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On Adaptive Control Processes with Computing Time Delay 

By 

Yoshikazu SAWARAGI* and Tsuneo YOSHIKAWA* 

(Received September 30, 196 7) 

In the theory of R. Bellman's adaptive control processes, computing time to yield 
optimal control signal from data obtained during normal operation is ideally assumed to 
be zero. There will be, however, cases where the computing time delay may not be 
neglected. 

The subject of this paper is the optimal control policy for adaptive control processes 
in the case where certain computing time delay is assumed in advance. Functional 
equations to get such an optimal control policy are described in a fairly general form. 
These equations are also shown to be applicable to stochastic control processes and 
deterministic control processes. Two simple examples are presented to illustrate the 
application of the method. 

1. Introduction 

There is the theory of adaptive control processes developed by R. Bellman 1> 

as an approach to optimal control problems under various conditions of uncertainty 

with regard to underlying physical processes. 

The basic idea of this theory may be described as follows: A controlling 

device is given a facility of estimation, that is, a facility of revising an incomplete 

information to a more exact one by the use of the data obtained during normal 

control operation, and taking this facility into account the optimal control policy 

is determined by means of the technique of dynamic programming. In the theory, 

computing time to yield optimal control signal from data obtained during control 

process is ideally assumed to be zero. But a digital computer should generally be 

used as a main part of the controller in order to realize such an optimal control 

system that is obtained from this theory. The digital computer has always more 

or less time delay in computation. Therefore, there will be cases where this 

computing time delay may not be neglected. 

On computing time delay in deterministic control processes, where the object 

to be controlled is completely known, there is a report by one of the authors 

and K. Inoue2>. In the adaptive control processes, this problem becomes more 
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important, because more complex computation must be performed to get the 

optimal control signal. 

The purpose of this paper is to discuss the optimal control policy for adaptive 

control processes in the case where certain computing time delay is assumed in 

advance. 

2. Problem Statement 

Let us consider a system described by the vector difference equation 

X;+l = f;(X;, U;, a, f;) (2. 1) 

where X; is a state vector, u; a control signal vector, a a system-parameter vector, 

and f; a random vector. The subscript i denotes the time t=iJ, where J is 

the unit increment of time (one sampling period). 

The state of the system is observed only through an observation vector y; 

which is generated by the following observation equation; 

(2. 2) 

where /3 is a parameter vector in the measuring instrument and 7/; is a random 

vector. 

The random vectors , ; and 7/; account for disturbances whose origin may 

be internal or external to the system, and they are assumed to be independently 

and identically distributed with the probability density functions given asp(,; I 0~) 

and p(r;; [ O.,,) where Oi and O.,, are statistical parameter vectors. Furthermore, it is 

assumed either that at least one of the parameters a, /3,_ {}~ or 0.,, is unknown, or 

than (2.1) and (2.2) constitute a partially observable system3 ,4 >. 

An optimal control problem of particular interest is formulated as the deter­

mination of a control policy which minimizes the expected value of the performance 

criterion function with N stages to go; 

(2. 3) 

For problems of this type, the theory of adaptive control processes is applicable. 

3. Adaptive Control Processes 

In this section, we will discuss the case where the problem posed above is 

treated by the theory of adaptive control processes under the idealized assumption 

of no computing time delay. Let us denote by f/)0 the a priori information on the 

initial state x0 and unknown parameter(s). In the similar way, let fD; be the 

information on the state ,"<; and unknown parameter(s) at time iJ. f/)0 is, for 
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instance, given by the form of a joint probability density function p(x0 , 0) of x0 

and unknown parameter 0. The information .ffJ, is constructed from .ffJ0 and the 

data {u0 , Uu·••u,_ 1 ;yi,y2 ,·:,y,} which are obtained by that time. 

