
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

Approximate Solution of Optimal
Control Problem by Using Linear
Programming Technique

SAKAWA, Yoshiyuki

SAKAWA, Yoshiyuki. Approximate Solution of Optimal Control Problem by Using Linear
Programming Technique. Memoirs of the Faculty of Engineering, Kyoto University 1964,
26(4): 274-283

1964-10-27

http://hdl.handle.net/2433/280603



Approximate Solution of Optimal Control Problem 
by Using Linear Programming Technique 

By 

Yoshiyuki SAKAWA* 

(Received June 30, 1964) 

This paper treats an approximate solution of optimal control problem by 
means of the linear programming technique. Let the system be linear, then the 
solution of a set of differential equations which governs the system is given by 
the variation-of-constants formula. The state variables of the system at a fixed 
time are described by the definite integral, the integrand of which is a linear 
form in control variables. Upon use of a suitable integration formula, the 
integrals are approximately represented by a weighted sum of a finite number of 
values of the integrand. 

By introducing auxiliary variables, the performance index which is required 
to be minimum is expressed as a linear function of the variables subject to 
constraints. Thus, the minimization of a functional is approximately reduced to 
the minimization of a linear function of many variables subject to linear con­
straints. This problem is a linear programming problem, and can be solved by 
using the simplex method. A feasible basic solution to the linear program is 
shown also. 

1. Introduction 

274 

The structure of optimal control processes is the subject of a great deal 

of current research. The maximum principle1
) formulated by Pontryagin has 

been one of the fundamental results. Since the maximum principle does not 

prescribe the initial conditions for the auxiliary differential equation, a difficulty 

arises if one wishes actually to compute the optimal control. 

This problem was solved by Neustadt2
) for linear control system. Namely, 

he obtained an iterative procedure for computing the initial values of the 

auxiliary adjoint system of differential equations, in the case where the control 

system is linear. Ho3
) presented a successive approximation technique for 

determining an optimal control for the linear time-invariant system. 

This paper presents an approximate method for determining an optimal 
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control by means of the linear programming technique. Zadeh and Whalen'l 

showed that some of the problems of optimal control of discrete-time systems 

can be reduced to linear programming problems. 

This paper essentially follows the results of Zadeh and Whalen4i, but 

treats linear continuous-time systems. The solution of a linear system of 

differential equations which governs the control system is given by the variation­

of-constants formula.si The state variables of the system at a fixed time are 

described by the definite integral, the integrand of which is a linear form in 

control variables. Upon use of a suitable integration formula, the integrals 

are approximately represented by a weighted sum of a finite number of values 

of the integrand. By introducing auxiliary variables, the performance index 

which is required to be minimum is expressed as a linear function of the 

variables subject to constraints. Thus, the minimization of a functional is 

approximately reduced to the minimization of a linear function of many 

variables subject to linear constraints. This problem is a linear programming 

problem, and can be solved by using the simplex method. 

A feasible basic solution to the linear program is shown also. 

2. Problem Formulation 

Consider a linear dynamic system governed by the system of differential 

equations, 

i = 1, ... , n. 

Equation (1) may be rewritten in vector form as 

d~~) = A(t):t:(t)+ B(t)u(t), 

( 1) 

( 2) 

where .x(t) is the state vector of dimension n, u(t) is the control vector of 

dimension r, and A(t) and B(t) are n x n and n x r matrices which are continuous 

in the time t. 
Each component of the control vector u(t) is assumed to be subject to the 

constraint 

-/3 i < U; < r i, 
i = l ,··, r, 

} 
where /3, and r, (i = 1, ... , r) are positive constants. 

