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Control System Synthesis by Sensitivity Considerations 

By 

Yoshikazu SAWARAGI*, Koichi INOUE* and Ko AsAI* 

(Received June 27, 1967) 

The purpose of this paper is to provide a new open-loop control system synthesis 
method by active use of the system sensitivity. 

The concept of the combined system is, at first, introduced, which consists of both the 
originally given model of a physical system and its sensitivity model. Secondly, the 
controllability of it is analysed, where some interesting properties of the combined system 
constrollability are made clear. Thirdly, based on these controllability analyses, the 
method of the sensitivity synthesis is developed in the minimum energy problem with 
terminal constraints from the view point of making the terminal constraints more rigid 
against parameter perturbations. Several simple examples are given to illustrate the 
effectiveness of the present method. Finally, it is suggested that the undesirable effects of 
the existing slight nonlinearity neglected at the stage of modeling can be diminished in 
the same manner. 

1. Introduction 

Despite the rapid development in the theory of optimum control system 

design, the applications of it to practical systems seem to have been stagnant at 

some points. This is mainly because of such a basic assumption usually made in the 

study of optimum control systems that the system to be controlled is known exactly. 

This is, of course, often a gross idealization. Even a small difference, due to inade­

quacy of identification methods and change of parameter etc., between a given 

physical system and its mathematical model quite often results in degradation of 

the performance from its optimum value, or violations of given constraints on 

states or control variables. A good engineering design must, thus, take such effects 

into account. 

From this point of view, P. Dorato1
) pointed out for the first time the impor­

tance of analysing parameter perturbation effects on the performance index in 

nominal optimum systems and this was soon followed and extended by B. Pagurek2
) 

in the case of a linear plant with quadratic performance criteria. The effect of 

erroneous estimate of the initial conditions on state variables to the performance 
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index was discussed by J. Clark3
). The sensitivity problem of specified terminal 

conditions to system parameter variations in optimum systems is also examined by 

J. Holtzman and S. Horing4
). The above mentioned works are widely called 

sensitivity ana?Jsis in optimum systems. 

On the other hand, another use of the sensitivity theory to synthesize the least 

sensitive control was introduced by M. Gavrilovic and P. Petrovic5
\ which we 

may call sensitivity synthesis. The work by W. Tuel, Jr. et al6
) belongs to the same 

category. 

In this paper, we expand in detail the concept of sensitivity in the synthesis of 

optimum control in the case of the minimum energy problem of a linear plant with 

terminal constraints. At first, we examine the controllability of the combined 

system which consists of the model of a given physical system and its sensitivity 

model. This is fundamental in the later synthesis. The synthesis problem of 

minimum energy control with zero sensitive terminal constraints is, then, discussed 

and simple examples of it are shown to demonstrate the superiority of the present 

method to the conventional one. At last, a suggestion is made that in an analogous 

way we can take the effects of slight nonlinearity into consideration, which are 

often englected in modeling process. 

2. Basic Concepts 

As the model of an original or a physical system to be controlled, consider the 

system of the differential equation; 

dx ) ~- = f(t, x, q, u(t) , 
dt 

(2-1) 

where x=col (xi, x2 , ···, xn) is the state vector of the system, U=col (uu u2 , ···, um) 
is the control vector and q=col (q1 , q2 , ···, q,) is the constant system parameter 

vector. 

Based on Eq. (2-1), the optimum control u*(t), which satisfies the given 

constraints, has been investigated up to now. Unfortunately, in actual practice, 

the value of the system parameter q in Eq. (2-1) seldom corresponds to the actual 

value of q. This is due to such things as the inadequacy of identification or 

modeling methods, component inaccuracies, environmental effects, aging, etc. 

