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Temperature Distribution of the Bed during the 
Second Falling Rate Period of Drying 

By 

Ryozo ToEI* and Shinya HAYASHI* 

(Received April 18, 1964) 

The temperature distribution of the bed of the granular materials at drying 
during the second falling rate period was calculated by the analytical solution 
of the equation of heat conduction. The equation of heat conduction during the 
second falling rate period became the differential equations with moving boundary. 
The heat-balance integral method was applied to solve this problem which con­
sists of a variable heat flux at surface. The calculated results by the analytical 
solution were displayed and compared with the numerical solution and also with 
the experimental ones. 

1. Introduction 

The drying mechanism for the second falling rate period of drying of the 

bed of the granular materials was investigated in our previous report1J. The 

drying bed is separated into the dried-up zone and the wetted zone during the 

second falling rate period. The temperature of the boundary plane between 

these two zones remains nearly constant but does increase slightly; therefore 

this boundary plane retreats into the bed with increasing time. The tempera­

ture of the dried-up zone approaches rapidly to the air temperature as shown 

in Fig. 1. 

This plane is considered as the evaporating plane and so evaporation may 

occur mainly at this plane. The asymptotic value of the temperature of the 

boundary plane was defined and analysed1
J. This temperature was named the 

asymptotic temperature, t p • 

It was also observed from the previous experimental moisture distribution 

curves during the second falling rate period that the evaporating plane retreats 

into the bed, keeping a simple geometric pattern of moisture distribution as 
shown schematically in Figs. 2 (a), (b), (c). 

* Department of Chemical Engineering 
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Fig. 1. Experimental temperature distribution curves (Run No. Ac-7, 
Acrican (42~6ot), t0 =71.0°C, H.--,0.0113, V 0 =l.8 m/sec, 
L=0.03 m). 
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Fig. 2. Schematic model of the moisture distribution curves during 
the second falling rate period. 

l 
IX) 

The behavior of the temperature change of the drying bed during the second 

falling rate period can be obtained by solving the equations of heat conduction 

with the moving boundary plane through the bed such as the melting of finite 

slabs. 

A general analytical method which provides an exact solution to such a heat 

conduction problem has not been found. The "heat-balance integral" method 

by Goodman 2• 
3 i is an unique one to get an approximate analytical solution 
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which has been applied successfully to certain such problems. The application 

of this method is restricted to cases of constant heat flux at surface and could 

not be applied to the drying problem. 

The heat-balance integral method is applied to the drying problem in cases 

of variable heat flux at surface, and the temperature distribution in the drying 

bed during the second falling rate period can be calculated by the authors. 

The calculation procedures are presented as following and the calculated 

results are displayed and compared with the experimental ones. 

2. Statement of the Basic Equations 

A drying bed bounded by the planes x=O and x=L as shown in Fig. 3 is 

considered. The interface between the dried-up zone and the wetted zone is 

the evaporating plane and is specified by function 0(8). 

Dried-up 
zone 

11 (X,8) 

.... 
.• . ... ... ... -.· . ... 
·-:!' .... .... 
:•-· L------..s.t..~""-"~..,,..-- •:• 

0 
s-

,__ ________ x 

Fig. 3. Schematic representation of the drying bed 
during the second falling rate period. 

The following heat conduction equations must be satisfied for dried-up zone ; 

for wetted zone ; 

where 

with the boundary conditions ; 

f1 = t p = f2 at X = o 

(1) 

( 2) 

( 3) 

( 4) 
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o O at () 0 

where R is the drying rate. Expression of R is deduced as follows. 

( 5) 

( 6) 

( 7 ) 

The following relation between o and w was deduced geometrically about 

the schematical moisture distributions as shown in Figs. 2. (a), (b) and (c). 

__§_ = 1-(E!.._)'/n 
L Wp 

n = 1 at (a), n = 2 at (b), and n = 3 at (c). 

By the definition of the drying rate R, 

at2 = 0 at x = L ax 

( 8) 

( 9) 

(10) 

To simplify the procedure, the temperature scale is chosen so that the 

temperature of the evaporating plane is zero. So the reduced temperature u, 

and u2 are introduced. 

