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Nonlinear Compensation of Two-Dimensional Contouring 
Servomechanism 

By 

Yoshikazu SAWARAGI*, Hajime AKASHI**, Minoru TERAISHI* 

and Takehito FUKUDA* 

(Received June 30, 1966) 

This paper gives a method of nonlinear compensation for a two-dimensional 
contouring servomechanism, by which the cornering error, or the transient error at the 
corner of a figure being traced, is held within given tolerance. 

The effect of compensation is analyzed by graphical means, using the result of 
model experiment and the parameters are determined so as to obtain the desirable 
performance. 

Stability analysis of the system is also given utilizing the describing function 
method. The result is applied to an actual automatic flame cutting machine and the 
practicability is proved. 

1. Introduction 

Various attempts have been made by many authors to study the effect of 

inserting nonlinear elements to compensate the effects of other inherent non­

linearities, or to obtain a better performance than would be achieved utilizing 

linear elements1
). In view of application, it is particularly interesting to investigate 

the way of compensating backlash, because it is a common nonlinearity in many 
servomechanisms. 

For example, C.N. Shen intentionally incorporated a second nonlinearity, a 

dead zone, in the input to the integrator in order to stabilize a second-order servo­

mechanism with backlash for small signals2). Unfortunately, however, this dead 

zone introduces offset, and so another nonlinearity, a saturable velocity feedback, 

was also incorporated in the error signal. In this way, he succeeded in sta­

bilizing the system under step input as well as eliminating excessive error under 

ramp input3
). A. K. Mahalanabis also investigated the effects of coulomb 

friction in feedback systems having backlash and revealed that this friction 

has beneficial effects on stability4
). On the other hand, C.N. Shen & H. Wang 

dealt with dry friction and used a dead zone before the integrator to decrease 

* Department of Applied Mathematics and Physics. 
** Department of Mechanical Engineering, Doshisha University. 
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the steady--state error at high ramp rates and to achieve stability5
). 

, In the above-mentioned studies, the authors aim primarily at stabilizing systems 

by introducing intentionally nonlinear compensation. The problem that we are 

concerned with, however, is the achievement of the best performance in both the 

transient and equilibrium state. In view of this fact, we have devoted ourselves to 

the improvement of the transient response of a nonlinear servomechanism having 

three inherent nonlinearities. 

The practical problem treated in this paper is to examine the transient error 

at a corner formed by two perpendicularly intersecting straight lines of a two­

dimensional nonlinear contouring servomechanism consisting of two one-dimensio­

nal servomechanisms with identical characteristics. 

We will first define the overshooting error following a ramp input and then 

propose a nonlinear compensation such that the overshooting errors for various ramp 

rates are held within a given tolerable value. Since entirely analytical investigation 

of the effect of compensation is difficult, we chose a comparatively simple method 

of determining an optimal nonlinearity based upon experimental results using a 

model and the inverse describing function. 

2. Overshooting Error 

With respect to the two-dimensional contouring servomechanism, F.J. Ellert6
), 

H.E. Vigour7
), and others have made interesting studies. With their results in 

mind, we will discuss the problems encountered in the design of a two-dimensional 

servomechanism. 

Here we treat the case in which a prescribed figure is traced by a two-dimensio­

nal nonlinear contouring servomechanism, which, as its name implies, consists of 

two nonlinear servomechanisms positioned along two mutually perpendicular 

machine axes which we shall call X-and Y-axis. 

In practice, two-dimensional contouring systems are used to move a tool, 

such as milling cutter, lathe tool, drafting pen, or the burner of an automatic flame 

cutting machine. 

Now, to make the problem tractable, it is assumed that the two servomecha­

nisms treated are identical, because they are mostly of the same general type in 

practical cases and can reasonably be assumed to be so if they are not. The block 

diagram of the system is given in Fig. 1. 

