{=r)o; = (0+(—r)v;, CH(—7)2],
and P,[o,; 3,7 (], v;)=m] = Plog x(I', v;)=m] , - (30)

where I'' =[r+ =)oy, r4-(E—=0)]0;) .
Consequently, we can obtain the following theorems.

(Theorem 1) Under conditions (A)~(F), suppose that Fg(t, v) and G,(£, v) are
purely discontinuous. Then, for 8 <¢ <&, r<s<t, v<w, I=(s, t], J=(¢, £] and
K=(v, w], we have

tog 9e(1, K3 2) = (¢~ )| 3 { it E+u6r—u), )

v;:EK;

aEtutr—)det, 3| nefEtao—u, ) 4 E+otr—u)dier
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SIZ i (u— (E—06) 0s, by) 0o(u— (E—0)/v) du} +

2 S, A (u— (E—0) [z, ;) oo(u— (E—8) ;) du]

where K, = (s, (€=0)/(t—)), K,= ((€—8)/(t—r), (E—0)/(s—n)],
K= ((€=0)/(s—r),], L= (s,r+(E—0)o,] and I,=(r+(E—6)Jvs, 1],

and  log v, K5 ) = (=D 3 | eftr—ut—n,0)a0—ut—r)dn+

9/EK,

5 ] were—npot+@—nmmart| g -ni=n.

V&K, LI

Wr—ut=r)dn)+ 3 | f 0= oot @=n)fousds
where K, = (3, (€ —0)/(t=n)], Ko=((C—0)/(t=r), (~8)/(t—7)],

Ky=(E=0)/(t—n), w], Ji=(C, 0+0,(t—)] and J,=(0+(t—r), €.

(Proof). At first, we prove the first expression. Since Fy(t, v) is purely discontinu-
ous, F(t, v)=Fg&(t, v)= 2 f¥(t, v;). Therefore, according to'(9),
v;E(0,7)

log el K3 2) = 2 | e (w, 09 outu) du(e—1) .

Now we divide K into K; (i=1, 2, 3), where K,=(v, (§—6)/(t—r)],
K,=((6—0)/(t—7), (E—0)/(s—1)] and K,=((E—0)/(s—7), w].

Then it follows from a one to one measure preserving transformation which we
have shown that if ;€ K, then according to (28),

Pywy; xEd(I’ v)=m] = Pr[wr;,yrd(j,, v)=m],
where J' = [§+(r—t)v;, £+ (r—s)v;), and then for any IE B,

[ 0 00 petw) e =1) = {_g,4n, 002, (mydn(ee—1) =

S 0: 8,2 (6 +(r—u) v;, ;) A, (E+(r—u)v;) du(¢”*—1) , consequently,
I

S v) oe(t) = v; 8,2 (64 (r—1) 055 v,) A, (E+(r—t)v;) for almost every ¢,
and if ;€ K,, then according to (27),
Pylog; 27 (1, v;)=m] = Py[wg; x* (I—(E—0)/v;, v;) = m]

and then,

[ fewmmder—n = 7 o) o) due*~1) =

I-CE-0)v;

Slfod (u—(E—0)[v;; v;) 0g(u—(E—0)[v;) du(e!—1), consequently,
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S (t95) og(t) = fo* (t—(E—0) [vy, v;) po(t— (€ —0)[v;) for almost every .

If € K,, we divide I as I=1,-+1,, where I,= (s, r+(§—6)/v;] and
I=(r4-(E—0)[v;, t]. Then, '

Plawg; xfd(lv v;)=m] = Pr[mr;.yrd(Jll, v;)=m],

where J,'=[0,&6+(r—s)v;), and Pilwg; xg? (1,, v;) = m] = Py[wy; 26 (I,’, v;) =m],
where I, = (r, t—(6—0)[v;]. Hence, if y,=K,, !

then [ £ o) oet)duter—1) = {{ g4 002, m)dn+
[, 7 v»m(u)éu} @1 ={{, segs €+ =)o 0 (€ + (=)t
[, /0 €= ) pau— =) ) 1)

While, log ox(, K5 2) = $3{ 3 | A0 0 e duén—1)}

Consequently,

tog we(1, K; ) = [ 5] | wiat €+ =0, 09 2,6+ (- dut

3 (], st @+ r—wm s a(E+—wyv) dut | 1t lu— (e =00 00

po(u—(E—6)[;) du} +»§=,S, S (u— (E—08) [0y, v3) 00— (E—0) /v,-)du](eix_l.) .