Suppose, then, that the actual system may have a different parameter value 

q+.Jo from q used in the model equation (2-1), that is, 

dx -=f(t, x, q+.dq, u(t)), x(t0 )=x0
• 

dt 
(2-2) 
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The difference between the model state x(t, q) in Eq. (2-1) and the actual 

state x(t, q+Jq) in Eq. (2-2) is formally expressed by 

Jx(t, Jq) =x(t, q+Jq)-x(t, q) 

= iJ ,y(t)Jq,+o[(Jq) 2
], 

i=l 
(2-3) 

by use of a Taylor series expansion, where the first order sensitivity vector with 

respect to q, is defined to be 

,y(t)= ox(t, q) J 

oq, Jro 
(i=l, 2, ···, r). (2-4) 

Under suitable conditions7
) on the vector function f(t, x, q, u), roughly speaking, 

of of the continuity off, - and ~ -y(t) becomes the solution of the differential 
ox oq'' 

equation 

d,y = of(t, x, q, u) ;Y + o~(t, x, q, u) 
dt ox oq, (i=l, 2, ... , r), (2-5) 

with initial condition 

(i=l, 2, ... , r). (2-6) 

This is widely called the parameter sensitivity equation. 

Regarding the initial condition x0 as parameter, we can derive analogous 

equation as follows; 

where 

Jx(t, Jx0
) =x(t, x 0 +Jx0)-x(t, x 0

) 

= iJ ,z(t)Jx;°+o[(Jx0
)

2
], 

i=l 

(i=l, 2, ... , n). 

,z(t) becomes the solution of a set of differential equations 

d,z _ of(t, x, q, u) ---~~~~,z 
dt ox (i=l, 2, ... , n), 

with initial condition 

(i,j=l, 2, ... , n). 

(2-7) 

(2-8) 

(2-9) 

(2-10) 

From Eqs. (2-3) and (2-5) or Eqs. (2-7) and (2-9) effects of both parameter and 

initial condition perturbations on actual system state are able to be approximately 
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analysed, provided that the nominal optimum control is given based on the system 

model ofEq. (2-1). This lays the foundation of sensitiviry anarysis in optimum system. 

Going a step further, on the other hand, consider the model equation (2-1) and 

its parameter sensitivity equation (2-5) simultaneously 

{ 

dx=f(t,x,q,u(t)) 
dt 

d;y=a'·,·Y+a, (" l 2 ) z,= , , ···, r , 
dt ax aq; 

(2-11) 

or the model equation (2-1) and the sensitivity equation (2-9) to its initial condi­

tion perturbations 

1 

dx - =f(t, x, q, u(t)) 
dt 

d-z a, . -• = - • •Z (z=l 2 ··· n) 
dt ax ' ' ' ' ' 

(2-12) 

then it may be recognized that there is the possibility to control not only the origi­

nal model but also its sensitivity by properly chosen control u(t). That is, we 

can take perturbation effects into consideration at the initial stage of synthesis. 

This is the basis of sensitivity synthesis to small parameter or initial condition pertur­

bations. 

As a matter of fact, can we really control both the given model and its sensi­

tivity model at the same time by properly choosing control u(t)? To answer this 

question, we must examine the controllability of the combined system expressed 

by Eq. (2-11) or (2-12). 

3. Controllability of Combined System 

Before entering into our controllability problems in hand, let us slightly refer to 

the meaning of controllability and its condition8
). Generally speaking, if it is 

possible to drive a system from its initial state to the origin in some finite time, we say 

the system is completely controllable, or simply, controllable. 

For a linear time-invariant system; 

dx =Jl,x(t) +!Bu(t) , 
dt 

(3-1) 

where JI, and 93 are n X n and n X m constant matrices respectively, the control­

lability condition is stated as follows; the system (3-1) is completely controllable if 

and only if the rank of G is n, where the n x nm matrix G is defined by 
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G=[!B, Jl,!B, Jl,2!B, ... , Jl,"!B, ... , J1,n-1!B]. (3-2) 

We should notice here that if the rank of G-matrix is less than n, say k( <n), the 

system is not controllable as stated above in the whole space x, but is able to be 

controllable in the properly chosen (less than k-dimensional) subspace. 