With the notations .ffJ0 and .ffJ,, according to the principle of optimality, the 

determination of the optimal control policy of the problem stated in the previous 

section is reduced to solving the following functional equations; 

F,*(.ffJ,_ 1) = min E{W,+F,!1 (.ffJ,) I u,-u .ffJ;_1}, 

";-1 

FNt(.ffJN) = 0 

(i = l, 2,·", N) (3.1) 1 

(3. 1)2 

where E{ • I •} denotes the conditional expectation, min represents the minimization 
"i-1 

of the bracketed term with respect to u;_ 1, and F;*(.ffJ,_1) denotes the minimum value. 

The sequence {u0*, u/, •··, uN!1} ofu;_1 which satisfies (3.1) is the optimal control 

policy. Optimal control signal u;!1 is obtained in the form 

(3. 2) 

4. Consideration for Computing Time Delay 

As stated in Section l, a digital computer is generally used for calculation 

of optimal control (3.2). In such a case, some computing time delay is unavoidable, 

and it causes the loss of control performance. Intending to cope with this loss 

of control performance, we study in this section the method for determination of 

the optimal control policy taking into consideration the interposition of certain 

computing time delay in advance. 

Functional equations to get such an optimal control policy are easily obtained 

by regarding the problem from the following question, that is, what information 

or data are available to the controller for calculation of a control signal which is 

to be applied to the plant at each time instant. For the sake of simplicity, we 

assume that the computing time delay is s.d, where s is a positive integer. 

In the first place, we consider the case where the computing time delay is 

the same as one sampling period .d, that is, s= l. In this case, the computation 

of optimal control vu,!u which should be applied to the plant at time (i-1 ).d, 

must be begun at time (i-2).d. Considering this situation from the point of view 

of the available information, information .ffJ,_1 is not available to the controller for 

determination of vu,!1 and so the possibly best way is to make use of .ffJ,_2 for 

that. In other words, vu,!1 should be determined by 

(i = 2, 3, ···, N) (4. 1)1 

(4. 1)2 
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which corresponds to (3.1). From (4.1), optimal control signal vu,!1 is obtained 

in the form 

(i = 2, 3, ···, N) . (4. 2) 

It is obvious from the principle of optimality that the sequence {vu,!1} is 

the optimal control policy in the set U1 of all control policies in which u,_ 1 is a 

function of u1_ 2 and .m,_2 : 

(4. 3) 

Necessary data to calculate gJ,_ 2 are obtained by time (i-2)LI, and for u,_2 

in the right hand side of (4.2) we should use vu,!2 which is calculated by time 

(i-2)LI. Therefore it is evident that margin of one unit time interval LI for com­

putation exists, and the previous assumption is really satisfied. In order that this 

control policy is realizable, the real time needed for computation of vu,!1 must be 

less than or, at worst, equal to one unit time interval LI. 

There remains no time for computation of u0, so we must predetermine the 

value of u0 (for instance, u0 =0). 

Secondly, we consider the general case where the computing time delay is s 

unit time intervals (s~2). Through a similar consideration as in the case of one 

unit time delay, we have 

vF;*(u,_2, u,_3, ···, u1_1 _ 8 , gJ,_1_8) = min E{W; 
"t-1 

+vF,t(u;-i, U;-2, ···, U;-s, gJ;-s) I U;-i, U;-2, ···, U;-1-s, gJi-1-s}, 

(i = s+l, s+2, ···, N) 

DFN!i(uN-1' UN-2, •••, UN-s, g}N-s) = 0 · 

Optimal control signal vu,!1 in this case is obtained in the form 

(i = s+l, s+2, ···, N). (4. 5) 

The sequence {vu,!1} of (4.5) is the optimal control policy in the set U;_ 1 of all 

control policies in which u,_ 1 is a function ofu,_2, U;_ 3 , ···, U;-i-s and gJ;- 1-s: 

i = s+l, s+2, ···, N]. (4. 6) 

For u,_2 , u1_ 3 , ···, and u1_ 1 _ 8 in the right hand side of (4.5), we should substitute 

the values of vU;~2, vu,!3 , •··, and vU;~i-s· For s~2, although data necessary to 

calculate .m,_1 _ 8 and vu,!1 _ 8 are obtained by the time (i-1-s)LI, the values 

of vu,~2 , 0 u;!3 , ···, and vu;!8 are not available until the time (i-2)LI, (i-3)LI, •··, 
and (i-s)LI respectively (see Fig. 1). In other words, margine of s unit time 
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Fig. 1. Diagram showing the progress of 
computation of controls. 

intervals which are necessary for calculation of vu;!1 is not given in perfect form. 