The second expression of the theorem is similarly derived as follows. Note
that

j=1\r,€K;

log v, (J, K; z) = i‘.{ > S,g'd(”’ z{,-)k.(n)dn(e"—l)} ,

where K,=(v, ((—0)/(t—r)], Kz=(((—0)/(t4f), (f;"”)/(t—')] and K,=((¢—06)]
(t—1), w]. If5,EK,, then according to (29), '

: Pt[“)t;)’td(.]a ;) =m]= Pr[wﬁ)'rd(.{_vi(t_r),, v;) = m]
Therefore for any JEB,, -

Sjg:"(m v;)A(n)dn = Lgr’.’ (m—(t—=1)v;, 0:),(n—(t—r)0;)d7 ,

consequently, g, (€, v;)A,(6) =g,% (§ — (t—71)v;, v;)A,(E— (t—1)0v;) for almost every §.
If v;€ K,, then according to (30), ,
i J‘ .
Pyws; 32 (], v:) = m] = Po[wg; 5 (I, v;) = m], where:
I' =[t—(6—0)[v;, t—(—0)[v)) , ‘Therefore for any JE€B,,
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[ gt oantan = | _ft—(—0)fow, v)estt—(n—)fovid,

consequently, g7(&, v;)4,(6) =f2 (t—(6—0)]v;, v;) Po(t— (€ — 6)[v;)[v; for almost
every £. And if y,EK,, then

[ et vnman = | fite—r—)low v outt—(r—0) i rdn +
| et e=nm wtr—(—nwian,
where J,=({, 6+ (t—r)v;] and J,=(0+4 (t—r)v;, §]. Hence,

log v, (/J, K; 2z) = (e"—l)[ p S]gr"(n—v.-(t—r), v;)2, (7 —0v;(t—1))d7n+

v, EK,

S [ e o—mpstO—nmdrt| ef—ui-n, )
Ja . J2

=y

ln—v =)} 33 | St @=)fon vi)ent+@O—n)od .

as was to be proved.

This theorem shows that any time process or space process is constructed by
the preceding time process and space process.

Suppose that Fg(t, v) and G,(£, v) are absolutely continuous with respect to

Lebesgue measure on V. Then we can obtain the following theorem.

(Theorem 2) Under the conditions (A)~ (F), suppose that F¢(¢, ) and G, (£, v)
are absolutely continuous with respect to Lebesgue measure on V. Then, for
<<, ras<ty v<<w, I={(s, t], J=({, £] and K= (v, w], we have

log (1, K; 2) = (e"z—l)[SK S]vg,(f—}—v(r-——u), 0) 2, (€ +v(r—u))dudv+

sz{gz v, (€ +o(r—u), ”)'{'(f’*'”(’—“))d“*’S;zf"(u—(f——ﬂ)/v, v) Py

1

(u—(f—ﬁ)/v)du} dv—i—g S Fflu—(E—6) o, u)p,(u—(f—a)/v)dudu],

K31
where K, = (v, (§—0)[(t—7)], K, = ((£=0)/(t—1), ((—0)/(s—)],
K, = ((6=0)/(s—r), w], L = (s, 7+ (6—0)/d]
and L = (r+(—0)/0, 1)],

and log v,(J, K; z) = (¢5—1) [SK S]g,(n-—v(t—r), )4, (g —o(t—r))nddo+

1

[ AT At 0—np e 0—nypypin+{ er—ot=n, 03,
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(r—(t—r)dnjdo-{_§ futt+ 0=, vouter @ =)o) |

where K, = (s, (C—0)[(t—1)], K, = ((C—0)/(t—r), (E—0)/(t—n)] ,
Ka = ((E_a)/(t'—r): w] > jl = (C: 0—{—U(t-——1‘)]
and  J, = (640(t—1), £].