With the reduced temperature u, eqs. (1)~(8) are rewrit.~n as follows. 

a = o at e ,= o 
u, = uo(= t0 -tp)-= u2 at () = 0 

- ,l ou_1 ~ ,l2 au2 = Rrp at x = o lax ax 

!!-~2 = 0 at x = L ax 

(11) 

( 1 )' 

( 2) 

( 3 )' 

( 4 )' 

( 5 )' 

( 6 )' 

( 7 )' 

(10)' 

The values of hp, which is the heat transfer coefficient at surface during 
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the second falling rate period, can be taken as constant from our experimental 

results and J. 1 which is the effective thermal conductivity of the dried-up zone 

of the bed, is also constant. Furthermore l. 2 which is the effective thermal 

conductivity of the wetted zone of the bed, is a function of moisture content 

but varies slightly in the moisture range of this period, so it can be taken as 

nearly constant also. 

3. Method of Analytical Solution 

The heat-balance integral approximation is now introduced. The tempera­

ture distributions in the drying bed are assumed to be quadratic in x. 

ui(x, O) = A(O)+B(O)x+C(O)x2 

ui(x, O) = A'(O)+ B'(O) x +C'(O) x2 

(12) 

(13) 

The following ordinary differential equations are lead by heat-balance inte­

gral method employing eqs. (l)', (7)', (9)' (10)', (12) and (13). 

(14) 

(15) 

(16) 

with the initial conditions; 

/3(0 = 0) = 0, Mi(O = 0) = 0, M,j_() = 0) = ~u0L (17) 

The quantities M, and M 2 appearing in these equations are defined as 

follows; 

Mi(O) = ): ui(x, O)dx 

Mj()) = ); us(x, ()) dx 

(18) 

(19) 

Despite of the great simplification introduced by the heat-balance integral 

method, a system of three resulting simultaneous ordinary differential equations 

remain nonlinear. 

To solve the equations of this type, it is a standard approach to assume a 

solution in the form of a power series in powers of some small parameters. 

This series is substituted into the ordinary differential equations to obtain the 

equations for the coefficients in the series. 

Before solving the equations, it is expedient to nondimensionalize the equa­

tions introducing the following variables ; 
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0 
a= L 

_ A1.t1M1 
y - A2.t2"oL 

V = M2 
UoL 

and the following dimensionless parameters : 

In terms of the dimensionless quantities, eqs. (17)~(19) take the form; 

with initial conditions, 

(1 )n-1 da + dy + dv _ 2 -a - µ- µ-- µa 
d, d, d, 

a2 dy -- = (aa2 -vy) 
3 d, 

__!_(1-a)2 dv = -v 
3 d, 

a(,= 0) = 0, y(, = 0) = 0, v(, = 0) = -1 

(20) 

(21) 

(22) 

(23) 

(24) 

(25) 

The parameter µ is chosen as the parameter with which the dimensionless 

variables are expanded and the resulting series of solutions are converged, since 

it lies between O and 1. This choice is in debt to Lighthill's method4>. 
So the functions a(,), y(, ), v(,) take the form of expansions. 

a= :E a,{v, ,)µi 
i=O 

y = I:;y,{v, ,)µi (26) 
i=O 

00 

V = I:; V;(v, ,)µi 
i=O 

Substituting these equations into eq. (22)~(24), it is found that the appro­

;x:imations of every order are given by the following first order linear equations, 
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(1- I: a;µi)n-1 :, I: a;µi + µ :, I: y;µi + µ : r I: V;µi = 2µa 

~ { 1:a;µir :, l:y;µi = a{ l:a;µir-J.11:y;µi 

(1- I: a2;µi)2 d " V · ; - - " V · ; 3 dr L.J ,µ - L.J ,µ 

(27) 

In these equations the unknown function u,(0, ()) which must be found is 

included in the term of a. In this case "self consistent method" may be 

employed. 

As the starting function of a, we prefer to take the solution under the 

conditions in which the specific heat of the bed, c p, is negligible small as com­

pared with the latent heat of evaporation, r p• 

After repetition by "self consistent method", the final solution of eq. (27) 

leads to the convergent form as follows. 