Of various possible figures to be traced which may consist of straight lines, 

circular arcs, and other curves, we treat here the portion composed of two straight 

line segments intersecting at an angle as shown in Fig. 2. The choice is due to 
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Fig. 1. Block diagram of the nonlinear servomechanism. 

practical reasons that the curved figures 

may often be broken up into a series of 

straight lines and machine parts often 

have corners. In this figure, B represents 

a corner, the line segment AB runs 

parallel to the X-axis and the line seg­

ment BC cuts the X-axis at an angle ©. 

When a curve ABC is traced by a 

two-dimensional contouring system with 

a constant feed rate, there will be over­

shoot or undershoot errors at the corner. 

To decrease such errors, we should de­

crease the error of the servomechanism 

A 

0 

V 

B 

Fig. 2. A corner. 

C 

X 

along X- and Y-axis, since the two servomechanisms are mechanically independent. 

Suppose that such an apparatus moves at an angle (/) with the direction of 

the X-axis. Let the feed rate be V, then the feed rate components of the X-axis 

and Y-axis, V x and Vy, are given by 

V x = V cos (/) , Vy = V sin (/) . (1) 

Thus when the apparatus tracks ABC, it moves first on the line AB with the 

feed rate components Vx= V and Vy=O, and then the feed rate components change 

to Vx= V cos©, and Vy= V sin©. On the line BC, the same feed rate will be 

maintained. 

Generally speaking, the overshoot will be in proportion to the derivative of the 

feed rate. Since the derivative of V at a corner has the maximum value when 

<1)=90° (0<<J):a;;;90°), the value of the overshoot will be the maximum when the 
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corner is right-angled. The definition of the overshooting error E
0 

and undershoot­

ing error Eu are given in Fig. 3 (a) and Fig. 3 (b). 

The typical transient response to a ramp rate input is shown in Fig. 4. The 

y 

0 

y 
C 

I 
I 
I 
I 
I 
\ 

Eo_ 

C 

' \ 
I ,_ 
I _____ _,_.,..,/ 

A A B 

X 0 
(a) ( b) 

Fig. 3. (a) Undershooting error. (b) Overshooting error. 

X 

Eo 
l ------

0 

Fig. 4. Typical overshooting error E0 following a ramp 
input. 

X 

overshooting error E
0 

here is evidently equal to the overshooting error in Fig. 3 (a). 

The maximum overshooting error for varied ramp inputs is denoted by Eomax· 

The problem may now be stated as follows: In order to decrease the overshoot­

ing error E
0 

so that it is within a given tolerance for any ramp input, find an appro­

priate compensation network for this servomechanism. 

3. Linear Compensation Device 

In this section we will describe how the overshooting error may be reduced to 

some extent by introducing a conventional linear compensation involving CR-lead 

network in cascade to the system. The result, however, can never meet our require-
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ments. Therefore, we devote the next section to the analysis of the case where an 

intentionally nonlinear element is employed to obtain satisfactory results. 

Since the servomechanism treated here involves essentially three types of 

nonlinearities, a dead zone in the pre-amplifier, saturation in the magnetic ampli­

fier, and backlash in gear trains, it is difficult to examine entirely analytically the 

effects of compensation devices. 

In this study, therefore, they are examined by experiments of a model and an 

analog computer. 

3.1. Proportional plus derivative compensation device 

First, we employed a series compensation, proportional plus derivative element 

1 +-1:s. The compensation device is represented by the transfer function G c(s) in 

. Fig. 1. The result of the experiments using an analog computer shows that, for 

the constant ramp rate, the overshooting error E 0 decreases as the value of JC is 

increased. 

The same result was obtained by the experiments using a model. The over­

shooting error, however, may be decreased only to a certain extent by increasing 

the value of .1:, because the system becomes unstable or oscillatory when JC is 

made excessively large. 