As the original system to be controlled, we assume a linear time-invariant 

system described by 

dx =Ax(t) +Bu(t) , 
dt 

(3-3) 

where A=[a;1] and B=[h;1] are nxn and nxm constant matrices respectively. 

At first, we examine the case where one element a;1 in the coefficient matrix 

A is changeable. (Hereafter we shall focuss our attention on only one parameter 

variation for simplicity.) The sensitivity equation due to deviation of a;1 is ex­

pressed, from Eq. (2-5), by 

diJy 
dt=A•;1u+E;1•x, (3-4) 

where ;iY= 8x/8a;1 is the sensitivity vector with respect to a;1 and the matrix E;1 

denotes 

j 
I 

-]' E,,~ [ i (3-5) 
z 1 

I 

namely E;1 has the unity value in i, j-component and otherwise zeros. The com­

bined system is, thus, written as 

d I x l = I A, O l I x I + I B I u 
dt ;1Y E;1, A iJY 0 

(3-6) 

In this case, G-matrix is reducible to the following 2n X 2nm matrix after some mani­

pulations; 

B, AB , ···, A"B 
(3-7) 

We can conclude, therefore, that if and only if the rank of G-matrix described by 

Eq. (3-7) is 2n, the combined system (3-6) is controllable in the whole space (x, 

11Y)-
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Secondly, we turn our attention to another case where the parameter b,1 in 

the coefficient matrix B is changeable. In this case, as the sensitivity equation, we 

have 

(3-8) 

where ,iY=8x/8b,1. The combined system is, thus, written by 

d l x l = [ A, 0 l ( x l + I B ) u 
dt ,1Y 0, A ,1Y E,1 ' 

(3-9) 

then G-matrix of this combined system (3-9) is given by 

(3-10) 

The controllability of the combined system (3-9) depends on the rank of this G­

matrix. 

Thirdly, let us examine the controllability of the combined system which consists 

of the original system described by Eq. (3-3) and its sensitivity equations with 

respect to the initial condition x0
• Corresponding to Eq. (2-9), the sensitivity 

equation with respect to one initial condition x,° is given by 

d-z -' =A•,z(t). 
dt 

(3-11) 

It is immediately concluded that the combined system is not controllable in any 

larger dimensional space than the original one (x) by reason of the complete 

separation of Eq. (3-11) from Eq. (3-3). But this is not generally the case in a 

nonlinear original system. 

In order to derive more concrete and meaningful results, let us pay special 

attention to a particular form of model equation (3-3), that is, 

X1 = 0 I 0 ............ 0 X1 + 0 u 

~2 0 I X2 0 

d 
.• 

.• (3-12) dt 0 

0 ............... 0 I 0 

Xn au a2 , ···, at,,, ••. ' an Xn b (b=l=O) . 
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This is of the simplest form in the controllable systems. 

Let G., denote G-matrix associated with the combined system where the 

sensitivity equation with respect to the parameter a-. (1,1=1, 2, ···, n) in Eq. (3-12) 

is taken into consideration. After some calculations, we can find G., to be 

0 

G.,= 

1 ltn ....... .. 
(3-13) 

0 

(1,1=1, 2, ... , n), 

where for i=l, 2, ... , n-1 

0t;=O, ,.t;=1o-1ti+1 (k~l), (3-14) 

• 
otn= 1, ,.tn= ~a,• ,._,t, (k~ 1), (3-15) 

/=l 

and 
i 

s0=l, S;= ~ 1,tn•i-J,tn 
b=O 

(i~ 1). (3-16) 

It is immediately concluded from the form of G., that the combined system with 

respect to the parameter a-. is controllable in the subspace-(x, .,y1, -.Y2 , ... , -.Yn-v+1). 