(28) 

Gi = -{LJ.1hpua,+(e-3T_l)} 
J.~o 

(29) 

The higher order solutions more than second order are negligible compared 

with the first order one. 

Using eqs. (28) and (29), A(()), B(()), and C(()) in eq. (12) can be obtained as 

follows: 

where 

A(()) = H(()) o-C(())o2 

;., 
(30) 

(31) 

(32) 

(33) 

Substituting eqs. (30)~(32) into eq. (12), the temperature distributions of 

the dried-up zone are calculated. 

The distance of tne evaporating plane from the surface is obtained as 

follows: 

~34) 
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For the wetted zone, the following results are obtained similarly. 

where 

A'(O) = -B'(O)o-C'(O)o2 

B'(O) = -2C'(O)L 

C'(O) = - ~ L2(V:~a) 

4 LhpUa 
V=---

3 A~o 

(35) 

(36) 

(37) 

(38) 

(39) 

Substituting eqs. (35)~(37) into eq. (11), the temperature distributions of the 

wetted zone are calculated. 

4. Numerical Solution 

The accuracy of the above analytical calculated results of eq. (!::!) with eqs. 

(30)~(32) and eq. (13) with eqs. (35) and (36) are examined by comparing with the 

numerical calculation. 

We adopt the generalized numerical method suggested by W. D. Murray 

and F. Landis5
) for our problem. 

It is assumed that the dried-up zone (O<x<o) is divided into equally spaced 

increments of thickness ,frv=o/r, increasing as the evaporating plane retreats. 

Similarly, the wetted zone (o<x<L) is also divided into (N-r) equally spaced 

intervals of thickness Llx,,;=(L-o)/(N-r), decreasing with time. This is illustrated 

in Fig. 4 for the special case of N=2r=8 network intervals. 

When the basic differential equation (1)' and (2)' are written in a difference 

form of eqs. (40) and (41), all terms on the right-hand side should be expressed 

with a consistent approximation. A consistant three-point approximation will 

result in: 

U1Cn, m+1)-U1Cn, m) _ n U1Cn+l• m)-U1Cn-i, m) (Om+1-0m) 
LlO - om 2 JO 

(40) 

U2cn, m+1)-U2(n, m) - N-n U2(n+1• m)-U2(n-1, m) (om+1-0m) 
LlO - L-om 2 JO 

(41) 

where suffixes n and m are corresponded to distance x and time O respectively. 

Twc boundary conditions eqs. (3)' and (10)' become: 
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Fig. 4. Description of variables in numerical method. 

(42) 

(43) 

Eq. (7)' becomes: 

_ L (1-l!"_)l-n{_A1Y!'1Cr-2, m)-4U1(r-1, J1!l 
p/nr pWp L 2am 

-+-J.,/...N-r)U2Cr+2, m)-4U2cr+1o ml} 
2(L-om) 

(44) 

When o=O, some terms of eqs. (40) and (41) become either infinite or in· 

determinate. Therefore, the problem must be started with a small assumed 

intial value 00 , and starting temperature must be assigned to the points in the 

dried-up zone. By the same argument, the solution must be stopped before 

(L-o)=O and the final time period must be extrapolated. 
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In the numerical solution, the choice of the initial distance of evaporating 

plane ll0 will have considerable effect on the solution time required; due to 

Table. 1. 

Run No. I 3-90 I Ac-7 I S-22 

material CaCO3* Acricon** Sand 

L (m) 0.03 0.03 0.03 

p{ (kg/m3 ) 1596 526 1120 

t. (°C) 90.0 71.0 70.3 

hp (kcal/m2• hr. oc) 18.5 5.92 12.8 

tp (°C) 63.6 49.5 50.0 

rp (kcal/kg) 560.5 568 568 

Wp (kg/kg) 0.05 0.116 0.047 

t,.. (°C) 55.1 44.5 46.8 

Ch (kcal/kg. °C) 0.19 0.35 0.19 

-l, (kcal/m.hr. °C) 0.231 0.0996 0.230 

Cp2 (kcal/kg. °C) I cp1 +w 
I 

* fine power of calcium carbonate (ca. lµ) 
** beads of polythylmetaacrylate ( 42~60:;j:) 

65 
-- From analytical solution 

--From nt1merical solution 

60 

50 
0 3 6 'l 12 ·i; 

I" /8 2/ 21/ 21 
X<mml 

Fig. 5. Comparison of the approximated analytical solution 
with the numerical one (Run No. S-22). 