It becomes necessary, therefore, to introduce still another component. If the 

forward phase shift is introduced at the frequency where the system would oscillate, 

the stability of the system would be guaranteed. Hence the CR-phase lead network 

was introduced in cascade with the derivative element JCS, 

3.2. Insertion of the CR-phase lead network 

In place of the above-mentioned com­

pensation, however, we actually used ano-

ther compensation including CR-phase lead 

KS 
a(Ts+I) 

aTs+I 

+ es 
+-

CR-ph(Jse~ad 
c1rcu1t 

network as shown in Fig. 5. As the result 

of similar experiments, we could determine 

the value of a and T of the CR-phase lead 

network such that the phase shift is positive 

at the frequency where the system would 

oscillate, and select the optimal value of JC 

such that the overshooting error E
0 

is zero 

Fig. 5. Configuration of the linear eom­
pensation network with a CR-phase­
lead circuit. 

for a certain ramp rate r
0

• For ramp rates over r0, we had an overshoot and for 

ramp rates less than r
0 

we had an undershoot. The stability of the system was 

assured. Experimental results using a model are shown in Fig. 6. 
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Fig. 6. Experimental plots of Eomax vs JC with the value of the ramp rate as a parameter for 
the compensation network as shown in Fig. 2. 

Although linear compensation techniques presented in this section do give 

improved performance, the introduction of certain nonlinear elements into a 

control system can do better by simpler, smaller, and more economical elements for 

the compensation of inherent nonlinearities0
). 

Therefore, in the following section, introdution of a simple nonlinearity will 

be proposed. 

4. Analysis of the Nonlinear Compensation Device 

In general, saturation in amplifiers, backlash in gear trains, and a dead zone 

or coulomb friction in motors are typical inherent nonlinearities which are present 

a priori in any practical servo systems. An example of intentional nonlinearity if 

a nonlinearly damped system which optimizes the response under the given condi­

tion. The on-off relay servo, which applies full torque as soon as the error exceeds 

a specified value, is another example of an intentionally nonlinear system9
). 

Usually, nonlinearities may be intentionally introduced into control systems 

for three basic reasons8
) : 

1) to make the system simpler, more economical, and smaller; 

2) to compensate for inherent nonlinearities; 

3) to "optimize" system performance. 
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The purpose of this section is to introuduce an intentional nonlinear compen­

sation device and to indicate that the compensation technique used in our study 

meets our requirements, that is, whatever the rate of ramp input, the maximum 

overshooting error Eomax should be held within a given tolerable value. 

4,1. Relation between " and r 
In the previous section the effect of a compensation device consisting of a 

linear element only was discussed using experimental results of a model and an 

analog computer. As was pointed out in the discussion, however, a satisfactory 

result was not obtained. 

It is evident from the result that the maximum overshooting error Eomax is a 

certain function of JC, with a ramp rate as a parameter. 

Therefore we define 

( 2) 

where </J is a function of JC and r is a parameter. It is convenient to assume that 

</J is given in the form of a graph or a set of data points rather than an analytically 

expressed function. 

We aim to hold E
0 

within a given tolerance regardless of the value of ramp 

rate. 

Now let a given tolerance by o. Setting Eomax= o in Eq. (2), we obtain 

the relation between JC and r: 

JC= 1/f(r; o) ( 3) 

where 1/f is a function of r and o is a parameter. Thus the problem reduces to 

the determination of the proper nonlinearity such that the equivalent gain JC 

changes according to the functional relation 1/f(r; o). 

4.2. Inverse describing function10) 

The problem now may be stated as follows. Given an equivalent gain char­

acteristic, what is a single-valued symmetrical nonlinearity that has this gain? 

In general, there are two methods to find the answer. The first is the 

representation of a nonlinear input-output relationship by a polynomial and the 

second is a piecewise-linear approximation. 

Many physical nonlinearities are best approximated by a polynomial. Let 

us consider here the general symmetrical single-valued nonlinearity given by two 

kinds of representation, power series and Fourier sine series. 