This is a very different point between the case s= 1 and the case s ~ 2. The 

following point must be also noticed. In the case s~2, as will be understood 

from Fig. 1 (b), a digital computer must compute s control signals in parallel 

fashion, namely, it should have an ability of multi-processing. 

However, in the cases= 1, no such consideration is necessary and the computer 

need not have the ability of multi-processing. Therefore, it is most desirable to 

design a control system so thats= I, either by setting sampling period J adequately 

or by using suitable computer as a controller. 

We can easily specialize the idea and the formulation so as to apply them 

to stochastic control processes and deterministic control processes, that is, to the 

dynamic optimization problems of usual sampled-data control systems. See 

Appendix concerning the application to deterministic control processes. 
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5. Discussion 

As stated in the previous section, it is most desirable to design a control system 

so that s= I, so we will confine ourselves to the case s= 1. 

Let us concentrate our attention on the following two cases: 

Case N: The case where the optimal control policy {u/!:1} of (3.2) is employed, 

which is derived by assuming the idealized condition of no computing time 

delay, but in reality, there exists computing time delay r-1 (r-1~J) for 

computation of u;!1• Control signal is applied at the first sampling instant 

after the computation is carried out. In other words, control signal is applied 

one sampling period later than the time assumed theoretically. 

Case D: The case where the optimal control policy {nu;!1} of ( 4.2) is employed, 

which is derived by taking into consideration the interposition of the com­

puting time delay J in advance. It is postulated that the real time interval 

r-2 necessary for computation of control signal nu;!1 is also less than or at 

most equal to J. 

From the viewpoint of control performance, which is expressed quantitatively 

by the expected value of the performance criterion (2.3), we can suppose that 
r-1 = r-2 = J. Therefore, it is intuitively evident that the control performance in 

Case D is better than or at worst equal to that of Case N. But as will be under­

stood from the comparison of (4.2) and (3.2), control policy {nu;!1} is generally 

more complicated than {u,!1} and so computing time necessary for the former is 

usually longer than for the latter, that is, r-1 ~r-2 • If {nu,!1} is more complicated 

than certain degree compared with {u,!1}, we should either make the sampling 

interval J longer, or use another type of computer whose computing speed is larger. 

In these cases, it is necessary to consider the performance losses caused by these 

design changes. That is to say, for each individual case, we must investigate which 

control policy is to be employed, {u,!1} or {nu,!1}, taking these performance 

losses into consideration. 

Now let us compare Case N with Case D from the side of structure of the 

control policy in some detail. In Case N, control signal u,!2 , which is calculated 

from (3.2), is in reality applied to the system at time (i-l)J because of computing 

time delay J. Denoting this control signal by Nui-u we have 

(i = 2, 3, ···, N) . (5. I) 

From (5.1), we see that {Nu;_ 1} has the same form as the control ploicy in which 

u;_ 1 is a function only of .fi);_ 2 and not of u;_2• So {Nu,_1} can be regarded as a 

special control policy contained in U1 • Since {nu;!J is the optimal in Ul) the 

control performance of {Nu;_J is never better than that of {nu;!1}. Moreover, 
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except for the case where 0 u;!1 is a function only of 9)1_ 2 and not of u1_ 2 , it can 

not happen that 

(i = 2, 3, ··· , N) , (5. 2) 

in other words, the control performance of {0 u;!1} is always better than that of 

{NU;-1}. 