(-.Y; denotes i-th component of the sensitivity vector -.Y with respect to a.,). On the 

other hand, the controllability in the whole space-(x, -.Y) is reduced to the examina­

tion of the following determinant; 

1,1 

S1 ........................ Sn-1 

1 v-1S1 • .. v-1Sn-v+1 

J.1-1 

J.1-1 (13-17) 
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where 

(3-18) 

Another combined system to be examined is the one with respect to the para-

meter b. In this case Gb-matrix is given by 

0, a1nb, af;;b, al_!9'-1J b 

0, a2nb, af;;b, a~!9'-1) b 

0, an-1nb, a~~1.,.b, a~~:;;.1) b 

Gb= 
b, annb, a;;lb, a~n-1) b 

(3-19) 
0, a1n a<2) a<2n-l) 

ln, ln 

0, a2n a<2J 
2n, 

a<2n-1J 
2n 

0, an-1n, ~~1 .. , ~2n-l) 
-ln 

I, ann, a<2) 

"'" 
~-1) 

where aw denotes i, j-component of the matrix Ak. 

From Eq. (3-19), it is soon found that the combined system is not controllable 

in any space larger than x-space. 

Example-I First-Order Original System 

Consider a first-order original system given by 

dx 
~ =ax(t) +bu(t) , 
dt 

and its sensitivity equation with respect to a; 

d,:i{ =a• 0 y(t)+x(t), 

then the determinant I Ga I of the combined system is given by 

o, b 

(3-20) 

(3-21) 

(3-22) 

The combined system with respect to a is controllable in the whole space-(x, 0 y). 

Example-2 Second-Order Original System 

Consider a second-order original system described by 
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(3-23) 

and its sensitivity equations with respect to the parameter a2 ; 

(3-24) 

where 2y 1 -=8x1/8a2 and 2y 2 -=8x2/8a2• The determinant IG2 I of the combined 

system is given by 

(3-25) 

It can be found, therefore, that the combined system is controllable in the whole 

space-(xu x2 , 2Yu 2y2) if and only if a1 =t=O. It can easily be checked, however, that 

the combined system is controllable in the subspace-(xi, x2, 2y 1) irrespective of the 

value of a1• 

It is also easily be checked that the combined system with respect to the para­

meter a1 is, in any case, controllable in the whole space-(xu x2, 1Yu 1y 2). 

4. Minimum. Energy Problem. with Terminal Constraints 

To demonstrate the effectiveness of the sensitivity synthesis method, we con­

sider the minimum energy problem with terminal constraints as a typical example. 

An assumption is made that the combined system is controllable so that the 

solution should exist uniquely. 

4.1. Conventional design and sensitivity of terminal constraints 

to parameter variations 

Let us assume the original controlled system to be 

dx =Ax(t) +Bu(t), x(O) =X0
• 

dt 
(4-1) 

In a conventional sense, the minimum energy problem with terminal constraints 

is stated as follows: Determine the control u(t) that 

(i) satisfies the terminal constraint; 
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x(T)=xr, 

(ii) minimizes the energy cost functional; 

I fr 
J(u) =2 Jo u' Rudt, 

497 

(4--2) 

(4--3) 

where Tis a given final time, xT is a given desired final state and R is a positive 

definite matrix. 

To this problem, we can immediately obtain the optimum control as9
) 

u*(t)=-W 1B'p(t), (4-4) 

where p(t) is the adjoint vector for x(t) determined by the canonical equation 

d [ X l = [A, Ml [ X l 
dt p 0, -A' p , M=-BR- 1B', 

(4--5) 

with two boundary conditions; 

(4--6) 

Let ?Jf(t) be the fundamental matrix of the homogeneous part ofEq. (4--l) and 

B 1(t) be 

8 1(t)= ~: ?Jf- 1(-r)M?Jf1-1(-r)d-r, 

then u*(t) given by Eq. (4-4) is reduced to 

u*(t)=-W1B?Jf1-1(t)p, 

where 

The optimum trajectory is 

(4--7) 

(4--8) 

(4--9) 

Let us call the control given by Eq. (4--8) conventional optimum control. As seen 

in the above development, the conventional optimum control is obtained based only 

on the original system. 