The general form of the nonlinearity is given by 

z =J(y) ( 4) 



Nonlinear Compensation of Two-Dimenswnal Contouring Servomechanism 449 

where the output z is a symmetrical single-valued function of the input y. (See 

Fig. 7) 

Y--+i f(y) 1---- z 

Fig. 7. Symmetrical single-valued 
nonlinearity f (y). 

For symmetrical single-valued nonlinearities there 1s no phase shift m the 

functional relation, and thus the equivalent gain N(M) is given by 

N(M) = n-1- I~ f(Msin 0) sin Odo 

where M is the input-signal amplitude. 

(a) Development of nonlinear function f(y) in power series 

Let the input-output characteristics be P(y), where, 

f(y) = P(y) = a1y+aaya+ ... +a2n-1Yn-1 • 

Substituting Eq. (6) into Eq. (5), we have, 

N (M) = - a (M sin 0) 2n- 1 sin OdO } I2
"' 

n tcM 
O 

211-1 

where 

Now we use the following trigonometric function formula 

. 1 1t-1 (2k-l) . . · 
sm2k- 1 0 = 22,._ 2 ~o (-l)mH- 1 m sm{(2k-2m-l)O}. 

We have 

x+n:"' cos{(2k-2m-2)0}d0-r' cos{(2k~2m)O}d0] 

- 1 (2k-l) Af2k-2 
- 22•-2 k-1 a21,-1 . 

Thus 

N(M) - ~ 1 (2k-l)M2•-2 - {=j_ 221,-2 k-1 a2,.-1. 

( 5) 

( 6) 

( 7) 

( 8) 

( 9) 

(10) 
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Given M,and N(M1), where i= 1, 2, 3, ••. , n, Eq. (10) can be considered as an 

n X n linear simultaneous equation with regard to a2_._1 and the coefficients of the 

series P(y) may be determined. 

(b) Development of nonlinear functionf(y) in Fourier sine series 

Now let us approximate the input-output characteristic by Fourier sine series, 

S(y), where, 

f(y) = S(y) = b1 siny+b2 sin 2y+•··+b,. sin ny. 

Substituting Eq. (11) into Eq. (5), we have, 

N,.(M) = n'~ r• b,. sin (nM sin 0) sin Odo 

where 

Here we utilized the following formula 

00 

sin (/3 sin 0) = 2 "'_E f 2m+1 (/3) sin { (2m+ l )O} 
m-o 

where 

_ 
00 

( - } ) I ( /3 )21+r 
J,.(/3) - f-t l!(l+r) ! 2 

( the Bessel function of order r). 

We then obtain the following relation. 

. 2b ~2.,. 00 

N_.(M) = M• °".El2m+1(kM) sin{(2m+l)O}sin Odo 
7t' o m-o 

b 
00 [~2.,. ~2.,. ] = M• °".Ef2m+/kM) cos (2mO)dO- cos{(2m+I)O}d0 

1t m=-o o o 

= ~ J1(kM). 

Thus 
_ n oo (-l)lk2l-lb_.(M)21-2 

N(M) - ~ ~ l!(l-1) ! 2 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Given M, and N(M1), where i=l, 2, 3, ..• , n, Eq. (16) can be considered as an 

n X n linear simultaneous equation with regard to b _.. Solving this equation, the 

coefficients of the series S(y) may be determined. 

In these procedures, we have the following three steps: 

Step (I) Obtain the relation Eomax=0(,c; r) (graphically) 



Step (II) 

Step (III) 
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Obtain the relation ,c=7Jl'(r; a) (graphically) 

Given Eq. (10) or Eq. (16), solve these equations 

using Step (II) and determine the input-output characteristics. 

4.3. Exam.pies 

451 

Before finding out the desirable nonlinearity, let us considerinsomewhatmore 

detail a polynomial approximation of given equivalent gain plots. 