6. Examples 

To illustrate the development of the preceding sections, two examples will be 

considered here. All variables in this section are assumed to be scalar quantities. 

Example 1 

The system to be considered here is described by the difference equation 

J; = X; 

and the criterion function is 

(6. I) 

(6. 2) 

(6. 3) 

where {.;1} is an independent Gaussian sequence, with mean zero and variance 

ve. a is an unknown constant with the a priori density function 

(6. 4) 

Let the initial state x0 be known. 

We make some preparations. Firstly, the revising procedure of the a priori 

density function of a· by Bayesian formula is investigated. The a posteriori density 

function, given u0 (at time t=O) andy1 =X1 (at time t=.:1), is 

p(a I Xi, uo) = p(x1 I a, uo)Po(a) = P1(a) . 
p(x1 I uo) 

Using (6.1), (6.3) and (6.4), (6.5) is reduced to 

P1(a) = NM(1!o(X1-Xo-Uo)+vemo' 
vo+v~ 

= NM(m1, 1!1) • 

(6. 5) 

(6. 6) 

This p1 (a) is interpreted as the revised a priori density for a obtained by the esti­

mation operation at time t=.:1. In the same way, the revised a priori density 

P;(a) at any time instant t=i.:1 turns out to be also Gaussian. Denoting the mean 

and variance of P;(a) as m1 and v1, the following equations are obtained. 
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(6. 7) 

(6. 8) 

Secondly, contents of .ffJ, for the system under investigation are examined. 

Information .ffJ0 at time t=O is composed of (6.4) and the value of x0 , and .ffJ, of 

p,(a) and the observed value x,. Since p,(a) has sufficient statistics m, and v,, 
.ffJ, can be represented by three values x,, m, and v,. 

Now we can proceed to the main step; solving the functional equations. 

Firstly, we consider the ideal case where no computing time delay exists. 

From (3.1) 

F;*(x,_u m,_u v,_1) = min E{a,x~+b,u~_1+F,!1(x,, m,, v1) 
"1-1 

I u,_ 1 , x,_u m,_u v,_ 1}, (i= I, 2, •··, N) 

FN!1(xN, mN, vN) = 0. 

Optimal control policy is obtained by solving the above equation backwardly, 

beginning with i=N. For i=N, we get 

FN*(xN-u mN-u vN-1) 

= minE{aNxi+bNui_1luN-i, xN-i, mN-u vN_ 1} 
".N-1 

= min E{aN(xN-1+uN-1+a+eN-1)2+bNui-11 UN-1> XN-1> mN-1> VN_J 
"N-1 

= min {aN(xi-1+mi_1+vN_1+ve+2xN-1mN-1) 
"N-1 

+2aN(xN-1+mN-1)UN-1+(aN+bN)ui_1}. 

In an analogous fashion, we get 

u,~1 = -(c1.1-1X1-1+c2,;-1m1-1) 

F,* = Ca,i-1(u,~i)2+c,,,-1mL1 
.N-1 

+j~L(cs,JVJ+c6,JVJ-i+c7,;Ve), (i = 2, 3, •·· , N) 

(6. 10) 

(6. 11)1 

(6. 11)2 

(6. 12) 

(6. 13) 

where coefficients c1 ,,,...,c1., are calculated from the following recursive relations. 
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a,+c~ ,c3 ; 

Ci i-1 = +b +' 2 • . a, ; ci,i c3,i 

a,+c~,; Ca,i +c1,i C2,i Ca,i 
a,+b,+c~.,c3,; 

b,( a, +b, +c~.; c3,;) 

Cs,i-1 = a,+(c1,;+c2,;) 2c3 ,.+c,,; 

c6,;-1 = -(c;,,ca,,+c,,;) 

C1,i-1 = a;+c~,ica,i 

and the terminal condition 

(6. 14)3 

(6. 15)1 

(6. 15)2 

(6. 15)3 

(6. 15), 

(6. 16) 

The optimal control u,!1 is calculated from (6.7), (6.8), (6.12), (6.14), and (6.16). 