In this type of problem, it is often very important to analyse how the condition 

(i) is violated by the parameter perturbations. Then, let us next estimate the 

variation of the state at the final time T from its desired value xr induced by the 

parameter perturbation Lla;; or L1b;1. The sensitivity equation with respect to a;1 
in A is given by Eq. (3-4) i 
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Integrating Eq. (4--11) after the substitution ofEq. (4-10), we have 

where 

8 2(t)= ~: !f/-1(-r)E,/P'(-r)d-r, 

B21(t) = !: !f/-1(-r)E,;!f!(-r)B1(-r)d-r • 

(4--11) 

(4--12) 

(4--13) 

(4--14) 

From Eq. (2-3), as the variation of the state at the time T, we have approximately, 

LlAx(T)~ ~ ;;Y(T)Lla,;, 
;, j 

(4--15) 

under the assumption that Lla,; is small enough. 

In a similar manner, for the perturbations Llb,; in B, we have 

( 4--16) 

where ,;Y(t) is obtained from Eq. (3-8). 

If these variations are estimated to be large, we possibly lose the chief design 

objective. Then, another new design concept is required. 

Example-3 

Let us consider, for example, the problem to minimize 

for the model system described by the scalar linear differential equation 

dx 
- =ax(t)+bu(t), x(O)=x0

, 

dt 

(4--17) 

(4--18) 

with the terminal constraint x( T) =XT. The conventional optimum control 

u*(t) and its response x*(t) are given by 

T 0..aT 
*(t)_ax -xi: -at u - ----e , 

b sinhaT 

x*(t) = xT sinh at-x0 sinh a(t- T) . 
sinh aT 

(4-19) 

( 4--20) 

On the other hand, the sensitivity function with respect to a is given by 
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(4-21) 

In Fig. 1, a nominal optimum trajectory by the conventional method and 

two perturbed trajectories by the variation Ja are shown. It can be seen that 

the estimated trajectroies by Eq. (4-15) coincide well with the actual ones in case 

of the small variation Ja. 

------ estimated 

-- actual 

00~--o~.2---o~.-4---o~.6---o~.-e--~,.o 

t -

Fig. I. The nominal optimum and perturbed trajectories 
by the conventional method. 

4.2. New design: Sensitivity synthesis 

It has been already pointed out in s~ction 2 that we have a possibility to 

control both the model and its sensitivity with respect to the parameters, and in 

section 3 that the combined system becomes, in fact, controllable in some cases. 

Thus, the new synthesis concept is straightforward; the variation of the terminal 

constraints due to a certain variation Ja,; is approximated to be J,;X( T) =,;Y(T) • 
Ja,;, then it is very desirable to choose such a control u(t) that it should satisfy 

;;Y( T) =0, which is always possible for the controllable combined system. From 

this point of view, the minimum energy problem with terminal constraints is, then, 

restated as follows: 

For the controllable combined system; 

d I x I = I A, 0 11 x ) + I B) u [ x(O) l = I xo l 
dt ,;Y E;;, A ,1y O , ,,y(O) .0 , 

(4-22) 
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choose the optimum control u(t) that 

(i ') satisfies the terminal constraints; 

x(T)=xT and l/y(T)=O, 

(ii) minimizes the energy cost functional; 

1 iT 1 J=- uRudt. 
2 0 

(4-23) 

(4-24) 

The solution of this problem is obtained in a similar manner as in section 4.1. 

to be 

(4-25) 

by solving the following system of the canonical equations; 

X = A M X ( x(O) ) ( x
0 

) 

d 11Y E,1 A ,1Y ,1y(O) = 0 

dt -A' -E,1 
(4-26) 

p p 
( x(T) ) ( xT) 