Consider two symmetrical, single-valued nonlinearities, saturation and dead 

zone, shown in Figs. 8 and 9 respectively. Assume that the equivalent gain of the 

nonlinearity is given as plotted in Fig. 10 .. 

output output 

0 input input 

Fig. 8. Nonlinear characteristic 
of saturation. 

Fig. 9. Nonlinear characteristic 
of dead zone. 

z 

o.e r~--'<--t-----+--+-----+------1 

0.6 >----+--,,--+----+--+-----< 

- 0.4 r---+---+-,._...+-----------+----< 

0 0.2 0.4 0.6 0.8 1.0 

VM 
Fig. IO. Normalized describing function 

for saturation. 

Now we find the expression for the nonlinearity. Using a digital computer, 

we solve Eq. (10) or Eq. (16) for any given Mand n. The experimental results are 

shown in Fig. 11 and Fig. 12. The former is the representation of the first non­

linearity by a power series and the latter by a Fourier sine series. 

The results exactly meet our expectations: the first has been recognized as 
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f(y)=0.963y+0.252y3 f(y) 
-0.170y~0-209y7 + 0-167y 
-Q.04lyllf.0.OQ3y13 

-2 -I 

-, 

Fig. 11. Graph off(y). 

f(y)=2.50lsiny-2.877sin2y+2.0231i~ 
-I.I02sin4y+0.539&in5y f(y) 
-o.oe&siney+0.003sin7y 

1 

-2 

Fig. 12. Graph of f(y). 

I. 0 1-----,----,-------,---,-~ 

Q.81---+---t--------t-r-r----i 

zo.s 
o.41----+---+--+----+---t------i 

0.2 "-+t---t--------t---;------i 

0 0.2 0.4 0.6 0.8 1.0 

1/M 

Fig. 13. Normalized describing function 
for a dead zone. 

2 y 

2 'I 
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saturation. Similarly, the second nonlinearity, the equivalent gain curve of which 

is shown in Fig. 13, can be obtained and recognized as the dead zone, as shown in 

Fig. 14 and 15. 

f(y)=-0.100y..,.0.035y~0.103y5+0.066y7 

-0.067yt0.017y1~0.001yl3 
f(y) 

-2 -I 0 

-1 

Fig. 14. Graph of f(y). 

f(y) =0.275sill)'+0.072sin2y-O.167sin31 
+o.029sin4y+0.194sin5y 
-0.012sin6y+0.0002sin7y f(y) 

-t 

Fig. 15. Graph of f(y). 

2 y 

From these examples, we can see that the two nonlinearities can be practically 

approximated by a polynomial. We have here two problems. Firstly, what is 

the appropriate number of terms that should give satisfactory approximation? We 

must make use of a digital computer to answer this and determine experimentally 

the desirable number of terms. Secondly, we do not know which data to choose. 

This problem must also be solved by means of a digital computer. In practice we 

vary the number of terms n from 5 to 12 and selcet just as many data as the number 

of terms. 
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By the calcuiation using the digital computer, we found that for n=7, a good 

representation can be realized }both by a power series and a Fourier sine series. 

Comparing these two representations, we see that for the same number of terms, the 

latter gives better results than the former. This appears to be due to the weighting 

effect of the error of the approximation. 

4.4. Application 

We will now show that the output 

of the derivative element ,cs is in propor-

tion to the ramp rate. As the input to 

the system is a ramp input, its response 

is as illustrated in Fig. 16 (a). This is 

easily verified by analog computer. E
0 

is the transient error, or the overshoot­

ing error previously defined. The input 

to the derivative element ,cs is the steady­

state error ec and the shape is as shown 
in Fig. 16 (b). Hence, the output of the 

derivative element can be approximated 

by a pulse whose magnitude is in pro­

portion to the ramp rate. Fig. 16 (c) 

illustrates this fact. 

Taking account of this, we now 

employ the inverse describing function 

method for the determination of the 

nonlinearity that should satisfy our re­

quirements. 