( 3) 

In this paper, we consider two classes of optimal control problem, i.e., 
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(P-1) Given initial states x(O)=x0 and a time T, determine the control vector 

u(t), constrained as Eqs. (3), which minimizes the Euclidean norm defined by 

n 
II x(T) II =~I x;(T) I . ( 4) 

i=l 

(P-2) Given initial states x(O)=x0 and a small positive number c, determine 

the control vector u(t) constrained as Eqs. (3), and a minimal time T such that 

II x(T) II< c. ( 5) 

Problem (P-2) is a class of the well-known time optimal problem. If the 

problem (P-1) can be solved, then the problem (P-2) will also be solved by 

solving (P-1) repeatedly for various values of T, and obtaining a dependence 

of llx(T)II on T. For the problem (P-1), it is obvious from physical view-point 

that a minimum exists for any A(t), B(t), and x 0• The same does not hold 

true for the problem (P-2). In fact, it is known that the matrices A(t) and 

B(t) must satisfy certain conditions before (P-2) can be solved for all --~0
• A 

system satisfying such conditions is called controllable.6• 7) 

Assuming an optimum exists for (P--1) and (P-2), the engineer is interested 

in obtaining a numerical solution to the problems for any given initial con­

dition. In the following, we shall show how the problem (P-1) can be reduced 

approximately to a linear programming problem. 

3. Solution of the Fundamental Equation 

Let </J(t) be the fundamental matrix for the homogeneous system 

d~1) = A(t) x(t), ( 6) 

i.e., </J(t) be the n x n matrix function satisfying the equations5
) 

d~}t)_ = A(t)</J(t), </J(O) = E, ( 7) 

where E is an unit matrix. 
The solution of Eq. (2) with initial values x(O) = .x0 is given bys) 

( 8) 

Let 
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and 

'Pn1(t, s)c/Jn/.J, s)•··c/JnnU, s) 
[ 

c/Ju(t, s)c/J12U, s)• .. c/J1nU, s) l j 
<I>(t)<1r1(s) = IJl(t, s) = 'P21~t, s)c/J22(t, s) c/J2n~t, s) 

= [¢i<t, s) ¢it, s) ···¢,nU, s) ] , 

then Eq. (8) can be rewritten as 

The values of the state variables at a fixed time T are given by 

n 
Xk(T) = I:: Cf'k.{T)xi 

i=l 

k = l ,··, n. 
Putting 

u;{t) = V;{t)-Bj, j = 1,··,r, 

( 9) 

(10) 

(12) 

and substituting Eqs. (13) into Eqs. (12) yields (13) 

Xk(T) = ;t Cf'k;(T)xi-f;j_ /ij r {t, b;;{s)cpk,{T, s)}ds } 

+ t,r {tibij(s)cpk,{T, s)} V;{s)ds, (l
4

) 

k = 1,-··, n. 

The constraints (3) are rewritten, in terms of the variables V/s, as 

O<Vi<(/ij+rj), j=l,··,r. (15) 

Introducing new notations, we define as follows : 

(16) 

k = 1 ,. .. , n, j = 1 ,.. ·, r. 

Since the functions (f!k,{t) and 'Pki(t, s) (k, i=l ,···, n) are known, just defined 
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functions gk(T) and /k,{T, s) are known functions respectively. Upon use of 

the just defined new notations, Eqs. (14) can be rewritten as 

(17) 

In the case where A is a constant matrix, the fundamental matrix for 

Eq. (6) is given by5
) 

<JJ(t) = etA • (18) 

We can determine the elements cp;;(t) (i, j=l , ... , n) of the matrix </J(t) by using 

Sylvester expansion theorem.8
) The theorem states that if the eigenvalues 

l 1 , J2 , • • ·, J,. of the matrix A are distinct, then 

(19) 

where Eis the unit matrix. Under the same assumption that A is a constant 

matrix, the matrix 'Jl(t, s) defined by Eq. (10) is expressed as 

'Jl(t, s) = ect-s)A = <JJ(t-s). (20) 

Hence, 
i,j=l,··,n. (21) 

4. Reduction to a Linear Programming Problem 

As stated in (P-1), the performance index which is required to be minimum 

is taken as 

" \\ x(T) \\ = :E I x,{T) I • 
i=l 

This is a functional of the functions V1{t) (O<t< T, j=l , .. , r). Hence, the 

problem consists in the minimization of the functional. We can replace 

approximately the minimization of the functional by the minimization of a 

function of many variables as we shall state in the following. 