Secondly, we will obtain optimal control policy for the case where one unit time 

delay for computation is taken into consideration. From (4.1), 

For i=N 

vF;*(u,_2, x,_2, m;_2, v,_2) = min E{a,x~+b,uL1 
",-1 

+vF,!1(u;-i, x,-i, m,-i, v,_ 1) lu,-i, u,_2, X;_ 2, m;_2, v,_2}, 

(i = 2, 3, ... , N) 

vFN!i(uN-i, xN-1> mN-1, vN-1) = 0 • 

vF N*(uN-2, xN-2, mN-2, vN-2) 

= min E{aNx1+bNut_1 luN-1> uN_2, xN_2, mN_2, vN_2} 
"N-1 

= min E{aN(xN-2+uN-1+uN-2+2a+e-N-1+e-N-2)2 
"N-1 

+bNut-1 I UN-1, UN-2, XN-2, mN-2, VN-2} 

= min {aN(x1_ 2+u1_2+4m_1_2+4vN_2+2v~ 
"N-1 

+2xN-2UN-2+4mN-2UN-2+4xN-2mN-2) 

+2aN(xN-2+uN-2+2mN-2)uN-1 + (aN+bN )vt _J (6. 18) 
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In an analogous fashion, we get 

N-1 

nF;* = c3,i-1(nu;!1)2+c4,i-1mL2+i~/cs,;V;+c9,;V;+1+c10,;li~), 

(i = 2, 3, ···, N) 

where coefficients c8 ,;, c9,; and c10,; are determined from 

c8,; = 4a;+ (2c1,;+c2,;)
2c3,;+c4,; 

Cg,; = -(c1,;+c2,;)2c3,i-c4,i 

C1o,i = 2a;+cr,c3 ,; , 

79 

(6. 20) 

(6. 21) 

(6. 22)1 

(6. 22)2 

(6. 22)3 

Comparing nu;'!:1 of (6.20) with u1! 1 of (6.12), it can be shown that nu;'!:1 

is obtained from nu;'!:1 by substituting (x;_ 2+u;_2+m,_2) into X;-u and m,_2 into 

m;_ 1 • This may be interpreted as follows; when computing time delay exists, 

X;_ 1 and m1_ 1 are not available for computation of u1_ 1• Therefore, the control 

policy is obtained which uses the estimated values (x;_ 2+u;_2+m;_2) and m;-2 

instead of X;_ 1 and m1_ 1 respectively. For Ceas N (see Section 5), from (6.12), 

control Nu;_1 which is applied to the controlled system at time (i-1).d, is 

(6. 23) 

The expected value of the criterion function for Case N can also be calculated 

easily. 

Fig. 2 shows the expected values of the performance criterion for the following 

three cases : 

w 
.150 

C 
0 
:;:: 
(J 
C 
::, .... ,oo 

'o C .g 
C a, 
o-•-·;;: 

E O 50 
(J ., 
0. 
)( 

w 

a).----­

b ). 

C ). -----

E" [W} 

EG (W} 
EN [W} 

Duration of control interval , N 

Fig. 2. Evaluation of control performance of the system in 
Example 1. 
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a) The idealized case where no computing time delay exists. Control is 

performed by the policy {(6.12)}; E*{W}. 

b) The case where the policy {(6.20)} is employed, taking into account the 

interposition of the computing time delay of one sampling period. (Case 

D); E{0 *W}. 

c) The case where control is performed by the policy {(6.12)} but, in 

reality, computing time delay of one sampling period exists. · (Case N); 

EN{W}. 
Constants are chosen as 

a,= b, = 1 , (i = 1, 2, ···, N) 

(6. 24) 

and for the cases b) and c) we take u0 as 

It can easily be understood that a fairly large improvement of the control 

performance is acquired by the use of the optimal control policy which takes the 

interposition of the computing time delay into account. 