Step (I) 

([) ( ,c; r) is given in the form of a set 

of data points shown in Fig. 6, where 

l( 

Input j/Eo 

'- I 

" I 
I (a) I 
I 

' I I Output: , 
----- ------i---1- -

0 I I 
I I t 

ec I I 
I l 
I I 
I I 
I I· ( b) I I 
I I 
I I 
I I 

I 

Fig. 16. Typical transient response of servo-
systems following a ramp input. 

(a) Relation between input and output. 
(b) Error. 
(c) Error rate. 

E
0 

max is in degrees, and the parameter is the ramp rate in degrees per second. 

Step (II) 

In order to obtain the relationship ~(r; o), put o=2° or o=3°, where o is 

in terms of the angular difference of the two synchros. Then, from Fig. 6, <I>(r; o) 

is obtained as shown in Fig. I 7. 

Step (III) 

As mentioned before, r corresponds to Mand ,c to N(M). Substituting these 

values into Eq. (10) or Eq. (16), the input-output characteristics can be obtained. 
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-- Experimental EomaX=,0 

----- Equivalent gain t "- -~--__ 1.0 
from Eq. ( 2) ')< 

0 5 ,,,,yc-
· 1· y~ 

/,f 
Q L ______ L_---'Y"---

1
' ____ ---.LJ -----• 

0 50 100 
Ramp rate (deg/sec) 

Fig. 17. Relation between ,c and ramp rate with Eomax as a 
parameter. 

Here note that then equations should determine then a2,._/s or b,.'s. 

455 

We now choose n=7 and l=B using the results obtained from examples in the 

previous section. Solving Eq. (IO) and Eq. (16), the coefficients are determined, 

and then the desirable nonlinearity is obtained as follows: 

or 

f(y) = -0.13ly-0.008y3+0.096y5 +0.106y7-0.040y9 +0.00ly11 +0.0004y13
, 

f(y) = 2.001 siny-l.801 sin ~+0.716 sin 3y-0.307 sin 4y+0.150 sin 5y 

-0.016 sin 6y+0.001 sin 7y. 

Fig. 18 and Fig. 19 illustrate these results. As we have expected, the functions 

f(y) have the input-output characteristics similar to those for a dead zone. It is 
therefore reasonable to introduce a dead zone following the derivative element ,cs. 

f(y)o:-0.131y-0.008y3+0.096y5+0.106y7 
-0.040y9+0.00ly11 f(y) 
+0.0004y13 

-2 0 2 y 

-I 

Fig. 18 (a) 
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t(y)=-o.234y ... o.1ooy3+0.254y~+oI45y1 

-0.185y9+0.052y1Lo.oo5y'3 I 
f(y) 

_, 

(b) 

Fig. 18. Graph of f(y). 

f(y)c200lsiny-t.80lsin2y+0716eill3Y 
-0.307sin4y+0.150sin 5y f(y) 
-O.Ol6sin &/ +- O.OOlsin 7y 

I 

-2 -I 0 

-I 

(a) 

f(y)=2.06lsiny-2.258sin2y+IA40sin3y 
-0.798sin4y+0.384sin5y f(y) 
-0.04lsin6y +0O02sin7y 

-2 

(b) 

Fig. 19. Graph off(y). 

2 y 

2 y 
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Such a nonlinear compensation is illus­

trated in Fig. 20. 

457 

Satisfactory results are in fact obtained 

from experiments using a model in which 

the nonlinear compensation with a dead zone 

is inserted in this way. The results are 

shown in Fig. 21 and this serves our primary 

purpose. 

Fig. 20. Nonlinear compensation net­
work with dead zone. 

,.... 
Cl 
Q) 

"CJ 

110 
0 

w 
... 
0 ... ... 
Q) 

Cl 
C 

g 5 

~ 
~ 
0 

§ 
E 

Ramp rate 
, 170 deg/sec 

120 I/ 

0 85 I/ . 70 I/ 

1 0 --- -i,:_---_-_______ _::_ ___ ' ~---i_:_~ ==fr=====+=====·:._ __ 
0 ~ 0.5 1.0 1.5 2.0 

K 

Figs. 21. Experimental plots of E0 max vs It: with the value of the ramp rate as a parameter 
for the compensation network as shown in Fig. 20. 