,jq -A' ijq ' ,1y(T) = 0 , 

where the constant vectors p and i-,1 are the solutions of the terminal condition 

equations 

and 

[ 
B1(T), -B12 (T) l [ p l = [ ?Jl'-

1

(T)xT -x
0 l 

B21(T), -B212(T) i-,1 B 2(T)x0 
, 

B212 (t) = t ?Jl'-1(-r)E,1?Jl'('r)B12 (-r)dr:, 

B2(t)=~:?Jl''(-r)E,1?Jl''-1(-r)dr:. 

The new nominal optimum responses are given by 

x*(t) =?Jl'(t) {x0+B1(t)p-S12(t)i-,1} , 

,1y*(t) =?Jl'(t) {B2(t)x0+B21(t)p-S212 (t)i-,1}. 

E:xample-4 · 

(4-27) 

(4-28) 

(4-29) 

(4-30) 

(4-31) 

(4-32) 

Let us introduce the sensitivity aspect into the same problem discussed in the 
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previous example-3. The combined system with respect to the parameter a is given 

by 

\ 

dx =ax(t) +bu(t), x(0) =x0
• 

dt 

day =a• 0 y(t) +x(t), 
0
y(0) =0, 

dt 

which is already shown to be controllable in example- I. 

(4-33) 

By minimizing the energy cost (4-17) under the newly added constraint 

0 y( T) =0, we have 

0
y*(t) =x0te°t _ __l!_ {(2at-1)e"t+e-at}P+~ 

8~ 8~ 

X {(at-l)e"t+(at+I)e-at}Q,, (4-36) 

where the constants are 

I 
P1 =-{e'1PT-2aT(aT+1)-1}, 

a 

(4-37) 

(4-38) 

P2= _!_ {(aT-l)e"T +(aT+I)e-aT}, 
a 

(4-39) 

(4-40) 

In Fig. 2, nominal optimum trajectories by the new method are shown, where 

the perturbed trajectories pass through the hatched areas for I.Jal /Jal~ 10%. From 

Fig. 2, we can see clearly the superiority of the new design method to the conven­

tional one. (It should be noticed here that the differences between the nominal 

and the perturbed trajectories are multiplied by IO for the visual perspicuity.) 
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10.2 ----

x I 

lo.2 1-----1'ic\--1-~~~~ 

X 

0 a;-: 

-o.2~

1

---1' '* 
-0.4 ~ 

I 

i 

l Nrw d
1

eeigi 
-o.s ~•'---...l._--'--P~ 

(bl a:I 

- 1.0 -

Fig. 2. The comparison of the conventional design method 
and the new one with 0y(l)=O. 

If we wish to make the terminal constraint x( T) =xT more rigid, we must take 

higher sensitivity equations into consideration. 

The combined system with both the first- and the second-order sensitivity 

equations is given by 

X -[ :: d Cl~y 
dt 

(2~y 0, 

0, 0 X 

0, 0 (l~y 

2, a (2~y 
+[ff [ 

x(O) 

(l~y(0) 

c2~y(0) 

(4-41) 

81x 
where "~y=- (i=l,2). It is easily checked that the combined system (4-41) is 

8a1 

controllable. 

Minimization of the energy cost ( 4-17) under one more constraint <2~y( T) =0 

gives 

(4-42) 
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x*(t) =e°tX + !t_e-atp_!t_ (2at+ l)e-01Q 
4a 8a2 

+ !!_ {2at(at+I)+I}e-01R, 
8a3 

<l~y* (t) = e°tc1)y +te-''X-!t_e-atp+ }t_ (at+ 1 )e-atQ 
8a2 8a3 

_ _j!__ {2(at+l)2 + l}e-0 'R, 
16a' 

<2~y(t) =e°' .c2)y +2te°' .c1)y +t2e°t X + :;
3
e-atp 

- ~ (2at+3)e- 0 'Q + }t_ {(at+I)(at+2) + l}e-0 'R, 
16a' 8a5 
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(4-43) 