The approximate integration formula using a finite number of values of 

the integrand is applied to the definite integral in the right-hand side of 

Eqs. (17). It may be the trapezoidal formula, or Simpson's composite formula, 

or Gaussian integration formula.9
) After applying a numerical integration 

formula, Eqs. (17) are expressed as 
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(22) 
k=l,··,n. 

where c;s are the weights assigned to the values of the integrand at the 

points s,, and N is a number of terms. The values of sv's and the weights 

c;s are known in each integration formula. For example, in the trapezoidal 

formula we have 

v-1 
Sv=N_1 T, v = 1,··, N, 

Ci= CN = 1/2(N-1), 

C2 = C3 =···= CN-1 = l/(N-1). 

In the Simpson's composite formula, we have 

v-1 
Sv=N_1 T, v= 1,···,N, 

Ci= CN = 1/3(N-1), 

C2 = C4 =···= CN-1 = 4/3(N-l), 

C3 =Cs=···= CN-2 = 2/3(N-1), 

where N must be an odd number. 

l 

l 
In Eqs. (22), we further define the following notations : 

Tcvfkj(T, Sv) = ak, Cj-1)N+v(T), 

V,{s,) = Vcj-1)N+v. 

Then Eqs. (22) can be rewritten as 

rN 
xk(T) ~ gk(T)+ I:: a,.,<T)v,, 

i=l 

k = 1, ... , n, 

} 

} 

(23) 

(23/ 

(24) 

(25) 

where gk(T) and a,.,<T) are the known constants for a given T. Equations 

(25) are linear forms in the variables v/s (i=l ,···, rN). The constraints (15) are 

rewritten as 

0 < Vcj-1W+v < (fi j+T j)' 

j = 1,···,r, v = 1,-··, N. } (26) 

In view of Eqs. (4) and (25), our purpose is to determine the variables 

v, (i=l ,···, rN) which minimize the performance index 

n I rN I J(v, T) = E,
1 

gk(T)+ ~ ak,{T)v, . (27) 
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This problem can be reduced to a linear programming problem as follows.') 

Let introduce 2n non-negative auxiliary variables w,. and z,. (k=l ,··, n) 

such that 

where 

rN 
g,.+ :E a1,;V; = 01,(z,.-wk), 

i=l 

Ok= { +l, if gk>O, 
-1, if gk<O, 

zk > 0, w,. > 0, k = 1 , ... , n. 
l (28) 

The minimization of Eq. (27) under the constraints (26) is equivalent to the 

minimization of 

(29) 

under the constraints (26) and (28). Because for any v/s the minimum value 
of Eq. (29) is attained by setting, 

w,. = 0, if g,.>0} rN 

l 
z,. = 0, if 

and gk+ :E ak;V; > 0, 
gk<O i=l 

Zk = 0, if g,.>O} rN (30) 
and g,.+ :E a1,;V; < 0, 

Wk= 0, if g,.<O i=l 

k = 1, ... ,n. 
rN 

Namely, according to the signs of gk and gk+ :E ak;v,, one of the variables zk 
;=1 

and wk vanishes. Thus, we have 

minf(v, T) = fm(T) = min Q. (31) 
V 

By introducing slack variables10
) y/s (j=l , .. ,, rN), the constraints (26) are 

expressed as 

v;+Y;=K-;, v;>O, Y;>O, 

l 
j = 1, .. ·,rN, 

where ,r,; = /31 +r1 (j = 1, .. ·,N), (32) 
,r,; ~ /32+r2 (j = N+1, .. ·,2N), 

K-; = /3,,+r,. (j = (r-l)N+l, .. ·,rN). 

Thus, the minimization of Eq. (27) is reduced to the minimization of Eq. 