5. Stability Analysis 

There are a number of methods available to check the stability of systems with 

a nonlinear element. For the systems with more than one nonlinear element, 

however, the analysis is rather complex11
). Only some specific cases have been 

treated in any detail so far. In the system of Fig. 1, we have the three typical 

nonlinear elements. We shall treat this system by the linearization and the de­

scribing function technique and investigate the stability as well as the influence of 

these nonlinearities on the performance of the system. 

5.1. Method of analysis 

In order to investigate the stability of the system, the input is set to zero. The 
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dead zone inherent to pre-amplifier may then be transferred to the position follow­

ing that of the backlash of the gear. Namely, these two elements are put together 

and the describing function of the combined element, N(O), is obtained where 0 

is the amplitude of input to the backlash element. There is another nonlinear 

element, the saturation, in the magnetic amplifier circuit in the minor loop. The 

describing function of the saturation element depends only on the input amplitude 

and is independent of the phase. In view of this fact, the saturation element is 

first replaced by a constant gain ct and the stability limit is obtained for this system 

as shown in Fig. 22. Then, the describing function will be introduced and the 

stability of the original system discussed. 

Now the block diatram of Fig. 1 may be simplified to the one shown in Fig. 23. 

Here G(s) and Gc(s) are given by 

9c e 

Fig. 22. Substitution of a linear element 
with simple gain a for the saturation 
characteristic element. 

Fig. 23. Block diagram of the system of 
Fig. 1 for stability analysis. 

G(s) - ctKaKm 
- S { Ta T ms2+ (Ta+ T m)s+ctK0 KmKt + 1} 

(17) 

G (s)= aT.d+a(T+,c)s+l. 
c aTs+l 

(18) 

The characteristic equation of the simplified system of Fig. 23 is given by 

I +Gc(jw)G(jw)N(O) = 0. (19) 

Putting 

Gc(jw)G(jw) = GL(jw), (20) 

we have 

er·)-- 1 
'L,J(J) - N(O) . (21) 

Drawing the vector locus G L (jw) and the amplitude locus N- 1 
( 0) on the gain phase 

plane and by seeing whether these two loci intersect each other, we can investigate 

the stability of the system of Fig. 1. 
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5.2. Gain-phase diagram 

There are two parameters a and IC in the characteristic equation, Eq. (6). 

Fig. 24 shows the group of curves in which IC is kept constant and a is varied as 

20 

15 

0 """'---~-"---'- ' ' _, _ __j_ __ ~ 
-180-175 -170 -165 -160 -155 -150 -145 

Phase angle (deg) 

Fig. 24. Gain-phase diagram for the calculation of critical 
gain curve for .t=0.5. 

the parameter. The values of the various other constants are chosen as follows. 

a=0.36, T=0.022, ad=l.0, a
8
=5.0, Ka=l00.0, Km=60.0, 

Kt=8.35 x 10-s, Ta=0.25, Tm=0.5 

The amplitude loci drawn are for the cases of 2ab = 1 and 2. In Fig. 24, the 

two intersections of the vector locus and the amplitude locus are denoted by P 
1 

and 

P
2

• P
1 

represents a stable limit cycle with (i)
1 

and 0
1

, while P
2 

represents and 

unstable oscillation with (i)
2 

and 0
2

• It is found that the system is stable either 

for 0>0
1 

or for 0<02 whereas it is unstable for 0
2
<0<0

1
, where 0 is the input to 

the nonlinear element N(0). 

It is clear from Fig. 24 that for large a the two loci have intersections. This 

is well anticipated and this means that for a large loop gain of the system it is 

unstable. 