(Proof). Let prove the first formula of this theorem. Since Fg(t, v) is absolutely..
continuous, according to (9), we have

tog 92l K3 2) = 3| | fetw wpotuducoien—1),

where K, = (v, ((—0)/(t—n)], K, = (({—0)/(t—r), (£—0)[(s—1)]
and K, = ((§—0)/(s—r), w] .

We take properly chosen countable sets {v;;} EK; (i=1, 2, 3) as follows:

V= 0,,<+0<Uyp, = ((: 0)/(t_7) = U<t <lpp, = (5_0)/(3_7) = Uy <<
~<wyp, =w. For {o;;} (i=1, 2, 3), we define the process x%(, K;) as
xg"(I, K;) =23 x?(1, v;;) and its characteristic function as ¢¢*(1, K;; z).
7

Then, we have
log ¢¢( Kis 2) = (¢ —1) 53 | fiw, ) g n i) ).

According to the proof of the theorem 1,

log 9'(1, K, 2) = =1 31| .m0, @m0, ()
where  J' = [E40,,(r=t), E40,,(r—s)) ,
log ¢ (1, s 2) = (1) S (0, ) Gugr =) () +
J, 300 ) 0oy =) p0lad]
where J = [0, é+vy(r—s)) and L = (r, 1—(E—0)n,}],
and  log oL Kys 2) = (@1 32| it o) o) oo
where I’ = (s—(§—0)[vy;, t—(E—0)[vy;] .
It is to be noted that for the characteristic function ¢¢?(1, K; z) of x¢%(I, K) defined

by x4(1, K) Exgd(l k),

3
log o¢#(1, K; 2) 2 og o1, K;; 2) .
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Let d =max max(v;;,,—v;;). It follows from the separability of x¢(/, K) that for
PR ‘ :
properly chosen countable sets {v;;}, x?(Z, K) converges to x(I, K) with pro-
bability 1 as d—10. Therefore,
IOg {05([, K; Z) = (eiz_l)[s Sl,gr(ﬂa vlj) (vlj-f-l_vli)xf(ﬂ)dﬂdv_‘_

K,

SKZ{SJ{g'(ﬂ’ %) (Uziﬂ_vzi)lr(’l)d’?—l—s So(t, 037) (035401 —025)

4

0(u) du} dv +S Sz"fo(u’ 037) (V3541—Vs;) pg(u).av'u/dv] s

Ky

which is continuous at z=0. Consequently,
log ¢:(1, K; z) = (£7—1) [S S vg, (E+o(r—u), v)A,(E+o(r—u))dudv+
_ Ky I

[, {J, saterot—, o e+atr—wyiaut | fiw—(e=0)in, )

1

oolu—(E—0))du} do+{ | fitu—(E—0)o, Doulu—(E—0)jo)duds],
3
where I, = (s, r4 (6 —06)[v] and I,=(r+(§—8)/v, t].
Similarly, the second expression of the theorem can be proved. We shall omit
the proof to avoid a conventional complication. .
We easily obtain the following corollary with some modifications.

(Corollary 1)

Under the same conditions as theorem 2, ,_

1) if k> (E—06)/(s—r), then, log ¢:(I, K; z) = (e"‘—l)gKSIﬂ(u——(E—ﬁ)/v, v) 0y
(u—(E—0)[v) dudp, and fi(t, v)0g(t) = fo(t — (& — 6) /v, v) oy (t— (& — ) [v) for
almost every ¢ and v, '

9) if H< (E—6)/(t—r), then, log pe(J, K; z):(e"‘——l)SKSIvg, (€ +0(r—u), v)
2, (6 +o(r—u))dudy and fi(t, v) pe(t) =vg, (§ +0(r—t), 0)A,(§+ov(r—t)) for almost
every t and v,

3) if b2 (E—0)[(t—), then, log¥r,(J, Ki 2) = =) { _{ fitt+@=np,0)
0o(t-=(0—2)[v)[odndy and g,(&, v)A,(§) =fo(t—(E—8)[v, v) pe(t—(§—6)[v) for

almost every & and o,

and
4 i HSE—0)[(t—n), then, log¥:(J, Ks == 1) _{ g,(r+ (=0, 02,
(n+o(r—t))dndv and g,(&, v)2,(§) =g, (+ov(r—1t), v)A,(E+ov(r—t)) for almost

every ¢ and v.
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We shall consider}z thé more generalized case, that is, we suppose; the con-

ditions (A), (B), (C), (E) and (F), ignoring the condition (D).

obtain the follo’winé theorem.