(4-44) 

(4-45) 

where the constants are determined by the following 6-dimensional matrix equa-

tion 

I, o, 0, b' b' b' 
X x' 

4a ' -·aaz' Ba' 

0, I, 0, b' b' t 3b' cny 0 -8a2 ' 8a3
' 16a'· 

0, O, I, b' 3b' 3b' (2)y 0 aa•' -16a'; Ba' 

tf'T, 0, O, !!...a-•T, b' ~ {2aT(aT+1)+1},-•T -
84

,(2aT+1),-•T, p XT 
4a Ba' 

Ttf'T, tf'T 
' 

0 -~e-•T 
' 8a2 

' 
~,(aT+l)•-•T·, _..£_ {2(aT+l)'+W•T 

16a' 
Q 0 

T'.-.T, 2 Tt!'T, .. T, bi -aT 
8a31 , 

b' b' 
-

164
,(2aT+3),-•T, Ba'{(aT+l)(aT+2)+1},-•T R 0 

Table I. The numerical comparison of the variations of the terminal 
constraint x'I.' =0 and the energy consumption. 

a Method y(l) .4a x(l) Energy 

Conv. -.303 X 10-2 -.233 X 10-2 .454x 10-3 

-5 New I 0 -.422 X 10-3 .374x 10-1 

New2 0 - .517 

Conv. -.242 X 10- 1 -.227x 10- 1 .313 

-1 New 1 0 -.425x 10-3 .227x 10 

New2 0 - .626x 10 
--·· 

Conv. .093 .100 .231 X 10 

1 New 1 0 .160x 10-2 .627 X 10 

New2 0 .106 X 10-4 .123xl02 

Conv. .705x 10 .116x 102 .100 X 102 

5 New 1 0 .545 .200x 102 

New2 0 .231 X 10-1 .305 X 102 

New 1; New design with .y(l) =0, New 2; with <1iy(l) =<2iy(l) =0. 

(4-46) 
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Fig. 3 shows the nominal optimum and the perturbed trajectories by the new 

design method taking sensitivity equations up to second order into consideration. 

The detailed variations of x at the final time T= 1 from its desired value xT =0 

are listed in Tab. 1. 

Example-6 

1.0 1.0 

0.8 0.8 

0.6 0.6 

0.4 0.4 

10.2 lo.2 
X X 

-1.0 

Fig. 3. The comparison of the conventional design method 

and the new one with CtJy(l) =C2b(I) =0. 

The addition of extra constraints aY( T) =0 or both 0 ~y( T) =0 and <
2~y( T) 

=0 results in a smaller terminal constraint error, but unfortunately in more 

energy consumption as seen in Tab. I. To compromise, therefore, the increase 

of the energy consumption and the decrease of the terminal constraint error is 

another way of the sensitivity synthesis. This can clearly be accomplished by 

modifying the performance index ( 4-1 7) into 

(4-47) 

instead of adding extra constriaint aY( T) =0 in the combined system (4-33). In 

Eq. (4-47), w1 and w2 are possitive weight constants. 
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In this case, we obtain 

where 

I P1=- {e2"T -2aT(aT+I)-I +w}, 
a 

P2=_!__ {(aT-I)e"T +(aT + I-w)e-aT} , 
a 

(4-48) 

(4-49) 

(4-50) 

(4-51) 

(4-52) 

(4-53) 

(4-54) 

Fig. 4 illustrates the relation between the energy consumtpion and the terminal 

sensitivity value in the same system considered in Ex.-4. 