Now ifwe draw a gain-phase diagram as in Fig. 25 and superpose the constant 

IC curve on it, then we can see how the system is stabilized by increasing IC. 
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Fig. 25. Stability analysis with respect to the values of IC 

by using gain-phase diagram (a=l). 

5.3. Critical gain curve (ci-em diagram) 10
) 

It is convenient to use a critidcal gain curve explained in the following to give 

an overall picture of the system stability. Here, IC will be taken as the parameter 

and the relation between a and em will be found. The resulting figure may be 

called a -em curves. 

Ifwe draw gain-phase diagram of Fig. 24 with parameter a, for various values 

of IC, we obtain two intersections P, and P2 for each value of a. We now seek the 

relation between a and em, calculating the input amplitude em by the following 

equation. 

Drawing this relation in a -em curves, we have one curve for a value of 1C. For 

example, the critical gain curve for 1C=0.5 is as shown in Fig. 26. 

Any intersection in the range to the right of the minimum point ( or maximum 

point in Fig. 27) on the critical curve (shown by full line) with the describing 

function curve, will represent a stable limit cycle. On the other hand, any inter­

section on the left side of the minimum point on the critical curve (shown by dotted 

line) will represent an unstable limit cycle. For a given a, then, the portion 
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• Stable limit cycle 

x Unstable limit cycle 

I 
0 ~' ---------~----~-- ---~---~ 

0 5 
em 

10 15 

Fig. 26. Critical value of a vs em with " as a parameter and describing func­
tion for saturation. 

1.0 Describing function for dead zone 
{ K=l , od=I) 

Stobie reoion 
w increases 

__ - Critical - . 
118 increases ga,n 

Unstable region 

10 15 20 
Keo 

25 30 

Fig. 27. Critical value of a' vs e, and describing function for dead zone 
following /CS. 
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within the critical gain curve will represent the region of instability, corresponding 

to the portion between P
2 

and P
1 

in Fig. 24. 

Now, in order to see the stability of the original system with saturation, the 

describing function will be superposed on the a -em curve. If the critical gain 
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curve corresponding to a value of " intersects the describing function curve, the 

point of intersection on the left represents an unstable limit cycle, whereas the point 

on the right represents a stable limit cycle. If there is no intersection, then the 

system is stable. 

Inspecting Fig. 26, we see that the system is stable for larger values of " than 

0.6. A similar procedure yields the result that " should be larger than 0.445 for 

the system with ab =0.5. 

As to the effect of backlash on stability, it is found that" may be taken smaller 

for a smaller backlash and should be taken larger for a larger backlash to assure 

stability. 

It is to be noted that the gain is unity at the point where the critical gain 

curve and the curve for describing fucntion touches each other. Therefore, as far 

as the stability is concerned, the saturation element may be considered as a simple 

linear element with gain unity. 

Now, we replace the dead zone element by a simple gain ct', and using the 

relation between input amplitude 1Cec, we obtain the critical gain curve as shown 

in Fig. 27. If we superpose the describing function of the dead zone, it intersects 

the critical gain curve in the unstable region. Calculation shows that for the width 

of the backlash 2ab= 1, the width of dead zone ad' must be kept below 0.5, and for 

2ab=2, a/ must be less than 0.3. 

6. Conclusion 

A method is presented to determine a desirable nonlinearity to be introduced 

into the system in comparatively simple steps, using experimental results of a model 

and the inverse describing function. 

By using nonlinear compensation network, overshooting error of a two-dimen­

sional contouring servomechanism tracing a corner of a prescribed figure was held 

within an allowable limit. The application of the result of analysis to an automatic 

flame cutting machine gave satisfactory performance. 

With respect to this example, a method is presented of analyzing systems with 

two or more nonlinearities for stability and for the influence on it of the character 

of nonlinear elements. 

Future problems will be to obtain analytically the transient response of non­

linear systems and to apply the result to the synthesis. 
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