(Theorem 3)
Under conditions (A), (B), (C), (E) and (F), for 0<C<E r<s<t, v<w,
I=(s, t], J=(, €] and K=(v, w], we have '

where

and

log o2(1, K3 2) = 33 (@~ 1) | { 31 wawt@toi—u), 0 1)
2p(§+vi(r—u); r)—]—S vgR(E+v(r—u), vy YA (E+o(r—u); r)dv}a’u—i—
2& {S 0;: @i (Etoi(r—tu), vy 1) 26+ v;(r—u); r)du+

Sittu—(E =)o, 05 0)pplu— (¢~ 0>/v.-;o>du}

) 24

SK{ o (Etatr—u), o; r)g(E+o(r— s r)dut
SI Se(u—(E—0)[v, v; 0) pp(u—(E—0)[v; 19)du}dv+
[ 13 A=) o5 O)outu—(E~0)is 0) +

S Fulu—(E—8) v, 3 O) op(u— (6 — 0)/0;0)dv}du],

K, =, (£ 0)/(t —nl, K= (({-0)/(@—r), (€=0)/(s—1)],
Ky = (({=0)/(s—r), w], L' = (s, r+(§—0)[n],

L' = (r4+(E—0)/v,, ], 1, = (s, r+(§—0)/v] and

L = (r+(E—=0)/v, ¢],

tog v, K 2) = B (=1 | {3 atr—ut—r),01)
Z,,(n—v;(t}—r);é r) +:S ge(n—o(t—r), v; 1) A(n—0(t—1); r)dv}a’n-l—
3 {1, A @—nins 05 O)oute+ O=noss O)foidn+

8 &l (n—vi(t—7), ;3 1) A+ v,(t r); r)a'ry}

|
SK {S Ja(t4-(0—n)[v, v; 0)p4(t-+(0—7)fv; 0)/v)d77+
|

]g,,(ﬂ v(t—r), v; r)le(n— v(t——r) r)dn }a’v+

§,4.2 A O— s 5; 0)oult+ 0= )l

Then we can
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S e+ @—2)fo, 35 0)o4(et-O—n)fos O)foduldn |,

where K, = (s, (C(—0)/(t—r)], K, = (((—0)/(t—r), (£—0)/(t—1)],
= ((=0)/(t—r), w], Ji' = (¢, 0+0,(t—)],
(
(

Jz
J: =

If { <& <0 and s<t<r, then the first expression is valid for K,= (v, (6 —&)[(r—s)],
K,=((0—&)/(r—s), (0—8&)[(r—t)] and K,=((6 —&)[/(r—1t), w] and the second ex-

pression is valid for K,=(v, (0 —&)/(r—1)], K,=((0—&)/(r—t), (#—C)/(r—t)] and
K,=((6—-4)/(r—1), w].

(Proof). Let prove the first expression of the theorem. It follows from equation
(17) that

O+oi(t—r), €], Ji= (¢, 0+0(t—r)] and
04o(t—r), £].

k=

log pe(1, K3 2) = 23— 1) | 3 fitu, 0 )+
Ska(u, v; 5)dv}pk(u; &)du

We divide K into K,(r=1,2, 3), where K,= (v, (§—0)/(t—r)], K,=((§—0)/(t—1),
(6—0)/(s—n)] and K,=((6—8)/(s—r), w].

Next, for properly chosen countable sets {v,;}, in similar manner to the proof
of theorem 2, we define x¢?(1, K,) and ¢¢#(1, K, ; z). Hence,

log o¥'(1, K, 2) = 33 (1) | { 33 fittw i3 &)+
;.fk(u: vrj; E) (vrj-i»l_vrj)}pk(u; E)du .