I 
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stability requirements a small initial L10, coresponding to the initial values of 

L1xD, materially increases the solution time for early stages. The computations 

should be carried out with a time interval determined from J!2 =1/5, which 

exceeds the stability criterion and provides improved accuracy. The computa­

tions were carried out with N=2r=8 and L10=1/4hr, and with a starting tem­

perature distribution by the analytical solution at 0=1/4 hr. For the evalution 

of the analytical solution and the numerical solution, the physical constants 

and the boundary conditions summerized in Table 1 were used. Both solutions 

about the Run Number S-22 are shown in Fig. 5. 

The agreement of both calculated results shows the propriety of the analy­

tical solutions. 

5. Comparisons with the Experimental Results 

The calculated results of the temperature of the bed versus time using 
the data in Table 1 are shown in Fig. 6, Fig. 7 and Fig. 8. The experimental 
results of the temperature versus time are shown also in these figurs. 

These are in good agreement. The calculated results of the distance o(0) 
of the evaporating plane from surface versus time are shown in Figs. 9 (1), (2) 

comparing with the experimental ones. 
These are also in good agreement. 
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~ 

'lO 

i------H------,1-------i-------l-------l-----l 8( ,_, 

50 

60 

'IC 

/0 

6 IO 

e [r,] 
Fig. 6. Comparison of the analytical solution with the experimental 

temperature distribution (Run No. Ac-7). 
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Fig. 7. Comparison of the analytical solution with the experimental 
temperature distribution (Run No. 3-90, fine powder of CaCO3 , 

ta=90°C, H.=0.0076, Va=5.58 m/sec, L=0.03 m). 
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Fig. 8. Comparison of the analytical solution with the experimental 
temperature distribution (Run No. S-22, Sand (60~801') 1 
t~=70.3°C, H~=0.0102, Va=4.5 m/sec, L=0.03 m), 
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Fig. 9. Comparison of the calculated values of o(O) vs. 
0 with the experimental ones (1) Run No. Ac-7, 
(2) Run No. 3-90. 
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Nomenculature 

H(0): heat flux at surface of the drying bed 

r 

overall heat transfer coefficient of air film 

depth of bed 

latent heat of evaporation of water 

temperature 

asymptotic temperature 

reduced temperature ( = t ~ t p) 

average moisture content 

[kcal/m2
• hr] 

[kcal/m2
• hr· °C] 

[m] 
[kcal/kg] 

[OC] 

[OC] 

[OC] 

t 

tp 

u 

w 

Wp average moisture content at the beginning of the second 

period 

[kg/kg] 

falling rate 

[kg/kg] 

[m] X 

Q 

distance from surface 

greek letter 

distance of evaporating plane from surfact; [mJ 
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I(, thermal diffusivity ( =3-) 
Cp{) 

effective thermal conductivity of bed 

bulk density of dried bed 

0 time 

suffix 

0 initial value 

1 value at dried-up zone 

2 value at wetted zone 

a air 

i value at surface 

m material 

p value at wp 

o value at distance o 

Literature 

[m2/hr] 

[kcal/ m ·hr· °C] 

[kg/m3
] 

[hr] 

1) R. Toei and S. Hayashi : Memoirs of the Faculty of Engineering Kyoto Univ., 25 457 (1963). 
2) T. R. Goodman : Trans ASME. (Heat Trans.), 80 335 (1958). 
3) T. R. Goodman and J. J. Shea : Trans. ASME (Appl. Mech.), 27 16 (1960). 
4) M. S. Lighthill : Phil. Mag., 40 1179 (1949). 
5) W. D. Murray and F. Landis : Trans. ASME (Heat Trans.), 81 106 (1959). 