In Fig. 3 is shown the degree of improvement of the control performance which 

is defined by 

Example 2 

Duration of control interval , N 

Fig. 3. Percent ratio control performance improvement in 
Example l. 

The second example is a very special one which satisfies (5.2) in the previous 

section. 

Consider a system similar to that of Example 1. 
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Y; =X; 

N 

W = 2] (xd-x1)
2 

i=l 

81 

(6. 25) 

(6. 26) 

where xd is a given constant (desired signal) and t 1 is the same as in Example 1. 

The parameter a is again an unknown constant with the a priori probability density 

of (6.4). Corresponding to (6.7) and (6.8), we get . 
_ v1 _ 1 (x1 -u;_1) + rem;_ 1 m,--~-~~-~-~ 

v;_i+ve 
(6. 27) 

v;-1 ve 
V; =~~~ 

v;-1 + ve 
(6. 28) 

and so 9J; is represented by three values x1 , m;, and v1 • 

Functional equations (6.9) and (6.17) are, therefore, available also to this 

problem. 

Firstly, for the case of no computing time delay, we get from (6.9) 

(6. 29) 

Secondly, for the case of one computing time delay, from (6.17) 

(6. 30) 

By the use of (6.27) and (6.28), the above equation can be written as 

(i = 2, 3, ···, N) 

As can be seen from (6.31), nu;!1 has in this example a form which does not 

contain u;_ 2 as a variable. So we can predict that {Nu1_1} may coincide with 

{nu1! 1}, that is, there is a possibility for Case D and Case N to give the same 

control performance. Indeed from (6.29) 

(6. 32) 

and so 

(i = 2, 3, ··· , N) . (6. 33) 

If we take nU0 * = Nuo, Case D and Case N really show the same control performance. 

Here, we must note that, when xd takes a different value for each stage, (6.33) is 

po longer satisfied, 
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7. Conclusions 

In this paper we have discussed the problem of obtaining the optimal control 

policy for adaptive control processes in the case where certain computing time 

delay is assumed in advance. Functional equations to get such optimal control 

policy have been derived in a fairly general form by regarding the problem from 

the viewpoint of available information or data for the calculation of each control 

signal. 

It has been shown that these equations can also be applied to deterministic 

control processes as well as stochastic ones. 

The authors wish to express their thanks to Dr. T. Ono and Mr. K. Inoue 

of the Kyoto University for their usuful advice. 

References 

I) R. Bellman: Adaptive Control Processes; A Guided Tour, Princeton Univ. Press, N.J. (1961). 
2) Y. Sawaragi and K. Inoue: A Fundamental Study on the Computing Time Delay in Computer 

Control Systems, Tech. Reps. of the Eng. Res. Inst., Kyoto Univ., Report No. 131 (1967). 
3) M. Aoki: Optimal Control of Partially Observable Markovian Systems, J. Franklin Inst., 

Vol. 280, No. 5, 367/386 (1965). 
4) J.J. Florentin: Partial Observability and Optimal Control, J. Electr. Contr., Vol. 13, No. 3, 

263/279 (1963). 

Appendix 

In this appendix, we will consider deterministic control processes with com­

puting time delay. For deterministic control processes whose characteristics are 

known perfectly, (4.4) can be simplified as follows. It is sufficient to consider only 

the value of X; as the information .fD;, and the operation of statistical expectation 

E{ • I •} can be taken off. Therefore, 

vF;*(u;-2, U;-3, .•• 'ui-1-s, X;-,-s) 

= min {W/+vF;!,(u;-i, U;_ 2, ···, U;_ 8 , X;_ 8 )}, 

. ";-1 

(i = s+l, s+2, •··, N) 

DFNt1(uN-1' UN-2, .•. 'UN-s, XN-s) = 0 

where W/ denotes W; expressed by variables u;_ 1 , U;_ 2 , ···, u;-,-s, and X;_,_ 8 • 

From (A. 1) we get 

(A. 2) 

As an example, let us consider a system described by the linear difference 

equation 
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under a quadratic criterion function 

(A. 4) 

where X; and U; are n- and r-dimensional column vectors, </J; and G; are n X n 
and n X r matrixes respectively, and Q; and R; are n X n and r X r positive semi­

definite symmetrical matrixes respectively. Especially RN is assumed positive 

definite. The subscript T denotes transpose of vector or matrix. 