Therefore

log ¢¢(1, K; 2) —ElogqaxE (L K,; 2) =) (¢#¥ —1 [ S S
0 /SR, J J;

k=1

g (1, vi5 1) (73 r)dri+ZS )gk(m 055 1) A(75 1) (0100 —025)d 0 +
7

NACZY)
2 {S 8 (15 055 7)(n;7)d7 +S S (u, v;; 0)04(u; 0)du+
V€K, Jiwd  I(op)
S =]t w5 rdrs dnt
i Jilwe O .
[, Ao o 0deb+ 3 {  fitw v 0)outus )it
I(vg v, EKy J I

S Al v O)oa(as 0) w0,
7 Iy



A Stochastic Theory of the Diffusion 211

where J()=(£+-o(r—t), E+o(r—9)], Ji(0)=(0, {+o(r—s)], L(o)=(r, t—(€—0)[0]
and I(v)=(s—(§—0)[v, t—(£—0)[v]. It follows that, similarly to the proof of
theorem 2, .

log ¢e(T, K3 2) = 33— 1| 3 | wias(€ (w0, w5 r)ue(es r)duct

V€K,

[, §, e, o e naudor 33 ([ st €00, 55 r)2u(E 03 )it
Slz,f,,"(t(v,-), v;; 0)op(t(v;); 0) a'u} + SKz {Sllvg,,(f(v), v; 1) A(E(0); r)du+
Slzf,,(t(v), v; 0)0u(t(0); 0)a’u}a'v—i—uEEK Slfkd(t(vi)’ vi; 0)og(t(v;); 0)du+

[,.§ a0, 53 0040e0); O)auae]
where £(0) = £4o(r—u) and {(v) = u—(E—6)/v.

Similarly, we can obtain the second expression of the theorem. We shall omit
the proof to avoid a conventional complication. The latter half of the theorem is

trivial, as was to be proved.

A Doppler’s Effect in the Road Traffic Flow

In this part, we analyze the Doppler’s effect i.e., the difference between the
observation of the traffic flow by an observer moving with varying velocity (for
example, an observer on a car or a helicopter) and the observation by an observer
at a fixed space point.

We define the following three stochastic processes.

X, J, K), the number of cars which exist in a space interval J during a time
interval I and whose velocities belong to a velocity interval K;

x¢(I, K|x;), the number of cars which pass through a space point § in a time
interval I passing through another space point { during the same
time interval I and whose velocities belong to a velocity interval K,

and

J:(J, K|y,), the number of cars which existed in a space interval J at time s and
exist in the same space interval J at time ¢ and whose velocities
belong to a velocity interval K,

where I=(s, t], J=(¢, €] and K= (v, w}].

Then, evidently, ‘ ‘

X(L, J, K) = (1, K)+,(Js K) = %¢(L, K)+,(/, K) (31)
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As for x¢(I, K|x;) and y,(J, Kly,), if the velocity distributions are pruely dis-
continuous, then ‘

xe(l, K|xg) = D) x@ (I, v;), where I' = (s+ | J|/vi, t]

"EKE .
Ke= KN JI/L, e0), | J] = |€—¢] and |1] = {t—s5].. (32)
and . -
9(Js Kly) = 3 54T, 0, where. J' = (C+ul1], €]
and K, = KN (0, | J1/11]]. | (33)

In the above we denote Lebesgue measures of [ and J as [I| and | J], respectiv,ply.
Moreover we denote the characteristic functions of X(Z, J,‘ K),x(I, K Ix;) and

2> K1) as ox(I, J, K; 2), oo, K|C; 2) and y,(J, K|s; z), respectively.
Here, in order to avoid conventional complications, we assume that under

conditions A), B), C), E), and F), the velocity distributions are absolutely con-

tinuous, : '
Consequently, from (17), (25) and (31),

log ¢x(I, J, K; z) = ki,:‘ (e“"—l)[gK{SIf,,(u, v; &) op(u; &) du—}j
S]gk(ﬂ, v; 8) a3 t)dv}dv] (34)
= Sy [ [, {{ st o5 outus it | eatr, ) 2t ) a3

and the equality of equation (34) and (35) is guaranteed by theorem (3). More-
over from (32) and (33),

log p4(1, K1¢5 2) = 33 (= 1){ { futu 03 &) outus ) duds, (36)
k=1 KJI
where I'=(s+| ]|/, t]
tog w(J, Kls; 2) = 33— _{ aatr, 051) outas ydnav, (37
k=1 KdJ
where J'=(+ol1l, €]