(29) under the constraints: 
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rN 

- {d okak;V;-Wk = lgkl , } 

Yi + Vi = tci 

zk, wk, Yi, v;>O, 

k = 1,-··, n, j = 1,-··, rN. 

(33) 

This is a linear programming problem. In view of Eqs. (33), an initial 

basic feasible solution'0) to the linear program can be chosen as 

Vi= Wk= 0, 

Zk= lgkl, Yi=tci, I 
k = 1,-· ·, n, j = 1 ,- ··, rN. 

(34) 

Using the simplex method for linear programming and starting with the basic 

feasible solution (34), we can attain the optimal feasible solution in a finite 

number of iterations. 

Expressing the performance index Q in terms of the non-basic variables10
) 

vi and Wk (j = 1, ···, rN, k= 1 ,-··, n) yields 

n rN n n 
Q. = ~ lgkl + ~ ( ~ okak;)v;+2 ~Wk. (35) 

k=l j=l k=l k=I 

Equations (33) and (35) are the canonical form'0) in the linear program, where 

the simplex method can be applied directly. 

5. Solution of Time Optimal Problem (P-2) 

If we solve the problem (P-1) repeatedly for various values of T and 

obtain a dependence of II x(T) II on T, then we can solve the problem (P-2) 

for an arbitrary value of 1;, provided that the solution exists. 

Let JT be a small positive number, then 

n 
J m( T + ,1 T) = min]( v, T + ,1 T) ~ min ~ Ix;( T + ,1 T) I 

V i=l 
n 

~min~ lx,{T)+(dx;/dt)TJT I. l (36) 

j=l 

If we can choose a control vector u(T), subject to the constrains (3), such that 

x;(T) and (dx;/dt)r take an opposite sign to each other for all i's (i=l ,-··, n) and 

for arbitrary T>O, i.e., such that 

x;(T)t~a;j(T)xj(T)+J:b;k(T)uk(T)}<o, l 
i = l,···,n, T>O, 

then in view of Eqs. (36) we obtain 

(37) 
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n 
lm(T+.JT)< min~ lx;(T)I ~Jm(T). (38) 

i=l 

Eq. (38) means that fm(T) is a monotone decreasing function of T. When the 

values of x/s (i=l ,-··, n) are comparatively small, Eqs. (37) will hold in usual 
cases. 

Let the matrix A be constant, and all eigenvalues ,l/s (i=l , .. , n) of the 

matrix A be real, non-positive, and distinct. Then upon use of a suitable 

linear transformation (for example Lurie's transformation11)), Eqs. (1) can be 

transformed into the canonical form 

(39) 

i = 1,-··, n. 

Since ,l/s are the non-negative values, setting uk=O (k=l ,-··, r) in Eqs. (39) 

yields 

x,{dx;/dt) = ,l;x/ < 0, 
i = 1,. .. , n. } 

Therefore, in this case J m( T) is a monotone decreasing function. 

(40) 

Assuming that fm(T) is a monotone decreasing function, we can obtain 

the minimum value T1 of the time which satisfies 

by starting with a suitable value Ti(< T 1) and iterating the computations of 

the linear program for the successive values of T given by 

.JT l T,,+i = T,,+fm(T,,) fm(T,,)-fm(T,,+.JT)' 

II = 1, 2 ,··, 

(41) 

until T1 is found. The above-mentioned procedure is due to the Newton's 

iterative method. Thus, we can obtain the approximate minimum time T1 

and the sampled data v; (i=l ,-··, rN) of the optimal control functions which 
transfer x 0 to the e-neighbourhood of the origin of the state space. 

6. Conclusions 

We showed that the optimal control problem in linear system can be 

reduced to the linear programming problem. An initial basic feasible solution 

of the linear program is shown also. We can obtain an accurate solution to 

the problem if we increase the number N of the terms in the numerical inter­

gration formula. 
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The simplex method for the solution of linear programming problems is 

a powerful algorithm which is fit for machine computation. The iterative 

procedure for solving the time optimal problem ( P-2) is suitable for high 

speed digital computers. 
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