This problem has been solved in reference [2] using a little different method. 

It will be shown that the solution by the method developed in this paper agrees with 

that of[2]. 

Let us express X; by variables U; _ 1 , U; _ 2 , • .. , U;-s and X;-s; 

X; = (/)i-1Xi-1+G;-1Ui-1 

= (/) i-1 ( (/) i-2X;-2+ci-2 U;-2) +c i-1 U;-1 

Denoting X; given in (A.5) by X(i, s); 

we get 

and W; is expressed by U;_ 11 U;_ 2 , ···, U;_ 1_s and X;_ 1 _., 

W; = X;TQ;x;+u;!.1 R,u;_ 1 

{ (/)i-1 X(i- I, s) +c,-1 U;-1} TQ_;{</Ji-1 X(i- I, s) +ci-1 U;-1} 

+u;!.1 R 1u;_ 1 • 

Now let us solve (A. I). Assume that vF;* and vu;!1 have the forms 

(A. 5) 

(A. 6) 

(A. 7) 

(A. 8) 

nF;* = xr(i-I, s)P;_ 1X(i-I, s) (A. 9) 

vu,!1 = D;_ 1 X(i-I, s) (A. 10) 

where P;_1 and D;_1 are n X n and r X r matrixes respectively. Using (A.8) and 

(A.9), (A.I) can be rewritten as 

nF;* = min {XT(i-1, s)L1 ,;_ 1 X(i-l, s) 
";-1 

+2u1!.1L2,;_1X(i-l, s)+u;!.1(L3,1_1+R1)u1_1}, (A, 11) 
where 
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L1,i-1 = 0l:1(P,+Q,)0,_1 

L2,i-1 = G,:1(P,+Q,)0,_1 

L3,i-1 = G/_1(P,+Q,)G,_1. 

nu;'.1:1 = -(L3,,-1+R,)-1L2,i-1X(i-l, s) 

nF,* = xr(i-I, s)(L1,,_1+L[,_p,_1)X(i-I, s). 

Then D,_ 1 and P,_1 must have the form 

D,_1 = -(L3,,-1+R,)-1L2,i-1 

Pi_, = L1,,-1+L'f.,-1D,_1 

in order to satisfy (A.9), (A.IO), and (A.13). 

Summing up the result, optimal control is 

(i = s+I, s+2, ···, N) 

where 
i-2 i-2 1-2 

X(i-I, s) = { II 0,.}x,_ 1 _s+ ~ { II 0JG,.u,. 
k=i-1-s k=i-1-s j=J,+1 

and the feedback matrix D,_1 is calculated recursively by 

L1,i-1 = 0,:1(P,+Q,)0,_1 

L2,,-1 = G,:1(P,+Q,)0H 

Ls,i-1 = G,:1(P,+Q,)GH 

D,_1 = -(Ls.,-1+R,)-1L2,i-1 

P;-1 = L1,,-1+L[,-1D,_1 

under the terminal condition 

(A. 12) 1 

(A. 12)2 

(A. 12) 3 

(A. 15) 

(A. 16) 

(A. 17)1 

(A. 17)2 

(A. 17)3 

(A. 17) 4 

(A.17) 5 

(A. 18) 

Especially for s= l, that is, for the case where the computing time delay is one 

sampling period, 

(A. 19) 

This result, (A.15),...,(A.19), agrees with that of reference [2]. 