Applying theorem (3) to the above, equations (34)~(37) are converted into the
following equations:

log ex(1, J, K; 2) = ,,2_1 (e"k*_])[sxsl'lﬂ(u, v; &) op(u; §) a’udv]

— g (e""—l)[g SI 2a(n, 03 £) Au(7; t)dﬂdv], (38)
= 1

K
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where J,=(¢, E+0I|] and L=(s, t+| J | /o],
for K,=(| J1/11], o),

tog et K165 2) = 3@ =1 { falw v & oatas & dids

where J,=(¢, {+oll|] and L=(s+1J /0, 8],
and for K,=(0, [ J|/|11],

S 8e(n, 05 8) A3 t) a’na’v], (39)
KNKyJ I,

tog v, Klss 2) = 2 @ D[ fatw 03 &) oatus &) dua]
=i, e umoas],  wo

where J,=(¢+o|I|, €] and Iy=(t, s+ | J |/v]

Next we define the following observation processes:

pL, K; by, &),  the number of cars whose velocities belong to a velocity interval
K and which are observed in a time interval I by an observer who,
starting from a point §, at time ¢,, is moving with a velocity
V(t) in the opposite direction of the car traffic flow, that is, in the
negative direction of the &-axis, where I=(s, t];

q(I, K; t5, &),  the number of cars whose velocities belong to a velocity interval
K and which are observed by an observer who, starting from a
point &, at time £, is moving with a velocity V(t) in the same
direction of the car traffic flow, that is, in the positive direction
of the £-axis, where we assume that cars which are once passed
through by an observer and after that pass ahead of the observer
are not counted and conversely.

Then
oL, K; 1o, £) = X(I, J,.K), where J,= (50—5: V() d, 50—5: V(t)dt] (41)
0 [
and  q(I, K; &, &) = x(I, K|x¢)+2:(J, K|y,) , (42)
where c=eo+ss Q) d, 5:60+S’ Viydt and J=(¢, €].
to to

We denote the characteristic function of p(7, K; ¢, &,) and ¢(I, K; t,, §,) as
'
2,1, K5 z) and 24(I, K; z) respectively and put o*|I| =S V(t)dt. Then from

equations (38)~(42), we have the following equations:



214 Hisashi MiNe and Katsuhisa Onno

log 7,5, K5 2) = 2y (=) | {, futw, 05 &) outus &y duav], (43)
where e=eo—g' Vtydt and I=(s—o*|I|[o, 1],

and  log z,(I, X; 2) - > (e‘*’?l)[SKnKSI Su(uy v; &) pp(u; &) dudy

=1
+{,0 J Aot 00 ot s (44
2 q ‘
where £=Eo+ [ V) dh, K= (0, 0¥], K= (0%, ), L= (6 s-+0* 11o]
to
and I/ = (s+o*|I|[v, t].

For example, in order to simplify, if we suppose condition (D), put I=(t—1, ¢)
and denote the position of the observer at time ¢ as &, then we get

¢
tog 2,(1, K; 2) = (¢~ 1){ | Silu, 0) pe(u) dudo
KJi-coroom
N tH(o*—)fv
and log 2,(I, K; z) = (e'z—l)[s S Se(u, v) pe(u) dudy
KNK,J¢

S S Si(u, v) pg(u) dua’v] ;
K0 Kgd g-(w-v"/v

The differences from the time process observed at the fixed point £ are revealed as

follows:

$—1

E[p(L, K; t,, £)] = E[x(Z, K)]+st fila, 9) pe(u) dudo

t-Co+v™/p

and  Blg(t K 18] =Blath K1+{ [ At 0 oew

t—(v—v¥d/v

__S:_lfs(u, v) og(u) du} a'v~$ felu, v) pg(n) dudy .

KnKzst—l

Applications and Conclusion

In this part, we apply the results of the above sections to a simple case, that is,
a car traffic flow which is a homogeneous Poisson process with an absolutely con-
tinuous velocity distribution.