I 02 r------.-------r-------,----, I 02 

a=5 

--J(ul 
------ aY (I) 

16a w,+wa; I 163 1~0~2 __ J10··•-w-, _ _..i. ___ 1~0---.J102 

w. -
Fig. 4. The relation between the energy consumption and 

the final sensitivity. 
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4.3. Extended effectiveness of sensitivity considerations 

In the preceding paragraphs, our attentions are focussed on the effect caused 

by the parameter variation. Here, let us point out that we can, in like manner, 

devise a counterplot against the effect caused by existing slight nonlinearity 

which is consciously or unconsciously neglected in the stage of modeling. 

We often establish a simplified model 

dx - =f(t, x, q), x(t0) =x0
, 

dt 
(4-55) 

by neglecting the existing small e(t, Xp) in the real system 

(4-56) 

Our first interest is to evaluate the difference between x(t) and Xp(t). Making 

assumptions that 

(l") f d . d . . a f d ar . . 1 d d . . ( an its envat1ves - an - are contmuous m a c ose oma1n m t, ax aq 
x, q)-space, and 

(ii) there exists a positive constant vector iJ such that 

overt E [O, T], where II • II denotes a element-wise norm, 

we obtain the meaningful inequality 

(Osts T), 

where K1 and K 2 are some constants. 

(4-57) 

(4-58) 

By displacing iJ to Jq appearing in previous sections, Eq. (4-58) suggests that 

the difference llxp-xll is almost less than llquall whereqyis the sensitivity matrix 

for the system ( 4-55) with respect to q. Hence, the parammeter sensitivity syn­

thesis method may be valid as a compensation for the simplifying loss which occurs 

in neglecting the slight nonlinear properties of the original. 

Example-7 

Let us consider the combined system which consists of the simplified linear 

model; 

dx 
- =ax(t) +bu(t), x(O) =x0

, 

at 
(4-59) 

for the given nonlinear system; 
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dx a - =ax(t) +ex (t) +bu(t), x(0) =x, 
dt 

and the sensitivity model of Eq. (4-59); 

day =a• 
0
y(t) +x(t) . 

dt 

507 

(4-60) 

(4-61) 

The optimum control which satisfies the same task in Ex.-4 is given by Eq. (4-34). 

In Fig. 5, we can see that the newly designed control achieves more successfully 

the task, while the conventional control based only on Eq. (4-59) does not. Re­

writing Eq. (4-60) to 

dx _.2 -=(a+ex (t))x(t)+bu(t), 
dt 

we can make clear the appropriateness of their results in Fig. 5. 

0.8 

0.4 

0.2 

1 
X 

0 

-0.2 

Convention al 
d•~ion 

1 

' - j -

(a) a =-I (b) a=I 

1.0 ,---,---,---,----, 

0.8 

0_6 

0.4 

0.2 

1 
X 

0 

-0.2 

(c) a:5 
-0.6 

-0.8 

Fig. 5. The applicability of the present method to the samll 
nonlinear perturbation. (Deviations are multiplied 
by 10 in (a).) 

5. Conclusions 

(4-62) 

The major purpose of this paper is to provide a buffer between the mathematical 
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development and the engineering one in the open-loop control system design. We 

pointed out the importance of introducing sensitivity functions as new state variables 

in the system design process. Then, we were concerned with the controllability of 

the combined system which consists of the original and its sensitivity model. 

Though our attentions were restricted only on linear original systems, some interest­

ing controllability properties of the combined system were made clear. 

After these fundamental considerations on the controllability, we introduced 

the concept of sensitivity synthesis into the minimum energy problem with terminal 

constraints. Several worked examples were given to demonstrate the superiority 

of the present method to the conventional one against the change or uncertainty of 

the system parameters. We also showed that in a certain case, the undesirable 

effect caused by the existing small nonlinearity which is often neglected at the 

stage of modeling was diminished by similar considerations. 

We believe that when the engineers try to design the optimum control system 

for a given physical system, not for the model of it, the introduction of the sensitivity 

concept in the initial stage of design will become more and more important. 

All numerical calculations were carried out at Kyoto University Computing 

Center by the KDC-II Computer. 
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