Before we do it, we must point out the following facts; generally speaking, if
either a car traffic flow i.e. x¢(I) or y,( ), or a velocity ditsribution is inhomogeneous
in time or space, the other must be inhomogeneous, too, and homogeneity is stable
if and only if both a car traffic flow and a velocity distribution are homogeneous.
These facts are easily obtained by the equation (3) and the discussion of “Various

Transformations’’,
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‘Therefore, it is relevant to assume the characteristic function of x(J, K), that
is, 9¢(I, K; z) as the following equation:

log g¢(1, K 2) = (¢* 1) pel 11| fio) o, (45)
where I=(s,t] and K=(v, w]. o

We denote o, and f,(v) by o and f(v), respectively.
In the following, we show the results deduced from the above assumptions. At

first, from corollary (1), fot & <hs,
log (I, K5 z) = (¢*—1) p|I| S fv)dv.
K

Consequently, for &<hs, pg|I|S Ji(®) dv=p[l|$ S(v)dv. If we put K==V, then
K K

og=p, therefore, f¢(v) =f(v) for a.e.v. -
Therefore, from (45), for arbitrary {€ &, IC T and KCV

log py(L, K3 2) = (¢*~1)o 1| _fo)do. (46)

It follows from the latter half of theorem (3) that for J=({, £] and ¢ such that
t+1J | m<T’,

log ¥(J, K; 2) = (1) o1 J | _flo)fod. | (47)

Therefore, in accordance with corollary (1), the equation (47) holds for arbitrary
teT, JCE and KCV. That is, the space process y,{J, K) is also a homogeneous
Poisson process with an absolutely continuous velocity distribution.

Let us put a characteristic function ¥, (J, K; z) of a space process as follows:

log ¥(J, K5 2) = 21J | _g(o)dalei*—1). (48)
It follows from equations (47) and (48) that

2| ewyio = 0| _so)pas,

therefore
Ag(v) = o f(v)]o for a.e.v.
Consequently,

o0

0= /IS: vg(v)dv = 2B, (v) and 2= ,oS S()Jvdo = pE4(1/v) .

[
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We can obtain the well-known relationship between a space velocity density func-
tion g(v) and a time velocity density function f{(v),

E,(v)f(v) = vg(v) for a.e.v.

It follows from “A Doppler’s effect in the road traffic flow” that for a charac-
teristic function x,(, K; z) of an observation process p(I, K; ¢, &),

log x,(I, K; z) = (¢ —1)0|1] {SKf(v) dv—l—v*SKf(v)/vdv}

= (¢*—1)2|1| {SKvg(v) dv—}—v*SKg(v) dv}
and  E[p(L, V; t,, &)] = o|I| {1 +0*E,(1]0)} = A|I]| {v*+E,(v)} .

Similarly, we can obtain for a characteristic function x,(I, K; z) of an observation
process ¢(1, K; 1, &,).

log 2L, K; 2) = (é—1) 0|1 {v*(S (o) /vdu~5‘: F(0)fodo)
+Sw f() dv——S:* £(0) a’v} — (#*—1) 21| {v*(s 2(0) a’v—S; 2(v) dv)
+ S: vg(v) dv— S:* vg(v) dv}

and  E[q(l, V; ¢, &)] = 0|I] {v*(Ef(l/v)—QS f(v)/va’v)—}—QSZf(v) dv—l}

:llIl{v*(l—2S

v*g(v) dv) —}—250* ve(v) dv —Eg(v)} .

Now, let consider the opposite lane traffic flow together. It is relevant to
assume that a traffic flow and the opposite traffic flow are independent of each
other. We shall make use of the affix 1 for a traffic flow with the same direction as
an observer and the affix 2 for the opposite traffic flow. Then we have the follow-
ing equation for a characteristic function x(I, K; z) of the number of cars which the

observer observes in a time interval I and whose velocities belong to K,
log x(1, K; z) = (e""-—l)[,o1 1| {v*(gu fl(v)/vdv——S *f,(v)/vdv)—}—g Si(p)dv
~[Crwal+aln{] soar| sopal].
v K K

It is hoped to investigate the problem of queues for a traffic light, the problem
of equilibrium analysis, and so on.

The next correction to the present theory would involve some form of inter-
action between cars. However, such correction seems to be more difficult than the
present theory.
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